
Traffic analysis via Pacumen

Zanin, Flávio E. G.

Dalhousie University

flavio.zanin@dal.ca

Surpervisor: Dr. Nur Zincir-Heywood

Abstract: This document gives a summary of the author’s experiences on the

installation and the usage of a tool called Pacumen [1, 2] for network traffic analysis. All

the installation and experimentation done in this work are performed on a 64 bit Ubuntu-

16.04 machine.

1) Installation

Note: Every time a command starts with “sudo” (Super User DO), it will request your

password.

1.1) Python, setuptools and pip

Python 2.7.11 was already installed in the operational system.

Run both commands:

$ sudo apt-get install python-pip

$ pip install setuptools

1.2) Pyparsing

Python comes with pyparsing 2.0.3. Pacumen requires pyparsing 1.5.7.

In order to fix the version problem, it is necessary to run the following commands in the

command window:

$ sudo apt-get install python-numpy python-scipy python-

matplotlib ipython ipython-notebook python-pandas python-

sympy python-nose

$ pip uninstall pyparsing

$ pip install pyparsing==1.5.7

$ pip install pydot

It is worth noting that if you had pyparsing installed through setup.py, you’ll need to

uninstall the package in a different manner. Read more here.

If you find the error: Not uninstalling pyparsing at (path), outside environment (path).

Go to your local files (mine was /home/flavio/.local/lib/python2.7/site-packages). Run:

$ pip install pyparsing==1.5.7

$ sudo cp ./pyparsing-1.5.7.dist-info

/usr/lib/python2.7/dist-packages

$ sudo cp ./pyparsing.py /usr/lib/python2.7/dist-packages

$ sudo cp ./pyparsing.pyc /usr/lib/python2.7/dist-packages

$ sudo rm -r pyparsing-2.0.3

If you’re writing the commands by hand, make sure to note the spaces between the

paths.

If you successfully installed pyparsing version 1.5.7, run:

$ pip freeze

And look for pyparsing on the printed result.

Troubleshooting

If you still have version 2.0.3 installed (or you found the error Not uninstalling

pyparsing at (path), outside environment (path)), you have some options:

Option 1: Look into python virtual environments. This will allow you to install certain

modules with older versions to work on certain projects, without using the updated

versions in your computer.

Option 2: This is a hack to install pyparsing 1.5.7. Note that this method will substitute

your current version of pyparsing. Go to your local python files (for me it is

/home/flavio/.local/lib/python2.7/site-packages). Run:

$ pip install pyparsing==1.5.7

http://stackoverflow.com/questions/1550226/python-setup-py-uninstall

$ sudo cp ./pyparsing-1.5.7.dist-info

/usr/lib/python2.7/dist-packages

$ sudo cp ./pyparsing.py /usr/lib/python2.7/dist-packages

$ sudo cp ./pyparsing.pyc /usr/lib/python2.7/dist-packages

1.3) Pacumen

Download Pacumen here.

Unzip ($ unzip pacumen_master.zip), enter the unzipped directory and run:

$ python setup.py build

$ pip install numpy

$ sudo python setup.py install

The installed folder will be somewhere in your PATH variable. In my case, it was on

/usr/local/bin. You can find out your PATH variable by running:

$ echo $PATH

Look into the printed PATH directories to find the following scripts:
pacumen_classify.py, pacumen_timeseries.py, pacumen_train.py,

pacumen_visualize.py, train_all.py, xval.py.

These Pacumen scripts will be present somewhere in your printed PATH directories if

the installation was successful.

1.4) Regex

Run:

$ pip install regex

1.5) Particle

First, we need libjpeg installed. For that, check your command for your Linux version

here. For my computer (Ubuntu 16.04) I used the command:

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev

libxml2 libxml2-dev libfreetype6-dev liblcms2-dev libwebp-

https://github.com/bniemczyk/pacumen
https://pillow.readthedocs.io/en/3.0.0/installation.html#linux-installation

dev tcl8.6-dev tk8.6-dev python-tk libxslt-dev libxslt1-dev

python-dev

Now run the command (Note: If your python version is 3.x, you should substitute

python-lxml for python3-lxml in the command line):

$ sudo apt-get install python-lxml

Download libxml2 here. Extract the libxml2 contents and open a terminal window inside

the folder libxml2-2.9.3. Execute the commands:

$./configure --prefix=/usr --disable-static --with-history && make

$ sudo make install

If you get an error during the make install phase, you might not need to reinstall.

