
Evolving GP classifiers for streaming data tasks with
concept change and label budgets: A benchmarking

study∗

Ali Vahdat, Jillian Morgan, Andrew R. McIntyre,
Malcolm I. Heywood and Nur Zincir-Heywood†

April 21, 2016

Abstract

Streaming data classification requires that several additional challenges are addressed
that are not typically encountered in offline supervised learning formulations. Specifically,
access to data at any training generation is limited to a small subset of the data, and the
data itself is potentially generated by a non-stationary process. Moreover, there is a cost to
requesting labels, thus a label budget is enforced. Finally, an anytime classification require-
ment implies that it must be possible to identify a ‘champion’ classifier for predicting labels
as the stream progresses. In this work, we propose a general framework for deploying ge-
netic programming (GP) to streaming data classification under these constraints. The frame-
work consists of a sampling policy and an archiving policy that enforce criteria for selecting
data to appear in a data subset. Only the exemplars of the data subset are labeled, and it is
the content of the data subset that training epochs are performed against. Specific recom-
mendations include support for GP task decomposition / modularity and making additional
training epochs per data subset. Both recommendations make significant improvements to
the baseline performance of GP under streaming data with label budgets. Benchmarking
issues addressed include the identification of datasets and performance measures.

1 Introduction
A traditional view of learning from data is most often characterized by the supervised learn-
ing ‘classification’ task. However, as we are increasingly encountering data rich environ-
ments, the basis for such a characterization are becoming less relevant. Decision making
from streaming data is one such application area (e.g., stock market data, utility utilization,
behavioural modelling, sentiment analysis, process monitoring etc.). Under a ‘streaming’
scenario for constructing models of classification, data arrives on a continuous basis, thus
there is no concept of a ‘beginning’ or an ‘end’. It is not possible to see all the data at once
and it therefore becomes impossible to guarantee that the data ‘seen’ at any point in time

∗This technical report is prepared for compliance to NSERC open source publication requirements. The original
article should be referenced in all cases: A. Vahdat et al. (2015) Chapter 18 in Handbook of Genetic Programming
Applications. A. H. Gandomi et al. (eds) Springer. pp 451–480

†Faculty of Computer Science, Dalhousie University

1

Copyright Springer Verlag 2

are representative of the ‘whole’ task. Indeed, the process generating the data are frequently
non-stationary. Applications display properties such as concept drift (a gradual change in
the process creating the data) or concept shift (sudden changes to the process creating the
data). Concept change in general implies that a model that functions effectively at one point
in the stream will not necessarily function effectively later on. Moreover, in the general case
it is not possible to provide labels for all the stream. Instead decisions need to be made
regarding what to label without calling upon an oracle. Indeed, the real-time nature of
many streaming classification tasks implies that the number of label requests needs to be
very much lower than the throughput of the stream itself. When combined with the issue
of non-stationarity, this makes it much more difficult to recognize when models need to be
rebuilt. Finally, we note that an ‘anytime’ nature to the task exists. Irrespective of the state
of the model building process itself, a champion individual (classifier) must be available to
suggest labels for the current content of the data stream at any given time.

A distinction is drawn between regression (function approximation) and classification
under streaming data. Regression under a streaming data context is most synonymous with
the task of forecasting. As such the true value for the dependent variable is known a short
time after a prediction is made by the model. This means that the issue of label budgets is
not as prevalent, and models can therefore be much more reactive. Conversely, having to
explicitly address the issue of label budgets implies that independent processes need to be
introduced to prompt for label information (e.g. change detection).

Various proposals have been made for what properties GP might need to assume under
environments that are in some way ‘dynamic’. Several researchers have made a case for
adopting modular frameworks for model building under dynamic scenarios. For example,
environments that change their objective dynamically over the course of evolution (e.g., [26]).
Likewise, modularity might be deemed useful from the perspective of delimiting the scope
of variation operators, thus making credit assignment more transparent and facilitating in-
cremental modification (e.g., [43]). Diversity maintenance represents a reoccurring theme,
and is frequently emphasized by research in (non-evolutionary) ensemble learning frame-
works applied to streaming tasks [9, 33, 37]. Finally, we note that ‘evolvability’ is typically
defined in terms of a combination of the ability to support (phenotypic) variability and the
fitness of the resulting offspring (in a future environment) (e.g., [34]). This can be viewed
through the perspective of Baldwin mechanisms for evolution. Thus, it is desirable to retain
parents that are most likely to lead to fit offspring on a regular basis.

