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Abstract

Like a distributed denial-of-service attack, the barrage of spam email is over-

whelming enterprise network resources. We propose and evaluate an architecture for

a practical enterprise spam filter that provides personalized filtering on the server

side using machine learning algorithms. We also introduce a novel experimental

methodology that overcomes the “privacy barrier”, making it possible to evaluate

spam classifiers on a variety of individual, complete streams of real email. Our tests

yield convincing evidence that these algorithms can be used to build practical enter-

prise spam filters. We show that the proposed architecture will likely be efficient and

scalable. We show that the filters can be, on average, highly effective even at very

low false positive rates. And we show that the algorithms offer a well-behaved tuning

mechanism that can be used to manage the overall enterprise risk of legitimate mail

loss.
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Chapter 1

Introduction

This thesis studies the viability of enterprise spam filters that use machine learning

algorithms to recognize spam. It introduces a scalable architecture for such filters,

and a novel experimental methodology for evaluating their effectiveness. Using this

methodology, it overcomes the privacy barrier to evaluate three popular spam classi-

fication algorithms on complete sets of real email. The goal is to determine if these

kinds of filters can be both effective and efficient enough for practical deployment in

large networks.

Spam, sometimes more formally known as “Unsolicited Commercial Email” (UCE)

or “Unsolicited Bulk Email” (UBE), has grown from being a minor nuisance into a

global menace. Millions of email users world-wide waste untold thousands of hours

every day sorting through incoming mailboxes cluttered with unwanted or even of-

fensive messages. Meanwhile, the growth in network resources consumed by spam

continues at an unsustainable rate. The spiraling direct and indirect costs of spam

threaten the reliability and utility of the email infrastructure that has become so vital

to the global economy.

At the core of the spam problem is the fact that spam allows vendors to transfer

the vast majority of their marketing costs to the people they are marketing to. Even

though the response rate to spam is believed to be vanishingly small, it is still large

enough to overcome the even smaller costs of sending spam. Therefore, it becomes a

volume-driven business - the more spam you send, the more money you make. But

the real cost of the ensuing flood of junk email is not small, and it is borne by the

owners of the networks and servers that must deliver the spam, and by the individual

recipients who must waste valuable time sorting through it.

A variety of legal, structural, and technical solutions have been proposed; most are

controversial and many suffer from glaring weaknesses. Legal solutions face daunting

jurisdiction problems. Structural solutions, such as replacing SMTP, face staggering

infrastructure costs. Many technical solutions are extremely high-maintenance, re-
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sulting in a never-ending “arms race” between the elusive spammers and the network

administrators attempting to find new ways to block them.

While the world searches for a long-term solution, there is an urgent need for

something businesses can use to protect their networks from the escalating costs of

spam. This research is motivated by that need.

We define an “enterprise spam filter” as a system that blocks spam at the outside

edge of a network shared by up to thousands of email users. Like a firewall, this

system must protect the network from harmful external attack, while allowing legit-

imate activities to proceed unimpeded. We further define the five most important

requirements of an enterprise spam filter:

• Automatic: the filter must be easy (ideally transparent) to use;

• Adaptive: the filter must require little maintenance (ideally none) to keep up

with the changing nature of spam and the tricks used by spammers to evade

filters;

• Effective: the filter must block the vast majority of incoming spam, close enough

to the edge of the network to minimize (ideally eliminate) resource consumption;

• Safe: the filter must have a very low rate of false positives (ideally zero);

• Efficient: the filter must be both fast and scalable enough to run on shared

servers.

There are a number of compelling reasons to think that machine-learning-based

spam classification algorithms can be used to build such a filter. First, they automat-

ically learn how to distinguish spam from legitimate messages. Second, they easily

adapt, through periodic retraining, to changes in mail characteristics. Third, they

appear to be very effective, based on a number of previous studies that have shown

very promising results. Fourth, they enable each user to have their own personalized

filter, precisely tuned to the kind of mail they receive. It is quite reasonable to ex-

pect a custom filter to perform better than a generic one, and be more difficult to

systematically circumvent.

There are however a number of unanswered questions about the suitability of

these techniques. First, they are very processor-intensive, so are typically confined

to client-side solutions. Can they scale up to run on the servers of large networks?

Second, they have really only been tested on small or unrealistic datasets, because of

the privacy barrier. Will they perform well on large numbers of real sets of email?
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Third, they offer no guarantees of avoiding false positives. Can they be made safe

enough to deploy?

This thesis attempts to answer those questions, and make a convincing argument

that a practical enterprise spam filter can be built using machine learning algorithms.

The specific contributions of this report are:

• A proposed architecture for efficient and scalable enterprise spam filters that

use machine-learning-based spam classification algorithms;

• A novel experimental methodology that overcomes the privacy barrier - making

it possible to systematically evaluate spam classification algorithms on the email

received by large numbers of users;

• The first evaluation, under that methodology, of three popular spam classifica-

tion algorithms - yielding arguably the most useful performance results to date

for those algorithms.

• Statistical evidence of the importance of personalization in the evaluation of

spam classification algorithms;

• An empirical quantification of the inherent trade-off between the effectiveness

and safety of those algorithms - showing how they enable enterprises to manage

their risk in a disciplined way;

• A comparison of average algorithm performance versus corpus size - showing

how many messages these algorithms typically need to see before they become

useful;

• A comparison of average algorithm execution times - providing evidence that

the proposed architecture is indeed efficient and scalable;

• An extensible C++ API for spam classification - supporting future studies based

on the new methodology.

Chapter 2 will provide the necessary background and a critical analysis of related

work. Chapter 3 will define the problem and introduce the proposed solution. Chap-

ter 4 will explain the experimental design and the software created to implement it.

Chapter 5 will present and analyze the results of the experiments. Chapter 6 will

highlight the conclusions drawn from the study, and propose future work.



Chapter 2

Background and Related Work

This chapter introduces the spam classification problem, highlights some of the key

technical issues and discusses related work. It concludes by identifying critical ques-

tions that have not yet been adequately addressed in the literature.

2.1 Spam Classification

Text classification is a well-established area of research within the field of machine

learning. At a high level, the inputs to a text classification problem are:

• a set of labeled training documents (the “training set”);

• a set of labeled test documents (the “test set”); and

• a classification algorithm (the “classifier”).

The classifier uses the training set to learn how to associate labels with documents.

The learning mechanism may be statistical, geometrical, rule-based or something else.

The trained classifier is used to predict the label of each document in the test set.

Since the correct labels are already known, the classifier can be scored based on its

accuracy. This is known as a supervised learning problem.

When evaluating the success of an algorithm in a supervised learning problem, it

is critical that the training set and test set do not overlap. Many machine learning

techniques are prone to overfitting of the training set, meaning that they can become

much too reliant on the details of the specific documents in the training set, and

cannot perform as well on new documents that have not been seen before. Therefore,

the performance of a classifier on the training set is not considered to be a reliable

indicator of the classifier’s generalization performance.

In recent years, a number of text classification studies have focused on email

documents [4, 15], typically exploring the problem of categorizing messages into a set

4
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of folders. Even more recently, the spam problem has motivated researchers to focus

on the more specific problem of recognizing spam.

There are three important reasons why the body of spam classification research is

distinct from the more general email classification literature. First, spam classification

is strictly a binary problem; we are interested in determining if an incoming message

is “spam”, or “not-spam”. Second, spam classification has extremely unbalanced

error costs; the cost of losing a legitimate message is far greater than that of allowing

a spam message to sneak into the inbox. Third, spam classification has the added

challenge of contending with an adversary; the people creating the spam messages

are deliberately trying to confuse your classifier!

2.2 Document Representation

Email documents are considered semi-structured text documents, consisting of struc-

tured fields with relatively well-defined semantics (the message headers), and unstruc-

tured, variable-length fields of free text (the subject line and body) [6]. The relative

value of the information found in the two sections is often of interest to researchers.

Each document is typically represented by an instance vector - an array of attribute

or feature values. This is generally known as the “Vector Space Model”, or more

informally, the “bag of words” approach.

Each attribute or feature represents a particular measurement made on the docu-

ment, such as how many times a particular word, term, or token appeared. The most

popular types of attributes in the spam literature are:

• Binary - the presence or absence of a token;

• Term Frequency (TF) - the number of occurrences of a token [7, 20];

• TF/IDF - TF scaled by the Inverse Document Frequency (IDF), having the

effect of increasing the weight of tokens that are not common in many docu-

ments [7].

Binary attributes are by far the most common type found in the spam literature,

partly because they make many calculations far more efficient.

Before training, the document representation must be decided on. This process in-

volves the steps of “feature extraction” and “feature selection”. Then, during training

and testing, each document must be mapped to an instance based on the chosen doc-

ument representation. This second process involves feature extraction and “instance

mapping”. These steps are described below.
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2.3 Feature Extraction

Feature extraction is the task of parsing a document into a list of tokens. These

tokens are typically individual words, tokenized by treating a certain set of ASCII

characters as word delimiters. The choice of that set of delimiters is important! For

example, the way you tokenize email addresses, URLs and IP addresses could have a

significant impact on your results.

Some studies have looked at the effects of including “heuristic” features such as

whether or not the email has an attachment, or how many consecutive exclamation

marks are found in the subject line [16, 6, 9].

2.4 Feature Selection

Feature selection takes the set of all tokens found in all training documents, and

decides which ones to include in the dictionary. A trivial feature selection process

might simply decide to use all tokens found in all documents. There are, however, a

number of good reasons to be more selective:

• Dimensionality reduction - extremely long instance vectors often cause ex-

tremely long execution times;

• Resistance to overfitting - some algorithms are more susceptible to overfitting

for large, sparse feature spaces that have a lot of redundant features [20];

• Improved effectiveness - some algorithms perform better when only the most

“useful” features are considered, with useless “noise” features rejected [7].