Attempt to download and install libxslt (next section).

Download libxslt here. Extract the libxslt contents. Inside the libxslt-1.1.28 folder, open a

terminal window. Run the commands:

$./configure --prefix=/usr –disable-static && make

$ sudo make install

If you get an error during the make install phase, you might not need to reinstall.

Attempt to download and install lxml (next section).

Now install lxml. This step can take a few minutes, so let the command run until it either

returns an error or success.

If there were previous errors, they might or might not affect this step. Run the command:

$ pip install lxml

If you get an error during this phase, you might have to reinstall libxml or libxslt.

Now run:

$ pip install pillow

$ pip install particle

http://www.linuxfromscratch.org/blfs/view/svn/general/libxml2.html
http://www.linuxfromscratch.org/blfs/view/7.9/general/libxslt.html

1.6) Automatamm

Automatamm is used for the script pacumen_timeseries.py. I was unable to find

automatamm online for download. Pacumen’s author was contacted regarding this, but

no response was received.

If not installed, all scripts work except for pacumen_timeseries.py.

2) Using Pacumen

In order to use Pacumen, it is necessary to open a terminal in the folder pacumen was

installed from (pacumen_master).

Datasets:

A few datasets were generated in the lab using Wireshark. The datasets will be

described through these names:

Chrome Random – Dataset generated in the lab using Google Chrome, browsing

random websites and actively avoiding Gmail, Facebook, Twitter and Linkedin.

Firefox Random – Dataset generated in the lab using Mozilla Firefox, browsing

random websites and actively avoiding Gmail, Facebook, Twitter and Linkedin.

Chrome [Facebook / Gmail / Linkedin] – Dataset generated in the lab using Google

Chrome, browsing only the indicated website. E.g.: Chrome Facebook was generated

by browsing only Facebook on Google Chrome.

Firefox [Facebook / Gmail / Linkedin / Outlook / Twitter / Youtube] – Same as the

previous dataset, however generated by browsing on Mozilla Firefox.

Skype – Dataset generated in the lab using Skype.

Macc50k – 50,000 packets from the publicly available dataset macc2012_00003.pcap

under the MACCDC section in the Cyber Defense Exercises section on Netresec’s

public available [3] pcap files.

It’s important to note that Skype was not installed before it was needed for its

dataset, therefore there is no traffic from it on the other datasets.

2.1) Pacumen_classify_pcap.py

According to the help section, this script prints the probability that a pcap file contains

the protocol the classifier was trained for.

Therefore, this script was tested for its classifications against different datasets, some

which were generated according to the classifier and some which weren’t. This section

presents the results.

2.1.1) ssh.chrome.facebook

When using this classifier, the results were as follows:

Dataset Chrome Facebook – 0.967423.

Dataset Chrome Random – 0.997666.

Dataset Firefox Random – 0.99999.

Chrome Facebook:

Chrome Random browsing:

Firefox Random browsing:

2.1.2) ssh.chrome.gmail

When using this classifier, the results were as follows:

Dataset Chrome Gmail – 0.730966.

Dataset Chrome Random – 0.871624.

Dataset Firefox Random – 0.996578.

Chrome Gmail:

Chrome Random browsing:

Firefox Random browsing:

2.1.3) ssh.chrome.linkedin

When using this classifier, the results were as follows:

Dataset Chrome Linkedin – 0.998342.

Dataset Chrome Random – 0.99999.

Dataset Firefox Random – 0.99983.