This work undertakes a benchmarking study of a framework previously proposed for
evolving modular GP individuals under streaming data contexts with label budgets [40].
The specific form of GP assumed takes the form of Symbiotic Bid-Based GP (SBB) and is
hereafter denoted StreamSBB. The framework consists of three elements: a sampling policy,
a data subset, and a data archiving policy. The combination of sampling policy and the
data subset achieve a decoupling between the rate at which the stream passes and the rate
at which evolution commences. This also provides the basis for changing the distribution
of data from that present in the stream at any point in time. In changing the distribution
of data, we are in a position to, for example, resist the impact of class imbalance. Finally,
in order to address the issue of model building under a limited label budget, a stochastic
querying scheme is assumed. Thus, for any given window location, a fixed number of label
requests are permitted. The selection of an appropriate label budget being a reflection of the
cost of making label requests.

Benchmarking will be performed with both artificially created datasets (which provide
the ability to embed known forms of concept drift and shift) as well as real-world datasets
(electricity utilization / demand and forest cover types). Such datasets display a wide range
of real world properties, with cardinality measured close to the millions, dummy attributes,

Copyright Springer Verlag 3

class imbalance, and changing relationships between attribute and label. Moreover, bench-
marking practices for streaming data are explicitly identified. In particular rather than as-
suming a ‘prequential’ accuracy metric, a formulation of (average) multi-class detection rate
is assumed and estimated incrementally. This enables us to avoid the caveats that appear
with accuracy style metrics under class imbalance. Comparator algorithms are included
from the MOA toolbox, representing current state of the art in non-evolutionary approaches
to streaming data classification. The benchmarking study demonstrates the appropriateness
of assuming the StreamSBB framework, with specific recommendations made regarding the
utility of: modularity, pre-training, and generations per sample of labelled data.

Section 2 provides a summary of related streaming data research. The StreamSBB frame-
work is detailed in Section 3 with the experimental methodology discussed in Section 4.
Section 5 presents results of the benchmarking study where this is designed to illustrate
the contribution from various components of StreamSBB. Section 6 discusses the resulting
findings and concludes the work.

2 Related Work
A significant body of work has developed regarding the application of machine learning
(ML) to various streaming classification tasks [35, 19, 5, 20, 24]. For brevity we concentrate
on the issue of change detection which lies at the centre of building ML frameworks capable
of operating under label budgets. Indeed, classification under label budgets represents the
most recent trend in streaming data classification. We identify three broad categories of
interest, outlined as follows:

Properties specific to the model of classification imply that measurements specific to an
ML framework are made and compared to a prior characterization. For example, changes
to the frequency of leaf node utility in decision trees might signify change, thus trigger label
requests [17, 25].

Properties of the input data imply that change detection now focuses on characteriz-
ing behaviour relative to sliding window content. The principle design decision is with
regards to what statistic to adopt. For example, Chernoff bounds [27], entropy [10, 42],
Kullback–Leibler divergence [36], Hoeffding bounds [6], Fractal correlation dimension [18]
or Hellinger divergence metric [14]. Potential drawbacks of pursuing such an approach in-
clude: 1) it is often necessary to label the data (i.e., metrics are estimated class-wise); and 2)
changes to the association between label and input are not detected [39].

Properties of the label space imply that the classifier output ‘behaviour’ is quantified.
For example, statistical characterizations of class boundary information (cf. classifier con-
fidence) have been proposed [31, 38]. Thus, thresholds might be used to detect changes in
classifier certainly [32], or changes to the number of confident predictions [28].

However, none of the above approaches are able to detect when a previously encountered
input, P(x), is associated with a new or different class label. Thus, under this scenario a
label space characterization would still associate P(x) with the previous label. Likewise
change detection based on an input data formulation would not register any change either,
i.e. P(x) has not changed. Under these scenarios generating label requests uniformly (i.e.,
independently of the measurable properties) has been shown to be surprisingly effective
[44]; as have hybrid approaches combining label space and uniform sampling [39].