Typically, a potential feature set in the tens of thousands will be pared down to a

few hundred or a few thousand of the most useful ones. A variety of techniques have

been employed to accomplish this:

• Stop lists - reject useless words such as “the” and “a” [7, 2, 1];

• Stemming - reduce word forms to their base, for example change “running” to

“run” [13, 7, 2, 1];

• Minimum term frequency - reject as uninformative words that appear in less

than a minimum number of documents [16];
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• Mutual information - a calculation based on information gain or entropy that

identifies the tokens that most closely associated with a specific class [16, 2, 1,

8, 20].

2.5 Instance Mapping

We define “instance mapping” as the process of mapping a document to an instance

vector, using the dictionary and the list of tokens found in the document. For each

token in the dictionary, an attribute value is calculated. In the simplest case, binary,

the value of the first attribute will be “true” if the first token in the dictionary is

found anywhere in the document.

2.6 Classification

Classification is the process of predicting the label of the document represented by a

given instance vector. Some classifiers output “hard” decisions - simply the predicted

label. Others output “soft” decisions - typically a score representing how confident

the classifier is that the given instance represents a spam message. This second group

of classifiers is attractive, because they allow researchers to use thresholds to decide

on the final classification. By varying the threshold, tradeoffs can be made between

the two different types of errors, false positive and false negative.

2.7 Algorithms

A rich variety of text classification algorithms have been applied to the spam classi-

fication problem. These include:

• Naive Bayes [16, 13, 1, 2, 6, 9, 8, 20];

• Support Vector Machines (SVM) [7, 10, 8, 11];

• Decision trees [6, 9, 8];

• Boosted decision trees [7, 3];

• k-Nearest-Neighbor (kNN) [2, 9, 8];

• Stacked classifiers [17];

• Rule learners [7, 9, 8];
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• Rocchio [7]; and,

• Centroids [21].

2.8 Experimental Methodologies

A common challenge in classification research is a lack of large quantities of accurately

labelled data. This is especially true in spam classification research, because most

people consider their email private, and aren’t particularly enthused by the idea of

giving it to researchers to study. In general though, it is expensive to have human

“experts” go through thousands of documents and give each one the correct label.

This challenge is magnified by the need to have sufficient data to be able to maintain

separate training and test sets. As a result, it could be difficult to obtain statistically

significant results.

Fortunately, a process called “cross validation” makes it possible for researchers to

take maximum advantage of limited training data. A common version of the method

is known as 10-fold cross validation. Using this methodology, the complete set of

labelled documents is divided into 10 random folds (often stratified, meaning that

each fold has approximately the same class distribution as the overall set). Then,

for each fold, all the other 9 folds are used for training, and the current fold is used

for testing. This process ensures that every document can be used for testing, but is

never tested by a classifier that also saw it during training. This process is repeated

ten times, to generate even more results.

In the spam classification literature, the privacy barrier has forced researchers to

find alternative sources of data. One popular example is the “LingSpam” corpus [2,

1, 9, 8] - a collection of postings from a mailing list for linguists, combined with a

number of spam email messages. The presumption is that this corpus resembles real

email strongly enough to produce relevant results. Other researchers have tested on

their own email [13], or a pooled collection of messages from themselves and a few

colleagues [16, 7]. Few studies kept messages from different people separate [6], or

made sure to include legitimate messages that people ordinarily delete [16].

Furthermore a surprisingly large proportion of the studies did not use cross val-

idation; many of them instead chose to divide, based on chronological order, the

messages into a single training set and a single test set. While this methodology

sounds intuitive, the results obtained from it are not the most statistically sound

that can be obtained from the available data.
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2.9 Metrics

Virtually all classifier evaluation metrics used in the spam literature are based on the

“confusion matrix”. This divides classification decisions into one of four quadrants:

• True positives - correctly identified spam messages;

• False positives - legitimate messages incorrectly identified as spam;

• True negatives - correctly identified legitimate messages;

• False negatives - spam messages incorrectly identified as legitimate.

Recall measures the proportion of the members of a particular class that were

identified correctly. For example, spam recall is the proportion of spam that the

classifier successfully recognized.

Precision measures the proportion of instances predicted to belong to a particular

class that really belong there. For example, for all those messages classified as spam,

what proportion of them really are? That is spam precision.

False positive rate measures the proportion of legitimate messages that get mis-

classified as spam.

Accuracy measures the proportion of all messages that were correctly classified.

Error rate measures the proportion of all messages that were incorrectly classified.

The F measure is a handy way to combine recall and precision into a single

measure of “goodness”.

The Total Cost Ratio (TCR) [1] is another single measure, one that takes into

account the asymmetric costs of errors.

2.10 Cost Sensitivity

Much of the focus in the spam classification literature is on cost-sensitivity. Given

the highly unbalanced costs of classification errors, it is intuitive to think that any

evaluation should favor algorithms that tend to make less costly errors. A variety

of approaches to this have been attempted, with the TCR mentioned above being

one of the most popular. One problem is that under certain assumptions, a single

false positive makes a classifier score worse than a trivial one that simply calls every

message legitimate [1]. Some studies used different thresholds to model specific cost

scenarios [16, 6, 3].

Some researchers have attempted to introduce cost sensitivity into the training

process by biasing their classifiers against false positives [9, 10, 8].
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2.11 Summary

The existing body of spam classification research collectively shows very promising

results. It appears that several machine learning algorithms - especially Naive Bayes,

support vector machines and boosted decision trees - are capable of achieving a high

spam recall at a low false positive rate. The key issues of algorithm identification,

feature selection, and cost sensitivity have all been thoroughly examined.

That body of research, however, has little to say about whether machine-learning-

based spam classifiers can be used to build effective and efficient enterprise spam

filters. Enterprise spam filters must serve hundreds or thousands of users, all of

whom get different kinds of email, and in different proportions. All of that mail

must be filtered by shared servers at the edge of the network, to prevent spam from

flooding the local network. To convince someone that spam classifiers can function

in this kind of environment, you need to prove to them that the filters will work

for everyone, not just computer scientists and linguists! And you need to prove to

them that spam classifiers can handle the load. These questions have not yet been

adequately addressed.

The studies to date have not been able to run experiments on realistic data - a

variety of complete individual email streams - because it simply hasn’t been available.

The privacy barrier has forced people to use just their own mail, or a collection of

mail contributed by a few close colleagues, or one of a few publicly-available corpora

of questionable value. Few of them have even tested on complete email streams; most

seem to make do with just the messages that were not already deleted. Results based

on this kind of data are not convincing enough.

The studies to date have also not produced much evidence that machine-learning-

based spam classifiers can be efficient enough to run on the server. This is critical,

because client-side filters will not solve the problem. Many classification algorithms

are notoriously slow. Training and classification times must be studied, as well as

disk space and bandwidth requirements.

These are the issues that this report will address. The next chapter will explain

how.



Chapter 3

Problem Definition and Proposed Solution

This chapter defines the questions that this report will ask, and proposes how to

answer them.

3.1 Unanswered Questions

The goal of this report is to provide a convincing argument that machine-learning-

based spam classification algorithms can be used to build practical enterprise spam

filters. In Chapter 1, we listed the five most important requirements of such filters:

they must be automatic, adaptive, effective, safe and efficient.

We know that these algorithms are inherently automatic and adaptive. What we

don’t know is whether they can be effective and safe enough to use on thousands of

different real email streams, and whether they can handle that load efficiently. The

existing body of research has provided tantalizing hints of that potential, but little

hard evidence.

Personalization is a fundamental advantage of machine-learning-based spam clas-

sification algorithms. Everyone receives different kinds of mail, both legitimate and

spam. Intuitively, a filter finely tuned to the peculiarities of the kinds of mail you re-

ceive is more likely to work better for you than a generic filter shared with thousands

of other people. Furthermore, if everyone has a different filter, it will be much harder

for spammers to craft a message that systematically circumvents the system. There-

fore, an enterprise spam filter based on machine-learning-based spam classification

algorithms must be able to efficiently provide personalized filtering on the server.

The question is: Can this be done? Machine learning algorithms are notoriously

slow, and the existing spam classification research has provided little direct evidence

to the contrary. Section 3.2 will propose an architecture for machine-learning-based

enterprise spam filters that appears to be efficient and scalable.

Assuming that these algorithms can be used to build efficient enterprise spam

11
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filters, the next question is: Will they work? That is, will they work for everyone?

There needs to be research performed that systematically evaluates the effectiveness

and safety of spam classifiers on large numbers of complete, real email streams, repre-

senting a variety of different kinds of users. To date, the privacy barrier has prevented

researchers from getting access to that kind of test data. Section 3.3 will introduce

a novel experimental methodology - one that will make it possible to evaluate these

algorithms in a realistic way for the first time.

Another advantage of many machine-learning-based spam classification algorithms

is the ability to tune decision thresholds, enabling administrators to manage risk

by making trade-offs between effectiveness and safety. The question is: Can these

algorithms be both effective and safe?

In summary, this report will address the following questions:

• Is there an efficient, scalable architecture for an enterprise spam filter that

uses spam classification algorithms to implement personalized filters on shared

servers?

• Is there a way to evaluate spam classification algorithms on large numbers of

individual, real, complete email streams?

• How effective are some of the more popular algorithms when evaluated on this

more realistic data?

• How effective are they when tuned for varying degrees of safety?

• How many training messages do they need to see before they become effective?

• How long are algorithm execution times?

• How much data must be stored on the server for each user?