Chrome Linkedin:

Chrome Random browsing:

Firefox Random browsing:

2.1.4) ssh.firefox.facebook

When using this classifier, the results were as follows:

Dataset Firefox Facebook – 0.997351.

Dataset Firefox Random – 0.980129.

Dataset Chrome Random – 0.995892.

Firefox Facebook:

Firefox Random browsing:

Chrome Random browsing:

2.1.5) ssh.firefox.gmail

When using this classifier, the results were as follows:

Dataset Firefox Gmail – 0.236685.

Dataset Firefox Random – 0.999931.

Dataset Chrome Random – 0.973753.

Firefox Gmail:

Firefox Random browsing:

Chrome Random browsing:

2.1.6) ssh.firefox.linkedin

When using this classifier, the results were as follows:

Dataset Firefox Linkedin – 0.999989.

Dataset Firefox Random – 0.99999.

Dataset Chrome Random – 0.999987.

Firefox Linkedin:

Firefox Random browsing:

Chrome Random browsing:

2.1.7) ssh.firefox.twitter

When using this classifier, the results were as follows:

Dataset Firefox Twitter – 0.275021.

Dataset Firefox Random – 0.377583.

Dataset Chrome Random – 0.999079.

Firefox Twitter:

Firefox Random browsing:

Chrome Random browsing:

2.1.8) ssh.skype

When using this classifier, the results were as follows:

Dataset Skype – 0.99999.

Dataset Firefox Random – 0.99999.

Dataset Chrome Random – 0.99999.

Skype:

Firefox Random browsing:

Chrome Random browsing:

2.2) pacumen_train.py

According to the help section of this script, the output is a classifier generated by

providing an input pcap file with the target protocol and another input pcap file with the

non-target protocol.

A few classifiers were generated with this script. When no bias is given, the script looks

for a bias automatically, therefore the scripted was allowed to look for the best bias for

each case. Results from some of the tests are presented in this section.

2.2.1) Youtube

Classifier generation

Classifier test

Dataset Firefox Youtube: 0.5.

Dataset Firefox Random: 0.5.

Dataset Macc50k: 0.5.

Firefox Youtube:

Firefox Random:

Macc50k:

2.2.2) Outlook

Classifier generation

Classifier test

Dataset Firefox Outlook: 0.5.

Dataset Firefox Random: 0.5.

Dataset Macc50k: 0.5.

Firefox Outlook:

Firefox Random:

Macc50k:

2.2.3) Other tests

Other classifiers were generated using datasets separating other features such as: TCP

packets as target vs other protocol packets as non-targets; TCP port 80 packets as

target vs anything else as non-targets. However, upon use of these classifiers on other

datasets, the result was always 0.5.

3) Discussion

The experiments with the classifiers installed with Pacumen didn’t provide the expected

results, regardless of which browser was used or which websites were used for

generating the datasets. The classifiers generated by Pacumen’s script on different

datasets always yielded the same results when tested, regardless of the contents of the

training and test datasets.

Given there was a library missing (automatamm), I speculate this might have some

impact on the used features of the software, resulting on the output obtained from the

tests.

4) References

(1) Niemczyk, B; Rao, P.; Chhabra, V. Pacumen [Computer software]. Retrieved from:

https://github.com/bniemczyk/pacumen. Accessed in: July 13th, 2016.

(2) Niemczyk, B; Rao, P. Identification over encrypted Channels. Retrieved from:

https://www.blackhat.com/docs/us-14/materials/us-14-Niemczyk-Probabilist-Spying-On-

Encrypted-Tunnels.pdf. Accessed in: July 13th, 2016.

(3) Netresec. Publicly available PCAP files. Retrieved from:

http://www.netresec.com/?page=PcapFiles. Accessed in: July 13th, 2016.

https://github.com/bniemczyk/pacumen
https://www.blackhat.com/docs/us-14/materials/us-14-Niemczyk-Probabilist-Spying-On-Encrypted-Tunnels.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Niemczyk-Probabilist-Spying-On-Encrypted-Tunnels.pdf
http://www.netresec.com/?page=PcapFiles