Under the guise of evolutionary computation (EC) in general, a body of research has
been developed regarding dynamic optimization tasks (e.g., [8]). However, such tasks are
distinct from streaming data classification in that the emphasis is with regards to tracking
and identifying multiple optima; thus, there is no concept of operating under label budgets.

Copyright Springer Verlag 4

From a genetic programming (GP) perspective, most developments come with respect to the
specifics of evolving trading agents for financial applications (e.g., [13]). Although change
detection is certainly important to building effective trading agents, the rebuilding of models
is either performed on a continuous basis (as in function approximation) [13] or incremen-
tally based on task specific properties such as an unacceptable loss [24]. Thus, the issue of
label budgets does not appear in frameworks for evolving trading agents. Finally, we note
that in the special case of learning classifier systems (LCS), an explicitly online variant has
been proposed in which probabilistic heuristics are used to fill ‘gaps’ in the provision of
label information [4].

3 Methodology
Figure 1 provides a summary of the general architecture assumed for applying GP to stream-
ing data under finite labelling budgets [40, 24]. We assume a non-overlapping ‘sliding win-
dow’ as the generic interface to the stream. For a given window location a fixed number of
samples are taken. Let SW(i) denote the location of the window and ‘gap’ denote the data
sampled from this location, or Gap(i) ∈ SW(i); where |Gap(i)| ≤ |SW(i)|. The sampling
policy determines which exemplars are selected to appear in Gap(i) for a given window
location SW(i). Note that it is only the |Gap(i)| exemplars chosen that have their corre-
sponding labels requested and are added to the Data Subset (DS(i)). An archiving policy
determines which exemplars are replaced from DS at each update. Note also that the rate
at which GP training epochs are performed, gen(k), is a function of the rate at which DS is
updated or j = i× k; k ∈ {1, 2, ...}. This means that for each update in DS content (index i),
at least a single GP training epoch is performed (k = 1). Naturally, increasing the number of
training epochs potentially increases the capacity to react to changes to stream content, but
may potentially result in over learning (w.r.t. current DS content). Hereafter we will refer to
this as DS oversampling. Section 5 will explicitly investigate this property in more detail.

The StreamSBB framework adopts symbolic bid-based GP (SBB) as the GP architecture
[16]. Specifically, SBB evolves teams of bid-based GP individuals to cooperatively decompose
the classification task without having to specify team size. Supporting modularity in general
has been deemed to be useful for dynamic task environments (Section 2), a property we
explicitly verify in Section 5. Secondly, SBB assumes a Pareto archiving policy with diversity
maintenance heuristics for enforcing a finite archive size. In effect, the concept of Pareto
dominance is used to identify exemplars for retaining within DS. As such this gives them a
‘lifetime’ beyond the current location of the sliding window.

3.1 Sampling Policy
Rather than evaluating a GP classifier with respect to all data within SW(i), a sampling
policy is assumed to control entry into the Data Subset (DS(i)). This decouples the cost of
any single training epoch and enforces the labelling budget, i.e. we control the cardinality
of the data subset, but cannot control the throughput of the stream. Note, however, that the
decision regarding the sampling of ‘gap’ exemplars from sliding window location SW(i) to
a data subset can only be performed without label information. It is only after identifying
the exemplars included in Gap(t) that labels are requested.

Two basic approaches for defining sampling policies have been identified in the wider
literature (Section 2): stochastic sampling or classification confidence information. Classifier
confidence information implies that as the certainty of the class label suggested by a classifier
decreases (i.e. approaches ambiguity), then a label request is made [32, 39]. In the case of

Copyright Springer Verlag 5

Sampling)
Policy)

SW(i)) Data)
Subset)
DS(i))

GP)

Data)
Archiving)
Policy)

Gen(j))
Gap(i))

i.d.)data)for)
replacement)

New)stream)data)

Old)stream)data)

Figure 1: Components of generic architecture for applying GP to streaming data under a label
budget

stochastic label requests, this is performed uniformly relative to exemplars that are classified
with certainty. The objective being to confirm that cases which are classified with certainty
have not undergone some form of shift into a different class. Moreover, we also note that
even requesting labels with a uniform probability (under a label budget) is often better
than more sophisticated heuristics [44]. In this work we will assume the uniform sampling
heuristic under a label budget.