3.2 A Scalable Architecture For Enterprise Spam Filters

The key to building a scalable enterprise spam filter using machine-learning-based

spam classification algorithms is recognizing that most of the hard work can still

be done on the client side. In general, it is training the classifiers that takes time;

classification is very fast for many algorithms.

To make this work, we need to borrow an idea from cryptography - a small key

that “plugs” into the algorithm to make it work. In this case, a personalized “filter

key” is generated on the client by the classifier’s training algorithm. The filter key
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is then passed to the server, where it is stored in a database. Whenever a message

arrives, the server retrieves the filter key for the appropriate user, and plugs it into

the classifier to do the filtering. Figure 3.1 illustrates this idea.

Server

Client A Client B

Figure 3.1: Proposed architecture for an enterprise spam filter.

If you can assume that classification time is “very fast”, training time is “reason-

able”, and the filter key is “small”, then what you have left is basically an engineering

exercise. After looking at some implementation considerations, we’ll revisit those as-

sumptions.

A distributed enterprise spam filter will have client software (perhaps a plug-in

for a popular email client like Microsoft Outlook) integrated with the server at the

edge of the network. On the client side, the user will have a prominent “mark as

spam” button seamlessly integrated into the graphical user interface of the email

client. The client software will maintain a local database of all the user’s most recent

messages, including the classification of each. Periodically, during computer idle time,



14

the software will invoke the spam classification algorithm to train (and test) itself on

the database of messages. Once it has a large enough database, and the self-tests

are successful enough, the client automatically generates a compact filter key and

connects to the server.

Upon connection, the client will upload the filter key to the server. The server

software will store this key in a database, indexed by user ID. As each incoming email

message arrives, the server will determine the user ID, retrieve that user’s filter key

from the database (or a cache), plug the key into the spam classification algorithm,

and classify the message. If the message is determined to be legitimate, it is delivered

as usual. If not, the sender, subject line, and perhaps the first few lines of the

message are appended to the user’s “spam digest” stored somewhere on the network.

The spam message is then discarded.

Once a day, or whenever the user wants to, the user’s email client software will

move the compact spam digest to the local machine. Then, it can be checked for

false positives at the user’s convenience. If a false positive is suspected, the user has

the sender’s address to ask them to resend the message (and it will be accepted the

second time, as explained below).

Periodically (perhaps once a week) the client software will produce an updated fil-

ter key, based on the most recent messages received (including the few spam messages

that slipped through). In this way the filter smoothly adapts to the latest tactics used

by spammers.

The filter key will consist of the following:

• The dictionary generated by the feature selection process (see Section 2.4);

• The internal data from the trained classifier, representing what it has “learned”;

• A “white list” maintained automatically by the client software, containing every

address that the user has sent a message to, along with manual entries added

by the user.

The server uses the filter key as follows: first, a message from anyone on the

white list automatically bypasses the filter; second, the dictionary is used to map

the incoming message to an instance vector(see Section 2.5); and third, the internal

classifier data is simply loaded into place in the server’s classifier, so it can classify

the instance vector.

The client software will provide a mechanism for the user to extract an address

from the spam digest when a false positive is found. This can be used to request the
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sender to resend the message that got blocked. To prevent the message from being

blocked a second time, that address would be automatically added to the white list,

and the resulting new version of the filter key would be sent to the server. This means

that spam can be blocked from entering the network, but no legitimate messages need

ever be lost.

In summary, if our assumptions hold, this architecture will meet the “automatic”,

“adaptive” and “efficient” requirements for an enterprise spam filter. The remaining

work is to back up our assumptions, and show that there are “effective” and “safe”

algorithms available. Those algorithms will be described below, following the proposal

of a new methodology for evaluating their effectiveness and safety.

Data to support the efficiency assumptions will be presented in Section 5.7.

3.3 A Better Way To Evaluate Spam Classifiers

To accurately evaluate spam classification algorithms, they must be tested on real

data. It’s not that we need larger datasets; it’s that we need more of them! And

they should be complete, not just the messages that people saved. Also, mail from

different people should not be mixed. This is the kind of data that enterprise spam

filters will deal with in real life, so we need to find out how well they will handle it.

In order to overcome the privacy barrier, this thesis introduces a novel experimen-

tal methodology that makes it possible to systematically evaluate the algorithms on

complete, real email streams from many individuals, without violating their privacy.

The concept is a distributed, blind test infrastructure.

Similar to the architecture described above, we let the clients do most of the

work. Test volunteers install a piece of software that integrates with their email

clients. That software superficially operates as a client-side spam filter. But the

corpus of labeled emails it builds locally for training purposes also serves as a private

test bed for experiments on different algorithms. During idle periods, the software

runs experiments on the growing corpus, and reports (just) the results back to a

central server. The server aggregates the test results from all the volunteers. The

client software can also download new experiments from the server as researchers

release them.

This design makes it possible to gather test results from a large variety of people.

Not only is their privacy protected, but they get the benefit of a state-of-the-art spam

classifier.

There are, however, some disadvantages. Since researchers can’t see the data,
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they can’t easily make sure the software is being used properly. And it is also not

easy to analyze what types of messages the classifiers have trouble with. However,

with a carefully designed user interface, and thorough logging and reporting, much

of the disadvantage can be minimized.

It is very important to design the user interface with the primary goal in mind:

building a complete database of correctly labelled messages. Therefore, the design is

not necessarily going to be the same as that of a commercial spam filter product. Here

we need to try to ensure that every single incoming message gets labelled correctly,

so that we can run experiments on complete sets of email. Commercial products may

be designed to let users control which messages are used for training.

This is the concept behind the experimental methodology used for this thesis. The

implementation details will be explained in Chapter 4.

3.4 Three Promising Algorithms

This report evaluates three of the most popular algorithms in the spam classification

literature: Naive Bayes, Support Vector machines, and AdaBoost (boosted decision

trees). All three have shown very promising results, appear to be relatively efficient,

and produce confidence-weighted classifications suitable for tuning with thresholds.

Each will be introduced briefly below, with references to more detailed descriptions.

3.4.1 Naive Bayes

The Naive Bayes classifier is a simple statistical algorithm with a long history of

providing surprisingly accurate results. It has been used in several spam classification

studies [16, 13, 1, 2, 6, 9, 8, 20], and has become somewhat of a benchmark. It gets

its name from being based on Bayes’s rule of conditional probability, combined with

the “naive” assumption that all conditional probabilities are independent (given the

class) [22].

During training, the Naive Bayes classifier examines all of the instance vectors

from both classes. It calculates the prior class probabilities as the proportion of all

instances that are spam (Pr[spam]), and not-spam (Pr[notspam]). Then (assum-

ing binary attributes) it estimates four conditional probabilities for each attribute:

Pr[true|spam], Pr[false|spam], Pr[true|notspam], and Pr[false|notspam]. These

estimates are calculated based on the proportion of instances of the matching class

that have the matching value for that attribute.

To classify an instance of unknown class, the “naive” version of Bayes’s rule is
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used to estimate first the probability of the instance belonging to the spam class, and

then the probability of it belonging to the not-spam class. Then it normalizes the

first to the sum of both to produce a spam confidence score between 0.0 and 1.0. Note

that the denominator of Bayes’s rule can be omitted because it is cancelled out in

the normalization step. In terms of implementation, the numerator tends to get quite

small as the number of attributes grows, because so many tiny probabilities are being

multiplied with each other. This can become a problem for finite precision floating

point numbers. The solution is to convert all probabilities to logs, and perform

addition instead of multiplication. Note also that conditional probabilities of zero

must be avoided; instead a “Laplace estimator” (a very small probability) is used.

It is important to note that using binary attributes in the instance vectors makes

this algorithm both simpler and more efficient. Also, given the prevalence of sparse

instance vectors in text classification problems like this one, binary attributes offer

the opportunity to implement very significant performance optimizations. Figure 3.2

presents the Naive Bayes training and classification algorithms used.

Naive Bayes Training Algorithm:
priorProbSpam = proportion of training set that is spam
priorProbNotSpam = proportion of training set that is not-spam
For each attribute i:

probTrueSpam[i] = prop. of spams with attribute i true
probFalseSpam[i] = prop. of spams with attribute i false
probTrueNotSpam[i] = prop. of not-spams with attribute i true
probFalseNotSpam[i] = prop. of not-spams with attribute i false

Naive Bayes Classification Algorithm:
probSpam = priorProbSpam
probNotSpam = priorProbNotSpam
For each attribute i:

if value of attribute i for message to be classified is true:
probSpam = probSpam× probTrueSpam[i]
probNotSpam = probNotSpam× probTrueNotSpam[i]

else:
probSpam = probSpam× probFalseSpam[i]
probNotSpam = probNotSpam× probFalseNotSpam[i]

spamminess = probSpam/(probSpam + probNotSpam)

Figure 3.2: Naive Bayes training and classification algorithms.
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3.4.2 Support Vector Machines

Support vector machines (SVMs) are relatively new techniques that have rapidly

gained popularity because of the excellent results they have achieved in a wide va-

riety of machine learning problems, and because they have solid theoretical under-

pinnings in statistical learning theory [5]. They have also been used in several spam

classification studies [7, 10, 8, 11].

SVMs have an intuitive geometrical interpretation [22]. Essentially, during train-

ing, the algorithm attempts to find a maximum-margin hyperplane that separates

the instance vectors of the two classes. This hyperplane can be completely defined

by just the instances, called support vectors, from each class that are closest to it.

This makes SVMs highly resistant to overfitting. If the two classes are not linearly

separable, nonlinear SVMs can be used to find nonlinear class boundaries; however,

the much faster linear SVMs have achieved excellent results in spam classification.

There is an efficient algorithm for training SVMs, called Sequential Minimal Op-

timization (SMO) [14]. Linear SVMs are also extremely fast classifiers - classification

amounts mainly to computing the dot product of the instance vector with a weight

vector produced during training. Also, similar to Naive Bayes, binary attributes speed

up SVMs, and the sparse instance vectors offer substantial performance optimization

opportunities.

SVMs produce confidence weighted classification scores that, using a sigmoid func-

tion, can be mapped to a score between 0.0 and 1.0. Figure 3.3 presents the linear

SVM training and classification algorithms used.

Linear SVM Training Algorithm:
Use SMO to calculate b and w[i] for each attribute i

Linear SVM Classification Algorithm:
output = (dot product of w and instance vector to be classified) - b
spamminess = 1.0/(1.0 + exp(−output))

Figure 3.3: Linear SVM training and classification algorithms.

3.4.3 AdaBoost

AdaBoost is another relatively new, but popular algorithm. It has also been used with

great success in spam classification [3]. It is one of a family of “boosting” algorithms;

these techniques attempt to “boost” the accuracy of a “weak” classifier [18]. The
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algorithm proceeds in a series of rounds, each time training a different version of the

weak classifier. The difference is based on a weight value for each training instance;

after each round, all the weights are updated in a way that emphasizes the instances

that previous versions of the weak classifier had trouble with.

For this thesis, the AdaBoost.MH variant [19] is used, because it supports weak

classifiers that produce confidence-weighted decisions. It requires that the weak clas-

sifier output a positive score to indicate spam, and a negative score to indicate not-

spam. The magnitude of the score indicates the confidence. We used decision tree

“stumps” (single-level trees) for the weak classifier. While multi-level trees have

shown better results [3], this thesis is highly focused on efficiency, and stumps are

faster.

During classification, the algorithm simply tallies up the spam and not-spam votes

from all the weak classifiers, and produces a normalized spam confidence score be-

tween 0.0 and 1.0.

Figure 3.4 presents the AdaBoost.MH training and classification algorithms used.

AdaBoost.MH Training Algorithm:
Initialize weights on training instances
For each round i:

Train a new weak classifier i on weighted training instances
Use accuracy of weak classifier i to update weights on training instances

AdaBoost.MH Classification Algorithm:
For each round i:

weakScore = spamminess score of message calculated by weak classifier i
if weakScore is positive:

spamScore = spamScore + weakScore
else:

notSpamScore = notSpamScore + (weakScore×−1.0)
spamminess = spamScore/(spamScore + notSpamScore)

Figure 3.4: AdaBoost.MH training and classification algorithms.



Chapter 4

Implementation and Experimental Design

This chapter describes the extensible C++ API built to support the research, and

how the experiments were designed and carried out.

4.1 An Extensible C++ API for Spam Classification Research

To support this thesis, we designed and built an extensible, object-oriented appli-

cation programming interface (API) for spam classification research. This is not a

general machine learning library; it is specifically designed for building and testing

spam classifiers. Some of the top-level classes include:

• Document - represents an RFC 822 compliant email message (RFC 822 is the

basic format specification for Internet email messages);

• Instance - represents an instance vector mapped from a Document;

• Corpus - represents a collection of Documents;

• Dictionary - stores the tokens represented by each attribute of an Instance;

• Parser - parses a Document into a list of tokens;

• FeatureSelector - given a set of token lists, produces a Dictionary;

• Vectorizer - given a list of tokens and a Dictionary, produces an Instance;

• Trainer - given a Corpus, produces a trained Classifier;

• Classifier - given an Instance, returns a “spamminess” score between 0.0

and 1.0;

• Evaluator - given a set of Documents, and a set of test configurations, runs a

series of cross validation experiments.

20
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The API is designed for maximum flexibility in trying out different techniques.

Using the object-oriented technique called inheritance, a wide variety of subclasses

can be plugged in and tested. For example, the API already contains a subclass of

Instance called BinaryInstance; it would be easy to add another called TFInstance

to implement term frequency instance vectors. Continuing with that example, just

as the subclass BinaryVectorizer maps the Parser output to a BinaryInstance,

a TFVectorizer could produce TFInstances. Because of inheritance, all these sub-

classes can still be submitted for tests in the Evaluator, because the Evaluator only

deals with top-level classes. Similarly, a wide variety of parsing, feature selection and

classification algorithms can be easily added to the API.

Although Java would have been (arguably) a more portable language to use,

implementation efficiency is a critical requirement for this research. Also, C++ allows

more direct integration with popular Windows and Unix email clients.

4.2 The SpamTest Platform

We built and deployed a test platform that implements the new experimental method-

ology introduced in Section 3.3. Originally, we hoped to build a fully distributed

system, using software plug-ins for one or more of the most popular email clients.

Unfortunately the number of different email clients used by our group of volunteer

testers was almost as big as the number of volunteers themselves! Limited time and

resources forced us to take a different approach. We decided on a design that would

work for any email client - a design that involved running our client software on

the Dalhousie University Faculty of Computer Science mail server! Needless to say,

efficiency suddenly became even more critical.

The “SpamTest” platform takes advantage of a popular Unix mail processing util-

ity called “procmail”. When an email arrives for a SpamTest volunteer, procmail is

invoked by the mail server. Procmail runs the email through our trained classifier

program called “spamflagger”, which inserts a label into the beginning of the mes-

sage’s subject line. That label loudly declares the message to be either “SPAM” or

“OK” and includes a “spamminess” score and a message ID. When the volunteer sees

a message with an incorrect label, she forwards the message to herself. Procmail in-

tercepts this “correction message” and passes it to a program called “spamcorrector”.

This is the extent of the SpamTest experience for users.

Behind the scenes though, much more is going on. When spamflagger processes

each message, it always assumes it is right. Therefore, it makes a copy of the message,
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and stores it in either the spam or not-spam side of the volunteer’s private message

database. When spamcorrector receives a correction message, it examines the subject

line label, extracts spamflagger’s original classification and the message ID, and moves

the specified message to the opposite side of the database.

At this point, it is worth acknowledging that this may not be the best way to

design the user interface of a real spam filter product. However, our primary goal

for the user interface is to maximize the accuracy of the message classifications in the

database, with as little user effort as possible. Of secondary importance is providing

something of value to our volunteers - a very accurate spam flagger, that makes

sorting through their inbox less painful. The labels also have a special feature. If

you sort your inbox alphabetically by subject (easy on many email clients), the “least

spammy” messages float to the top, and the “most spammy” messages sink to the

bottom.

To protect the privacy of our volunteers, we use the file access control mechanisms

provided by Unix. The private message databases accumulated by SpamTest for each

volunteer can only be accessed by that volunteer, or by a program invoked by her.

Therefore, it is a bit of a challenge to arrange for periodic or infrequent training and

testing. However, programs invoked by procmail on behalf of a volunteer are treated

by Unix as if they were invoked by her. So procmail helps us overcome this problem

too. Procmail is configured to recognize and intercept special “train” and “run tests”

commands from a particular email address. When the “train” command is received

(typically at night), procmail invokes a program called “spamtrainer” that trains

the volunteer’s classifier on the messages in her private database. Similarly, a “run

test” command triggers procmail to invoke the “spamtester” program, which runs a

set of experiments on the private database, and makes just the results accessible to

researchers.

There were some interesting implementation issues. First of all, the Dalhousie

Faculty of Computer Science already runs a popular spam filter called “Spam As-

sassin” on all incoming messages. This filter adds custom headers to each message,

indicating (among other things) whether the message is spam or not. We used the

Spam Assassin tags to generate an initial training set of reasonable quality to boot-

strap our classifiers. The headers added by Spam Assassin were stripped out before

the messages were used to train the classifiers, but their spam/no-spam tags were

used as the class labels of the messages in the initial training set. eem: the following text

was taken out and replaced by the previous text, to make the use of Spam Assassin tags more clear: ”We took advantage of this to

“bootstrap” our classifiers, so volunteers would not have a huge number of corrections to make when first starting out. Note that the
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headers added by Spam Assassin were stripped out before the messages were used to train the classifiers!” Second, we also

attempted a “blind” database cleanup just before the final experiments were run. We

again took advantage of the Spam Assassin headers - if a message was flagged as

spam by SpamAssassin, yet the user had it marked as not-spam, we used SpamTest

to auto-generate a request for them to double-check that message. The opposite was

not possible, because there were far too many spam messages missed by Spam Assas-

sin. We did not want to flood our volunteers with messages to double-check! We did

however have SpamTest generate a few double-checks in extreme cases of messages

that all of the classifiers had trouble with. As a whole, these double-checks resulted

in quite a few corrections, so it is fair to say noise in the data is a significant challenge

under this methodology. After the cleanup, experimental results improved noticeably

for all the classifiers.

4.3 Experiments

The Evaluator class, described in Section 4.1, makes it easy to “mix-and-match” dif-

ferent Parsers, FeatureSelectors, Vectorizers and Classifiers in experiments.

One of each is specified in a single test configuration, and any number of test configu-

rations can be added to the Evaluator before the experiment runs. Each configuration

is trained and tested on the same sequence of messages in a ten-fold cross-validation

(with stratification) procedure.

For the SpamTest platform, described in Section 4.2, the “spamtester” program

assembles the test configurations and starts the Evaluator. Different configurations

were run on different nights.

The first experiments were used to determine the best configuration for each clas-

sifier (“best” sometimes meaning a compromise between effectiveness and efficiency).

Then we ran the best configurations for each classifier against each other. The ex-

periments are listed below. Note that each volunteer’s database was locked before

running these final experiments, meaning no messages were added, deleted or changed

between experiments.