The specific form of GP assumed takes the form of Symbiotic Bid-Based GP (SBB) and
therefore benefits from the ability to perform task decomposition (construct a classifier as a
team of programs). Aside from the additional transparency of the resulting solutions, pur-
suing a GP teaming approach also provides an elegant solution to multi-class classification.
A short description of SBB is provided in Section 3.4, whereas readers are referred to the
earlier papers for further details [29, 16].

3.2 Data Archiving Policy
The scheme assumed for prioritizing DS content for replacement is defined by a data archiv-
ing policy. Specifically, Pareto archiving is used to identify exemplars that ‘distinguish’
between the performance of GP classifiers. Such a set of exemplars are said to be non-
dominated [12]. One of the drawbacks of assuming a Pareto archiving policy, however, is
that the archive of exemplars distinguishing between different GP classifiers increases to
P2 − P; where P is the size of the GP population. This would have implications for the
overall efficiency of the algorithm. Hence, we limit the size of DS to a suitable finite value
and employ a DS exemplar diversity / aging heuristic [1]. The process for choosing exem-
plars from DS for replacement switches between the following cases, depending on which
condition is satisfied. Let the exemplars from DS forming ‘distinctions’ be d and those not
supporting a distinction be d̄:

Case 1 The number of exemplars forming a distinction is less than or equal to |DS| − |Gap| (i.e.
|d| ≤ |DS| − |Gap|). This implies that the number of exemplars that do not support
distinctions is greater than or equal to |Gap| (i.e. |d̄| ≥ |Gap|). Hence, the DS exemplars
replaced by Gap(i) are selected from d̄ alone.

Case 2 The number of exemplars forming distinctions is more than |DS| − |Gap|. Any exemplars
not forming distinctions (d̄) will be replaced. In addition |Gap| − |d̄| exemplars forming
distinctions will also be replaced, potentially resulting in the loss of GP classifiers (i.e.,

Copyright Springer Verlag 6

no longer identified as being non-dominated). The exemplars forming distinctions are
now ranked in accordance with how many other points form the same distinction and
how long an exemplar has been in the archive [1]. In effect exemplars supporting:
1) unique distinctions see more priority than those forming more common distinctions
i.e., a form of fitness sharing or diversity maintenance, and 2) older exemplars are more
likely to removed in favour of those forming more recent distinctions.

Such preference schemes were previously shown to be useful under GP streaming classifi-
cation, albeit without label budgeting [2, 1]. Further details of Pareto archiving as applied
to GP are available in [16].

3.3 Anytime Classifier Operation
In order to predict class labels for exemplars of the non-stationary stream a single GP in-
dividual must be present at any point in time to perform this task, or anytime classifier
operation. To do so, we assume that the current content of the data subset DS(i) is suit-
ably representative of the classification task. That is to say, it is only the content of DS
that is labelled, and the content is incrementally updated from each SW location with the
data archiving policy enforcing a finite archive size (Section 3.2). A metric is now neces-
sary for identifying the champion individual relative to the GP individuals identified as
non-dominated. In limiting the available candidate GP classifiers to the non-dominated set,
we reduce the likelihood of selecting degenerate classifiers. Given that class balance is not
enforced on SW(i) content, it is desirable to assume a metric that is robust to class imbalance
(skew). With this in mind the following definition for average detection rate is assumed:

DR =
1
C ∑

c=[1,...,C]
DRc

DRc =
tpc

tpc + f nc
(1)

where C is the number of classes observed in the dataset so far and tpc and f nc denote true
positive and false negative counts w.r.t. class c respectively.

3.4 Symbiotic Bid-Based (SBB) GP
Symbiotic Bid-Based GP, or SBB for short, is a generic coevolutionary GP framework origi-
nally developed to facilitate task decomposition under discrete decision making tasks [29].
SBB has been applied to a wide range of problem categories such as reinforcement learning
(e.g. [15]) and classification (e.g. [16]).

SBB maintains two populations: symbiont and host. Symbionts (sym) take the form of
bid-based GP individuals [29]. They specify a ‘program’ (p) and a scalar ‘action’ (c). The
action in a classification context takes the form of a class label, assigned when each program
is initialized. Individuals from the host population index some subset of the individuals
from the symbiont population under a variable length representation.

Host (h) evaluation w.r.t. training exemplar (x) involves executing the program of each
of the symbionts associated with that host, and identifying the bid-based GP with highest
output, or:

sym∗ = arg max
sym∈h

(
sym(p, x)

)
(2)

Copyright Springer Verlag 7

Table 1: Benchmarking dataset properties. D denotes dimensionality, N refers to the total
exemplar count, and k is the number of classes

Stream / Datadataset-
set

D N k ≈ Class Distribution
(%)

Gradual Concept Drift
(drift)

10 150,000 3 [16, 74, 10]

Sudden Concept Shift
(shift)

6 6,500,000 5 [37, 25, 24, 9, 4]

Electricity Demand
(elec)

8 45,312 2 [58, 42]

Forest Cover Types
(cover)

54 581,012 7 [36, 49, 6, 0.5, 1.5, 3,
4]

This ‘winning’ bid-based GP individual (sym∗) suggests its corresponding action or class
label sym∗(c). The only constraint on host membership is that there must be at least two
symbionts with different class labels per host, or:

∀ symi,j ∈ h; ∃ symi(c) 6= symj(c) (3)

where i, j are symbiont indexes and i 6= j. Hence, multiple symbionts might co-operate
to represent a single class. Moreover, previous research with SBB under streaming tasks
(without label budgets) indicated that class membership could be incrementally evolved
over the course of a stream [2, 1]. This incremental evolution of class membership avoids
the requirement for teams to solve all aspects of the class assignment task simultaneously.

Variation and selection operators remain unchanged from the original formulation of SBB
[29, 16], and without loss of generality the form of GP assumed for symbiont programs is
that of linear GP. The instruction set includes: {+,−,×,÷, cos(·), exp(·), log(·)}, although
others can be added. Readers are referred to the earlier SBB papers for further details of
operators and instruction set of SBB [29, 16].

4 Experimental Methodology
This section begins by establishing the approach to benchmark dataset selection (Section 4.1).
Section 4.2 discusses parameter setting and characterizes StreamSBB design decisions. Sec-
tion 4.3.1 outlines the approach adopted to performance evaluation. Finally, the properties
of an alternate streaming classifier (an adaptive form of Naive Bayes with label budgeting)
is summarized in Section 4.3.2.

4.1 Streams / datasets
Four streams / datasets will be employed for the purposes of benchmarking: 1) two arti-
ficially created and therefore with known degrees of non-stationary behaviour;1 “Gradual
Concept Drift” and “Sudden Concept Shift” streams, and; 2) two well known real world
datasets; “Electricity Demand” [23], and “Forest Cover Types” [3] that have frequently been
employed for streaming data benchmarking tasks. The basic properties of the datasets are
summarized by Table 1.

1Publicly available at http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html

Copyright Springer Verlag 8

Gradual Concept Drift stream [17]: Hyperplanes are defined in a 10-dimensional space.
Initial values of the hyperplane parameters are selected with uniform probability. This
Dataset has 150,000 exemplars and every 1, 000 exemplars, half of the parameters are con-
sidered for modification with a 20% chance of change, hence creating the gradual drift of
class concepts. Class labels are allocated as a function of hyperplanes exceeding a class
threshold.

Sudden Concept Shift stream [44]: The Dataset Generator tool2 is used to construct
decision trees that specify a partitioning of the attribute space into a 5-class classification
task based on randomly generated thresholds. Data is generated with a uniform p.d.f. and
then assigned a class using the decision tree. A total of two concept generator decision trees
(C1, C2) are used to create two sources of data. A single stream of data is then constructed
block-wise with data integrated from each of the two concept generator decision trees.