4.3.1 Feature Extraction

For each of the classifier algorithms we tried out a series of different parsing tech-

niques. Our baseline Parser included the values of all header fields, as well as the

entire body text (although the Document class strips out MIME attachments before

parsing, leaving only the text and HTML portions of a MIME-formatted message,
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along with the MIME headers for each attachment). In all cases, the characters

",.!?-:<>*;()[]’‘ as well as the space, tab and newline characters were used as

token delimiters. Carriage returns were stripped out by the Document class before

parsing. In future studies, different tokenization strategies may well be worth evalu-

ating. Note that tokens were truncated to a maximum length of 30 characters.

We tried the baseline parser plus four different variations of it for each classifier.

Those variations are:

• Including header names as tokens (not just header values);

• Using “header tags” (prepending each header token with the name of the header

it came from);

• Omitting headers altogether (except the subject line); and,

• Omitting the body text.

4.3.2 Feature Selection

Related to the parser experiments, we also tried out each classifier with a special

FeatureSelector that converted all tokens to lower case before building the dictio-

nary, and compared that to the baseline configuration.

We did not incorporate stemming or stoplists into our evaluations, because the

results from previous studies [13, 7, 2, 1] did not convince us that the benefits would

justify the efficiency penalties.

Our major feature selection experiments consisted of using mutual information

(MI) [16, 2, 1, 8, 20] to determine the best number of attributes to work with for each

classifier. We tried out each classifier using 50, 100, 250, 500, 1000, 2500, 5000 and

10000 attributes. Note that other authors [7] have recommended letting the SVM and

decision tree algorithms perform their own feature selection. Since it was convenient,

we decided to try using MI anyway.

4.3.3 Classification Algorithms

As explained in Section 3.4, this thesis evaluates the Naive Bayes, linear SVM and

AdaBoost.MH (with decision tree stumps) algorithms. Before testing the algorithms

against each other, we first determined the number of rounds (see Section 3.4.3)

needed by AdaBoost.

Then, based on the previous experiments, we ran the chosen baseline configura-

tions of the three algorithms against each other. We repeated this experiment on a
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variety of corpus sizes: 50, 100, 200, 400 and 800 messages. Each time, we simply

used the most recent messages in each database, regardless of class. For example, the

last test ran on the 800 most recent messages from each volunteer’s private database

(for those who had large enough databases).

4.4 Evaluation Plan

We collect a variety of data from each experiment. For each volunteer, one experiment

runs each night, yielding one test report. The test report produced by the Evaluator

contains the following information:

• The username and test time;

• Total number of spams and not-spams in the corpus;

• Detailed descriptions of each test configuration used in the experiment;

• Information about each fold (size and class distribution of training set and test

set);

• Classifier outputs (for each test configuration) for each message; and

• Execution times (for each test configuration) for feature selection, parsing, in-

stance mapping, training and classification.

A “test report reader” program analyzes these test reports and produces sum-

maries, as well as metrics for each test configuration. From a volunteer’s test report,

we calculate the spam recall for each test configuration at the decision threshold that

fixes the false positive rate at 5, 2, 1, 0.5 and 0 percent. Note that linear interpolation

is used to estimate spam recall values for those precise false positive rates.

We compare test configurations by averaging these metrics across all volunteers.



Chapter 5

Results and Analysis

This chapter discusses the results of our experiments. As described in Section 4.2,

we had to limit our study to only the volunteers who have email accounts with

the Faculty of Computer Science. In the end, this reduced us to seven people who

received a large enough volume of mail over the duration of our study. Those seven

people consisted of three professors, two graduate students and two administrative

staff members. Although this is a much smaller number than we had hoped for, we

believe it is enough to test our new methodology. It also represents a reasonable

diversity of user types.

All results presented below represent the average across all seven users, unless

otherwise noted. Where fixed corpus sizes are referred to, the most recent messages

in each user’s database were selected.

Complete results for all experiments are listed in Appendix A.

5.1 Baseline Configurations

The following are the baseline test configurations, used in all experiments except

where otherwise noted. These were chosen on the basis of the results of the initial

experiments, described in Sections 5.2, 5.3 and 5.4.

• Parser: header names omitted, header tags not used, header values included,

body text included.

• FeatureSelector: case-sensitive, best 1000 attributes selected using mutual

information.

• AdaBoostMHClassifier: 50 rounds.

• Corpus size: maximum 500 most recent messages (one user had only 401 mes-

sages in his database).

26
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5.2 Feature Selection

Table 5.1 shows the results of the main feature selection experiments, which tested

the classifiers versus the number of attributes. These experiments used the baseline

configurations, except the AdaBoost classifier used 100 rounds. These results show

no significant justification for using more than 1000 attributes, so that was chosen

for the baseline configuration for each classifier in subsequent experiments.

Number of Spam Recall(%) @ 1% FPR
Attributes Naive Bayes SVM AdaBoost

50 75.5 74.6 82.9
100 86.1 93.5 93.5
250 93.1 93.7 95.2
500 96.4 95.9 96.9
1000 97.5 96.8 97.0
2500 97.7 97.2 96.8
5000 97.9 97.1 97.1
10000 98.2 97.3 96.8

Table 5.1: Spam recall at 1% false positive rate versus number of attributes.

We also compared the baseline configurations against versions that used a case-

insensitive feature selector. The results in Table 5.2 show no significant benefit to

converting all tokens to lower case before constructing the dictionary.

Spam Recall(%) @ 1% FPR
Configuration Naive Bayes SVM AdaBoost

Baseline 97.8 97.2 95.7
Case-Insensitive 96.7 96.9 95.6

Table 5.2: Spam recall at 1% false positive rate versus case sensitivity.

5.3 AdaBoost Rounds

We tested the baseline AdaBoost configuration against the number of rounds (see

Section 3.4.3). The results, shown in Table 5.3, provide no justification for using

more than 50 rounds, so that was chosen for the baseline AdaBoost configuration in

subsequent experiments.
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Number of Rounds Spam Recall(%) @ 1% FPR
25 93.5
50 94.9
100 94.6
200 93.9
400 95.0

Table 5.3: AdaBoost spam recall at 1% false positive rate versus number of rounds.

5.4 Feature Extraction

We tested the baseline configuration of each classifier against several different parsing

strategies (see Section 4.3.1). Table 5.4 compares the baseline against a parser that

includes header names. Table 5.5 compares the baseline against a parser that includes

“header tags”. Table 5.6 compares the baseline against a parser that omits the headers

altogether (except for the subject). Table 5.7 compares the baseline against a parser

that omits the message body.

These results suggest that there is little value in including header names or adding

“header tags”; however, they also clearly show that both the non-subject header

values and the body text are valuable for classification. We did not test omitting the

subject line itself, but it is presumed to be valuable as well.

Spam Recall(%) @ 1% FPR
Configuration Naive Bayes SVM AdaBoost

Baseline 97.5 96.6 94.2
Incl. Header Names 97.8 97.1 95.0

Table 5.4: Spam recall at 1% false positive rate versus inclusion of header names.

Spam Recall(%) @ 1% FPR
Configuration Naive Bayes SVM AdaBoost

Baseline 97.7 97.3 97.1
Use Header Tags 96.6 95.9 95.0

Table 5.5: Spam recall at 1% false positive rate versus use of “header tags”.
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Spam Recall(%) @ 1% FPR
Configuration Naive Bayes SVM AdaBoost

Baseline 97.6 97.5 95.9
Omit Headers 95.4 92.2 93.1

Table 5.6: Spam recall at 1% false positive rate versus inclusion of header values.

Spam Recall(%) @ 1% FPR
Configuration Naive Bayes SVM AdaBoost

Baseline 97.7 97.7 96.4
Omit Body 84.0 88.7 89.1

Table 5.7: Spam recall at 1% false positive rate versus inclusion of message body.

5.5 Classification Algorithms versus Corpus Size

With the baseline configurations finalized for all three algorithms, we tested them

against each other at several different corpus sizes. Figure 5.1 shows the average

proportion of spam in users’ corpora for each size. Note that one user was omitted

from these experiments, because he did not have enough messages in his database to

participate in the 800-message test. Table 5.8 and Figure 5.2 show the results.

Four interesting observations can be made:

1. There appears to be little performance difference between Naive Bayes and

SVMs.

2. Both Naive Bayes and SVMs appear capable of excellent performance on corpora

as small as 50 messages.

3. The AdaBoost algorithm (using just decision tree stumps) appears to be much

more reliant on larger corpus size.

4. All three algorithms appear to be approaching peak performance at 400 mes-

sages.

5.6 Classification Algorithms versus False Positive Rate

The three algorithms were also compared on the basis of spam recall at different

false positive rates. Table 5.9 and Figure 5.3 show the results for a corpus size of

400 messages. A statistical significance analysis on the results of this experiment is
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Figure 5.1: Average spam proportion versus corpus size.

Number of Spam Recall(%) @ 1% FPR
Messages Naive Bayes SVM AdaBoost

50 91.9 92.9 38.5
100 94.8 93.7 63.9
200 93.3 93.1 83.4
400 96.8 96.0 93.5
800 95.9 96.9 95.1

Table 5.8: Spam recall at 1% false positive rate versus corpus size.
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Figure 5.2: Spam recall at 1% false positive rate versus corpus size.

presented in Appendix B. None of the differences between means is significant at the

0.05 level.

Five interesting observations can be made:

1. Again we see little measurable performance difference between Naive Bayes and

SVMs.

2. AdaBoost (using just decision tree stumps) appears to be slightly less effective,

particularly at high “safety” levels (although this difference is not statistically

significant).