The process used to create sudden changes in the concept of classes of the stream has the
following form. The stream is created ‘block-wise’ with 13 blocks and each block consists
of 500,000 exemplars. Consider a concept generator tuple of the form: 〈C1%, C2%〉. We can
now define the stream interns of the transition of exemplars from 100% C1 to 100% C2 in
10% increments: 〈100, 0〉, 〈100, 0〉, 〈100, 0〉, 〈90, 10〉, 〈80, 20〉, ... 〈0, 100〉. For example, 〈80, 20〉
denotes a block consisting of exemplars in which 80% are from C1 and 20% are from C2. A
uniform probability is used to determine the exemplar order in each block.

Electricity Demand characterizes the rise and fall of electricity demand in New South
Wales, Australia, using consumption and price information for the target and neighbouring
regions [23]. As such it is a two class dataset (demand will either increase or decrease
relative to the previous period), moreover, unlike the other three datasets the distribution of
classes is almost balanced.

Forest Cover Types defines forest cover type from cartographic variables [3]. The actual
forest cover type for a given observation (30× 30 meter cell) was determined from US Forest
Service (USFS) Region 2 Resource Information System (RIS) data. Forest cover type is a
7-class dataset with 54 attributes, 44 of which are binary. The distribution of classes are
very imbalanced with the largest class covering almost 50% of dataset and the smallest class
covering a mere 0.5%, almost 1

100 of the majority class. In order to provide a temporal
property, previous research sorted the dataset based on the elevation of the 30× 30 meter
cells to give it characteristics of streaming data [39]. The same approach is adopted in
this paper. What makes this dataset interesting from a streaming data perspective is that
there are a comparatively large number of classes, and the seventh class does not appear
until roughly half way through the stream. Thus, any classifier working under a label
budget would need to discover the new class and react accordingly without disrupting its
performance on the other six classes.

4.2 Parameterization of GP
Relative to the earlier work [2, 1, 40], the following represents a much more through experi-
mental evaluation. Indeed, the StreamSBB framework of Figure 1 was only proposed in [40]
and then benchmarked under a very restrictive scenario (i.e. limited to choices for the label
budget). In this work, the objective is to identify what properties of StreamSBB contribute to
specific capabilities under streaming data with non-stationary properties. With this in mind,
the following three generic parameterizations will be assumed through out:

Model initialization is performed using the first Sinit% of the stream during the first
iinit% of generations. This represents the pre-training budget, with the remainder of the

2Gabor Melli. The ‘datgen’ Dataset Generator. http://www.datsetgenerator.com/

Copyright Springer Verlag 9

Table 2: Stream / datasets with different generation count and label budgets (LB)

Stream / Dataset Smax imax LB imax LB
Gradual Concept
Drift (drift)

150,000 500 6.7% 1,000 13.3%

Sudden Concept
Shift (shift)

6,500,000 1,000 0.3% 10,000 3.1%

Electricity Demand
(elec)

45,312 500 22.1% 1,000 44.2%

Forest Cover Types
(cover)

581,012 1,000 3.4% 10,000 34.4%

label budget being consumed across the remainder of the stream. Given that the interface
to the stream assumed by StreamSBB is a non-overlapping window, then this assumption
just defines the initial window length and assumes that iinit% of the generations are per-
formed against this window location. Thereafter, the sliding window advances at a fixed
rate through the stream.

A non-overlapping sliding window of length Smax/imax exemplars is assumed after
model initialization. The remainder of the stream passes through at a constant rate. The
window content defines the pool from which the new |Gap(i)| training exemplars are sam-
pled and labels requested (Figure 1). This results in a ‘non-overlapping’ sliding window.
However, GP is evaluated w.r.t. the content of the Data Subset, |DS|, (Figure 1), and only
|Gap| exemplars are introduced per window location, hence, there is still a ‘gentle’ turnover
in new to old exemplar content between consecutive generations. Parameters are set to
|Gap| = 20 and |DS| = 120 in all experiments.