3. All three appear to be very effective even when tuned for zero false positives.

4. All three appear to offer a well-behaved trade-off between effectiveness and

safety, that can be tuned using the decision threshold.

5. For all three algorithms, roughly 90% of spam scored higher on the “spammi-

ness” scale than the worst false positive.

The last observation has important implications for the safety of machine-learning-

based spam classification algorithms. It appears that the false positives tend to

be among the least confident classifications. This information may be used to help

safeguard against the loss of false positives. .
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Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 98.9 99.5 98.7
2.0 98.0 97.8 97.4
1.0 97.2 96.5 94.4
0.5 95.9 95.6 91.9
0.0 94.1 93.8 89.5

Table 5.9: Spam recall versus false positive rate.
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Figure 5.3: Spam recall versus false positive rate.
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5.7 Classification Algorithm Efficiency

We also measured execution times for various tasks. Table 5.10 shows the results.

These measurements are for a 400-message corpus. Note that the “feature selection”,

as well as “parsing and instance mapping” times are the same for all three algorithms,

because they all shared the same baseline configuration for those tasks. Also note

that execution times for one user were omitted as an outlier, believed to be due to a

time of day anomaly on a shared mail server.

Table 5.11 shows the estimated average total training and classification times, un-

der the assumptions of 1000 attributes, 400 messages and 50 AdaBoost rounds. Note

that total training time includes parsing, feature selection, instance mapping and

training on 400 messages, while total classification time includes parsing, instance

mapping and classification for one message. This table shows that while the differ-

ences between algorithm training and classification times are extreme, overall they

are small compared to the message preprocessing tasks that are the same regardless

of algorithm. Note that the estimated total times do not consider disk I/O.

Execution Time (ms/message)
Task Naive Bayes SVM AdaBoost

Feature Selection 197 197 197
Parsing and Instance Mapping 35.3 35.3 35.3

Training 0.20 62.3 20.7
Classification 0.34 0.03 0.02

Table 5.10: Algorithm task execution times (per message).

Total Execution Time
Task Naive Bayes SVM AdaBoost

Training (min) 1.6 2.0 1.7
Classification (ms) 35.6 35.3 35.3

Table 5.11: Algorithm estimated average total execution times.

We also measured the average size of the “filter key” produced by each algorithm.

These are shown in Table 5.12, both with and without the dictionary portion of the

key (see Section 3.2) for ease of comparison. eem: can the key be used by the mail server for classification

without the dictionary portion? It seems that you must include the dictionary portion, since every training session extracts features

again. These measurements assume 1000 attributes and 50 AdaBoost rounds. Note

that the Naive Bayes, SVM and dictionary key sizes are all roughly proportional to
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the number of attributes, while the AdaBoost key size is roughly proportional to the

number of rounds (because AdaBoost stores data for one weak classifier per round).

Also note that the average dictionary key size was 6742 bytes, and is the same for all

three algorithms.

Average Key Size (bytes)
Dictionary Incl? Naive Bayes SVM AdaBoost

Without Dictionary 33652 9211 1071
With Dictionary 40394 15953 7813

Table 5.12: Algorithm average filter key size.



Chapter 6

Conclusions and Future Work

The goal of this thesis is to make a convincing argument that a practical enterprise

spam filter can be built using machine learning algorithms.

We have defined the critical requirements for enterprise spam filters, and the infor-

mation that is still needed to determine if machine-learning-based spam classification

algorithms can be used to meet those requirements. Now we will revisit those unan-

swered questions and examine the evidence provided by our experiments.

We proposed that, in order to protect networks from the escalating costs of spam,

an enterprise spam filter must be automatic, adaptive, effective, safe and efficient.

We also stated that while machine-learning-based spam classification algorithms are

known to satisfy some of these requirements, the following questions still need to be

answered:

• Is there an efficient, scalable architecture for an enterprise spam filter that

uses spam classification algorithms to implement personalized filters on shared

servers?

• Is there a way to evaluate spam classification algorithms on large numbers of

individual, real, complete email streams?

• How effective are some of the more popular algorithms when evaluated on this

more realistic data?

• How effective are they when tuned for varying degrees of safety?

• How many training messages do they need to see before they become effective?

• How long are algorithm execution times?

• How much data must be stored on the server for each user?

The following sections will attempt to answer those questions on the basis of our

experimental results.

35
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6.1 An Efficient Architecture

In Section 3.2, we presented an architecture for an enterprise spam filter; its dis-

tributed design makes it seem possible that personalized filtering on shared servers

can be both efficient and scalable. This design relies on three assumptions that we

tested in this study. First, we assumed that classification (which must run on the

server) is “very fast”. Second, we assumed that training (which runs during idle peri-

ods on client machines) time is “reasonable”. Third, we assumed that the “filter key”

(produced by training and passed to the server to use for classification) is “small”.

Our results support those assumptions.

Based on our measurements, the estimated average total classification time for

a single incoming message arriving at the Faculty of Computer Science mail server

is about 35 milliseconds for all three algorithms. The vast majority of that time is

spent parsing the message and mapping it to an instance vector. It is hard to imagine

any spam filtering solution that will not have to parse and/or process each incoming

message in some way; therefore using machine-learning-based spam classification al-

gorithms for spam filtering is probably at least no worse than any other approach in

terms of processing load on the server.

In terms of training times, our estimated average total training time (for 400

messages) was roughly two minutes for all three algorithms, again dominated by

message preprocessing tasks. It would be difficult to argue that performing two

minutes of work per user, once a week during idle periods is “unreasonable”. Our

tests actually ran entirely on a working mail server; it is difficult to predict if training

would typically be significantly faster or slower on a client machine.

Finally, our results show the largest average filter key size to be roughly 40 kB.

Adding in a white list averaging the same size as the dictionary increases that to about

47 kB. To put that in perspective, all the keys for 1000 users would total up to about

45 MB - which could easily fit entirely in memory for a mail server of even modest

size. eem: why is the white list on the average 7kB? In summary, our experiments have provided

strong evidence that our proposed architecture would be efficient and scalable for any

of the three algorithms tested.

6.2 A Better Way To Evaluate Spam Classifiers

In Section 3.3, we presented a novel experimental methodology that overcomes the

privacy barrier, finally making it possible to evaluate spam classification algorithms

on realistic data.
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To realize its full potential, the methodology requires a substantial investment

of effort to implement and deploy a distributed, blind test infrastructure. For this

thesis, time constraints forced us to build what amounts to a centralized simulation

of the methodology. As a result, we were not able to conduct the kind of really large-

scale study that we originally envisioned. Also, being centralized, we were not able

to benefit from the efficiency of the distributed design. This hampered our efforts

by limiting the number of experiments we could conduct each day. We believe that

a full implementation of the methodology, deployed across a truly large variety of

volunteers, would be well worth the effort (see Section 6.6).

Despite falling short of our ambitions, we believe that the results we did collect

are the most relevant to date in terms of predicting the effectiveness of enterprise

spam filters. No study we’ve seen has deliberately and systematically evaluated these

algorithms on a variety of individual, complete streams of real email. This thesis

accomplishes that, and shows, in particular, that both Naive Bayes and linear SVM

classifiers are likely to perform very well in an enterprise environment. AdaBoost

deserves another chance, using a more powerful implementation (see Section 6.6).

Specifically, a goal of building an enterprise filter that, on average, blocks greater

than 90% of spam while suffering less than a 1% false positive rate seems feasible.

Also, in Appendix B, our statistical analysis shows that the variation in classifier

performance between users is extremely significant; this validates our assertion that

it is important to keep messages from different people separate when evaluating spam

classifiers.

6.3 Managing Risk

The biggest risk for any spam classifier is the potential for loss of legitimate mail.

While we have discussed practical ways to engineer protection against loss into our

enterprise spam filter architecture (see Section 3.2), it is important to at least under-

stand the magnitude of the risk, and better yet - to manage it.

Our results have shown that all three algorithms make it possible to tune filters,

making trade-offs between effectiveness (spam blocking) and safety (minimization of

false positives). Furthermore, these trade-offs appear to behave predictably; it ap-

pears possible to manage risk in a disciplined way. This means that an administrator

could centrally set a desired false positive rate, which would cause particular decision

thresholds to be used for each user (in general, it would be different for everyone, as

determined by the training process on the client side). As long as everyone’s filter key
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was kept up-to-date, the administrator could probably feel fairly confident that the

overall average false positive rate for the enterprise as a whole would be fairly close to

that desired setting. The administrator would also be able to predict fairly accurately

the average spam recall for the enterprise as a whole (using training metrics reported

back from each client). In summary, it appears possible that an enterprise spam filter

with personalized filters could be centrally managed to achieve enterprise-wide spam

blocking and risk targets.

Furthermore, our results show that the false positives that do occur tend to be

among the least confident “spam” decisions. On average, for all three algorithms,

roughly 90% of real spam scored higher on the “spamminess” scale than even the worst

false positive. This makes it much easier to engineer loss-protection mechanisms. For

example, there could be two decision thresholds instead of one; the second would be

used to assign an “unsure” classification to a relatively small number of borderline

messages, and these could be stored temporarily somewhere instead of blocked.

6.4 Bootstrapping

Machine-learning-based spam classification algorithms need a corpus of labeled mes-

sages to train on before they can be used. The question is: how large must that

corpus be? That has direct practical implications. It affects how much effort and

care users must put into sorting their mail during a start-up period. It also affects

how long the period is between deploying an enterprise spam filter and benefiting

from it.

Our results show that the Naive Bayes and linear SVM classifiers appear capable

of excellent performance on corpora as small as 50 messages. For some people, that

could mean a single day! In general, it appears that machine-learning-based enterprise

spam filters can get up and running in a matter of days.

The use of some enterprise-wide “default” filter key could reduce the initial sorting

effort required by users (analogous to what we did using Spam Assassin).

6.5 Summary

This thesis has provided strong evidence that a practical enterprise spam filter can be

built using machine learning algorithms. Based on the architecture we have proposed,

and our realistic test methodology, our results suggest that such filters would likely

satisfy the critical requirements defined above.

The specific contributions of this thesis are:
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• A proposed architecture for efficient and scalable enterprise spam filters that

use machine-learning-based spam classification algorithms;

• A novel experimental methodology that overcomes the privacy barrier - making

it possible to systematically evaluate spam classification algorithms on the email

received by large numbers of users;

• The first evaluation, under that methodology, of three popular spam classifica-

tion algorithms - yielding arguably the most useful performance results to date

for those algorithms.

• Statistical evidence of the importance of personalization in the evaluation of

spam classification algorithms;

• An empirical quantification of the inherent trade-off between the effectiveness

and safety of those algorithms - showing how they enable enterprises to manage

their risk in a disciplined way;

• A comparison of average algorithm performance versus corpus size - showing

how many messages these algorithms typically need to see before they become

useful;

• A comparison of average algorithm execution times - providing evidence that

the proposed architecture is indeed efficient and scalable;

• An extensible C++ API for spam classification - supporting future studies based

on the new methodology.

6.6 Future Work

There are many interesting directions for future research on machine-learning-based

enterprise spam filters. First of all, a truly large-scale study involving tens or hun-

dreds of volunteers would yield extremely valuable and more statistically significant

data. For example, a study of this size would be needed to examine the effect of the

proportion of spam a user receives on filter performance. Client plug-in software (for

popular clients such as Microsoft Outlook) and a centralized server (to collect test

reports from clients and provide them with updated experiments) would be needed.

The spam classification API built for this study is designed for use in such a project.
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Also, the AdaBoost algorithm deserves more attention. The implementation used

in this study was somewhat crippled by using just decision tree stumps. Multi-

level trees have been shown to provide better results [3], and would probably be fast

enough (especially since we now know that execution times are dominated by message

preprocessing tasks).

There are a number of fairly standard parsing techniques that are worth trying,

such as decoding Base64-encoded text and stripping out HTML tags. These may well

improve algorithm safety. It would also be worth trying out different tokenization

strategies, including special treatment of email addresses, URLs and IP addresses.

In this thesis, we have stressed the importance of personalization. We have as-

serted that personalized filters are likely to be more effective and more safe than

generic filters. It would be interesting to design an experiment that tests these asser-

tions.

We have also stressed the importance of adaptability. It would be interesting to

study how often these algorithms require re-training. This also opens a number of

questions around the idea of what you re-train on. If the vast majority of spam is

blocked, the proportion of spam in users’ corpora will plummet. How do you choose

messages to train on? Similarly, the role of active learning in general should be

examined, especially in terms of minimizing user effort.

One characteristic our methodology shares with real life is noisy data. In real life,

people will make mistakes when classifying their mail. An important question is how

will effectiveness and safety vary with various levels of random noise inserted into the

training set?

It may also be worth investigating the idea of training a second classifier on just

the more-difficult “borderline” messages, where most of the false positives and false

negatives occur.

Finally, in-depth efficiency and scalability analyses and simulations could be per-

formed on a prototype of our architecture to strengthen the evidence for its feasibility.
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[8] Jose M. Gómez Hidalgo. Evaluating cost-sensitive unsolicited bulk email cate-
gorization. In Proceedings of SAC-02, 17th ACM Symposium on Applied Com-
puting, pages 615–620, Madrid, ES, 2002.
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Appendix A

Detailed Results

A.1 Feature Selection Experiments

Table A.1 shows, for the Naive Bayes classifier, the average spam recall measurements

versus the number of attributes for several fixed false positive rates.

Spam Recall(%)
FPR(%) 50 100 250 500 1000 2500 5000 10000

5.0 88.9 94.2 97.5 98.4 98.9 99.0 99.2 99.2
2.0 79.4 89.6 95.1 97.4 98.3 98.5 98.8 98.7
1.0 75.5 86.1 93.1 96.4 97.5 97.7 97.9 98.2
0.5 70.6 83.1 91.7 95.4 96.3 96.5 96.7 97.6
0.0 66.0 77.9 89.8 92.0 93.9 94.2 94.0 93.9

Table A.1: Naive Bayes: spam recall vs. number of attributes.

Table A.2 shows, for the SVM classifier, the average spam recall measurements

versus the number of attributes for several fixed false positive rates.

Spam Recall(%)
FPR(%) 50 100 250 500 1000 2500 5000 10000

5.0 96.4 98.9 99.1 99.2 99.4 99.4 99.3 99.4
2.0 86.6 96.0 96.8 97.8 98.8 98.9 99.0 99.0
1.0 74.6 93.5 93.7 95.9 96.8 97.2 97.1 97.3
0.5 61.9 88.6 90.0 92.6 93.4 94.1 94.8 94.6
0.0 40.6 69.2 81.3 88.0 91.3 90.1 90.1 90.8

Table A.2: SVM: spam recall vs. number of attributes.

Table A.3 shows, for the AdaBoost classifier, the average spam recall measure-

ments versus the number of attributes for several fixed false positive rates (baseline

configuration used except using 100 rounds).
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Spam Recall(%)
FPR(%) 50 100 250 500 1000 2500 5000 10000

5.0 98.2 98.7 99.2 99.0 99.1 99.0 98.8 98.7
2.0 94.7 96.5 97.6 97.7 98.4 98.3 98.2 97.8
1.0 82.9 93.5 95.2 96.9 97.0 96.8 97.1 96.8
0.5 67.8 89.3 93.7 95.6 95.5 95.5 95.8 95.7
0.0 50.7 72.6 91.4 90.2 89.0 93.3 91.8 84.0

Table A.3: AdaBoost: spam recall vs. number of attributes.

A.2 AdaBoost Rounds Experiment

Table A.4 shows, for the AdaBoost classifier, the average spam recall measurements

versus the number of rounds for several fixed false positive rates.

Spam Recall(%)
FPR(%) 25 50 100 200 400

5.0 98.6 98.8 99.2 99.1 99.1
2.0 96.1 97.0 97.5 97.4 97.7
1.0 93.5 94.9 94.6 93.9 95.0
0.5 89.1 92.4 91.8 91.8 93.1
0.0 67.3 85.0 84.3 86.1 84.3

Table A.4: AdaBoost: spam recall vs. number of rounds.

A.3 Feature Extraction Experiments

Tables A.5, A.6 and A.7 show, for the Naive Bayes, SVM and AdaBoost classifiers

respectively, the average spam recall measurements versus the inclusion of header

names for several fixed false positive rates.

Spam Recall(%)
FPR(%) Baseline With Header Names

5.0 99.0 99.0
2.0 98.3 98.4
1.0 97.5 97.8
0.5 96.1 96.9
0.0 93.7 94.2

Table A.5: Naive Bayes: spam recall vs. inclusion of header names.
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Spam Recall(%)
FPR(%) Baseline With Header Names

5.0 99.4 99.4
2.0 98.6 98.5
1.0 96.6 97.1
0.5 94.8 95.4
0.0 91.7 93.0

Table A.6: SVM: spam recall vs. inclusion of header names.

Spam Recall(%)
FPR(%) Baseline With Header Names

5.0 99.0 98.7
2.0 97.6 97.2
1.0 94.2 95.0
0.5 92.1 89.7
0.0 83.6 75.6

Table A.7: AdaBoost: spam recall vs. inclusion of header names.

Tables A.8, A.9 and A.10 show, for the Naive Bayes, SVM and AdaBoost classifiers

respectively, the average spam recall measurements versus the use of ”header tags”

for several fixed false positive rates.

Spam Recall(%)
FPR(%) Baseline With Header Tags

5.0 98.9 99.1
2.0 98.4 98.0
1.0 97.7 96.6
0.5 96.7 96.0
0.0 94.0 92.9

Table A.8: Naive Bayes: spam recall vs. use of header tags.

Tables A.11, A.12 and A.13 show, for the Naive Bayes, SVM and AdaBoost classi-

fiers respectively, the average spam recall measurements versus the inclusion of header

values for several fixed false positive rates. Note that both configurations included

the subject header.

Tables A.14, A.15 and A.16 show, for the Naive Bayes, SVM and AdaBoost classi-

fiers respectively, the average spam recall measurements versus the inclusion of body

text for several fixed false positive rates.
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Spam Recall(%)
FPR(%) Baseline With Header Tags

5.0 99.3 99.3
2.0 97.9 98.3
1.0 97.3 95.9
0.5 96.5 94.2
0.0 93.2 88.5

Table A.9: SVM: spam recall vs. use of header tags.

Spam Recall(%)
FPR(%) Baseline With Header Tags

5.0 99.1 99.2
2.0 98.3 97.1
1.0 97.1 95.0
0.5 94.8 92.5
0.0 78.8 88.8

Table A.10: AdaBoost: spam recall vs. use of header tags.

Spam Recall(%)
FPR(%) Baseline Without Header Values

5.0 99.0 98.0
2.0 98.5 97.0
1.0 97.6 95.4
0.5 96.6 93.6
0.0 93.9 90.7

Table A.11: Naive Bayes: spam recall vs. inclusion of header values.

Spam Recall(%)
FPR(%) Baseline Without Header Values

5.0 99.4 98.5
2.0 98.1 97.4
1.0 97.5 92.2
0.5 94.4 87.1
0.0 91.9 78.6

Table A.12: SVM: spam recall vs. inclusion of header values.
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Spam Recall(%)
FPR(%) Baseline Without Header Values

5.0 99.0 98.5
2.0 97.5 96.3
1.0 95.9 93.1
0.5 93.8 88.3
0.0 84.1 70.1

Table A.13: AdaBoost: spam recall vs. inclusion of header values.

Spam Recall(%)
FPR(%) Baseline Without Body Text

5.0 98.9 98.0
2.0 98.4 92.0
1.0 97.7 84.0
0.5 96.4 78.1
0.0 93.8 71.5

Table A.14: Naive Bayes: spam recall vs. inclusion of body text.

Spam Recall(%)
FPR(%) Baseline Without Body Text

5.0 99.5 98.2
2.0 98.3 94.4
1.0 97.7 88.7
0.5 95.1 81.9
0.0 92.0 67.4

Table A.15: SVM: spam recall vs. inclusion of body text.

Spam Recall(%)
FPR(%) Baseline Without Body Text

5.0 99.0 98.4
2.0 97.6 94.5
1.0 96.4 89.1
0.5 91.9 81.5
0.0 73.9 69.2

Table A.16: AdaBoost: spam recall vs. inclusion of body text.



49

Tables A.17, A.18 and A.19 show, for the Naive Bayes, SVM and AdaBoost clas-

sifiers respectively, the average spam recall measurements versus case-sensitivity for

several fixed false positive rates.

Spam Recall(%)
FPR(%) Baseline Case-Insensitive

5.0 98.9 98.7
2.0 98.3 98.0
1.0 97.8 96.7
0.5 96.1 95.5
0.0 93.1 93.5

Table A.17: Naive Bayes: spam recall vs. case sensitivity.

Spam Recall(%)
FPR(%) Baseline Case-Insensitive

5.0 99.5 99.4
2.0 98.1 98.1
1.0 97.2 96.9
0.5 95.8 95.4
0.0 92.3 88.8

Table A.18: SVM: spam recall vs. case sensitivity.

Spam Recall(%)
FPR(%) Baseline Case-Insensitive

5.0 99.1 98.9
2.0 97.7 97.8
1.0 95.7 95.6
0.5 92.9 93.0
0.0 85.4 83.9

Table A.19: AdaBoost: spam recall vs. case sensitivity.

A.4 Corpus Size Experiments

Tables A.20, A.21, A.22, A.23 and A.24 show, for corpus sizes of 50, 100, 200, 400 and

800 messages respectively, the average spam recall measurements versus algorithm for

several fixed false positive rates. Note that one of the seven users was omitted from
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these results because he did not have enough messages in his database to participate

in the 800-message test. Also note that this explains the discrepancy between Tables

5.9 and A.23.

A sudden drop-off in performance can be seen in Table A.24 at the 0% false

positive rate setting. This is the “worst case” setting; it requires the decision threshold

to be set high enough that even the worst false positive does not get marked as

spam. Therefore a single peculiar legitimate message (which might even be incorrectly

labeled) can dramatically affect the overall results - especially since the average is

across only six people. For this reason, the 0% false positive rate would likely be too

unstable a setting for real-world operation.

Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 95.7 97.6 59.6
2.0 92.8 94.2 44.4
1.0 91.9 92.9 38.5
0.5 91.4 92.2 35.6
0.0 90.9 91.6 32.6

Table A.20: Spam recall vs. algorithm for 50 messages.

Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 97.2 98.4 81.0
2.0 95.6 95.6 73.0
1.0 94.8 93.7 63.9
0.5 94.4 92.7 59.2
0.0 94.0 91.8 54.5

Table A.21: Spam recall vs. algorithm for 100 messages.
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Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 98.3 99.1 95.8
2.0 95.9 94.9 89.0
1.0 93.3 93.1 83.4
0.5 92.3 92.1 75.3
0.0 91.4 91.1 67.0

Table A.22: Spam recall vs. algorithm for 200 messages.

Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 98.7 99.5 98.5
2.0 97.7 97.5 97.0
1.0 96.8 96.0 93.5
0.5 95.3 94.9 90.5
0.0 93.3 92.7 87.7

Table A.23: Spam recall vs. algorithm for 400 messages.

Spam Recall(%)
FPR(%) Naive Bayes SVM AdaBoost

5.0 98.7 99.3 98.9
2.0 97.4 98.4 97.7
1.0 95.9 96.9 95.1
0.5 93.1 94.5 92.3
0.0 75.0 75.9 84.2

Table A.24: Spam recall vs. algorithm for 800 messages.



Appendix B

Statistical Significance Analysis

The study only included seven users, so we did not expect to find statistically signif-

icant differences in effectiveness between the algorithms. In this chapter we perform

significance testing on the “main” experiment - the one that compares the best con-

figuration of each algorithm on a corpus size of 400 messages.

Table B.1 shows the spam recall measurements for each of the seven users, at a

1% false positive rate, on 400 messages. The users are given the labels ‘A’ to ‘G’.

Spam Recall(%)
User Naive Bayes SVM AdaBoost
A 99.7 100.0 100.0
B 99.6 100.0 100.0
C 95.7 96.9 91.3
D 98.2 96.1 92.7
E 96.1 97.7 96.0
F 96.8 99.4 95.6
G 94.5 85.8 85.6

Table B.1: Spam recall at 1% false positive rate for each user.

The differences between the mean spam recall values for the three algorithms can

be analyzed using two-factor Analysis of Variance (ANOVA), without replication [12].

In our experiment the factor of interest is the algorithm. We have added a second

factor - the user - as a “blocking” factor. This is because the between-user variances

could obscure (or “block”) the between-algorithm variances in a one-factor ANOVA.

The two-factor ANOVA is more powerful - it can distinguish between the two sources

of variance.

Using Microsoft Excel’s “ANOVA: Two-Factor Without Replication” function

with an alpha of 0.05, the data in Table B.1 produces the output shown in Tables B.2

and B.3.
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ANOVA: Two-Factor Without Replication
SUMMARY Count Sum Average Variance

A 3 299.66 99.89 0.039
B 3 299.60 99.87 0.053
C 3 283.90 94.63 8.815
D 3 286.98 95.66 7.874
E 3 289.79 96.60 0.931
F 3 291.74 97.25 3.701
G 3 265.81 88.60 25.820

Naive Bayes 7 680.52 97.22 3.982
SVM 7 675.82 96.55 25.010

AdaBoost 7 661.14 94.45 26.199

Table B.2: Two-factor ANOVA analysis (part 1)

ANOVA
Source of Variation SS df MS F P-value F crit

Rows 265.88 6 44.31 8.15 0.0011 3.00
Columns 29.20 2 14.60 2.68 0.1087 3.89

Error 65.26 12 5.44
Total 360.34 20

Table B.3: Two-factor ANOVA analysis (part 2)
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The number of interest is the p-value of about 0.11 for the between-algorithms

variation; since this is much larger than our alpha of 0.05, we cannot reject the null

hypothesis that the differences between the algorithm means are not significant at

the 0.05 level. As expected, the number of users is simply too small. Note also that

the ANOVA assumption of equal variances would have to be checked before assuming

significance - and Table B.2 shows variances that appear quite different.

Similar results are obtained for the mean spam recall at 0%, 0.5%, 2% and 5%

false positive rates.

There is however, another interesting observation to make: the between-user vari-

ation is extremely significant. This is solid evidence to back up our claim that mail

from different people should not be mixed together for training. Classifier perfor-

mance is not just affected by the choice of algorithm; clearly it is also strongly af-

fected by who the messages come from. This between-user variation could obscure

the between-algorithm variation if mail was not kept separate.



Appendix C

Glossary

Attribute Used interchangeably with “feature”. See Section 2.2.

Classified Used interchangeably with “labeled”. See Sections 2.1 and 4.2.

Classifier An implementation of a machine-learning-based spam classification algo-

rithm. See Section 2.1.

Corpus A set of labeled documents that is used for training and/or testing a classi-

fier. It may be subdivided into a training set and a test set, or it may be divided

up into several folds for cross validation. See Sections 2.1, 2.8 and 4.3.3.

Cross validation See Section 2.8.

Database Physical files storing labeled copies of all messages received by a SpamTest

volunteer tester. A subset of the messages may be chosen as the corpus for a

particular experiment. See Sections 4.2 and 4.3.3.

Dictionary See Section 2.4.

Document Used interchangeably with “message”. Refers to an RFC 822 compliant

email message. See Section 2.2.

Enterprise spam filter See Chapter 1.

False positive rate The proportion of legitimate messages misclassified as spam.

Feature Used interchangeably with “attribute”. See Section 2.2.

Feature selection See Section 2.4.

Feature extraction See Section 2.3.
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Filter A mechanism for blocking or flagging spam. May be implemented by a clas-

sifier.

Filter key See Section 3.2.

Generalize See Section 2.1.

Instance mapping See Section 2.5.

Instance vector A vector representation of a “document”. See Section 2.2.

Labeled This means that the correct class (that is, spam or not-spam) is stored with

the message. See Sections 2.1 and 4.2.

Message Used interchangeably with “document”. Refers to an RFC 822 compliant

email message. See Section 2.2.

Overfitting See Section 2.1.

Term Used interchangeably with “word” or “token”. See Section 2.2.

Test Set A set of labeled documents used to test a trained classifier. See Section 2.1.

Threshold See Section 2.6.

Token Used interchangeably with “word” or “term”. See Section 2.2.

Training Set A set of labelled documents used to train a classifier. See Section 2.1.

Spam precision The proportion of all messages classified as spam that actually are.

Spam recall The proportion of spam messages that are correctly classified.

Stratification See Section 2.8.

Word Used interchangeably with “term” or “token”. See Section 2.2.
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