Label budget is the ratio of points whose labels are requested to the total stream length,
or:

label budget(LB) =
imax × |Gap|

Smax
(4)

In other words only imax× |Gap| exemplars are requested for their label in a stream of length
Smax(≡ N). Under the sudden concept shift stream with Smax = 6, 500, 000 exemplars and
imax = 1, 000 generations, the non-overlapping window defines 6,500 exemplars between
updates of the GP population. In the parameterization assumed here only |Gap| = 20
exemplars are added to DS(i) (by the Sampling Policy) at each generation. Hence, the label
budget in this example would be:

1, 000× 20
6, 500, 000

≈ 0.3%

Given the rather different stream lengths of the benchmarking datasets (Table 1), different
parameterizations for imax will be assumed per dataset as follows:

Case 1 For Concept Drift and Electricity Demand streams: imax ∈ {500; 1, 000}
Case 2 For Concept Shift and Forest Cover Type streams: imax ∈ {1, 000; 10, 000}
This defines two label budgets (LB) per dataset, as summarized by Table 2. Note that imax is
taken to include the pre-training budget iinit%.

Table 3 summarizes the remaining generic SBB parameter settings assumed in this study
e.g., population size, variation and selection operator frequencies. The following new ques-
tions are addressed to illustrate the role of design decisions made during StreamSBB and
have not previously been considered:

Copyright Springer Verlag 10

Table 3: Generic SBB parameters. Symbiont population varies dynamically, hence no size pa-
rameter is defined. SBB assumes a ‘breeder’ model of evolution in which Mgap hosts are re-
moved per generation [16].

Parameter Value
DS size (DS) 120

Host population size (Msize) 120

Probability of symbiont deletion (pd) 0.7
Probability of symbiont addition (pa) 0.7

Probability of action mutation (µa) 0.1
Maximum symbionts per host (ω) 20

DS gap size (Gap) 20

Host population gap size (Mgap) 60

Let the initial period of fixed sliding window over 10% of stream (during which the
model is constructed) be called ‘pre-training’ stage and the period of non-overlapping sliding
window over Smax/imax exemplars be called ‘post-training’ stage. Two pre-training bias
experiments are considered in an effort to assess the impact of initial model construction on
performance attained across the rest of the stream. In effect we are asking whether spending
more resource on the pre-training period has a negative impact on the ability to react to the
content in the post-training period (remainder of the stream). Specifically, we are interested
in the impact of: 1) longer model construction time with same percentage of exemplar labels,
and 2) more label budget during model construction period with the same amount of time.

DS oversampling reflects the ability of StreamSBB to decouple the rate at which GP
training epochs are performed from the rate at which the data subset content is updated.
Specifically, updates to data subset (DS) and window location (SW) are synchronized and
therefore assume the same index, i (Figure 1). Conversely, for each DS(i) we consider the
case of performing multiple training epochs, or j = i × k where k = 1 implies one GP
generation per DS(i), whereas a parameterization of k = 5 implies five GP generations per
DS(i). Decoupling GP training epochs in this way potentially provides SBB more time to
learn form each data subset. Note also that this does not change the label budget.

Monolithic vs. modular models: The original StreamSBB is allowed to represent/model
each class label using an evolved mix of symbionts (programs). This implies that multiple
programs might coevolve to represent the same class label (task decomposition) [30, 16]. We
are interested in investigating the contribution of such open-ended modularity under the
context of non-stationary streaming tasks. To do so, we introduce a constrained version of
StreamSBB in which a host cannot have more than one symbiont (program) with the same
action (class label). All other properties are unchanged; hereafter this will be referred to as
the monolithic model.

4.3 Evaluation
Two performance metrics will be adopted for characterizing performance: a “prequential
accuracy” and “incremental class-wise detection rate”. Such metrics are applied relative to
the champion individual assumed for labelling stream content. Likewise two comparator
classifiers are assumed for the purpose of comparison: a “no-change” model [7] and an
Adaptive Naive Bayes classifier with fixed label budgeting [39]. A summary of each follows:

Copyright Springer Verlag 11

4.3.1 Performance Metrics

Prequential accuracy [11] represents the most widely used performance metric for streaming
data benchmarking. Specifically, the prequential accuracy at exemplar t in the stream is
‘weighted’ relative to all past t− 1 exemplars as well as exemplar t, or

preqt =
(t− 1)× preqt−1 + Rt

t
(5)

where Rt = 1 denotes a correct classification of exemplar t, and Rt = 0 denotes otherwise.
The ratio of time indexes acts as a weighting factor, enforcing a decay for older updates [22].
The resulting prequential accuracy takes the form of a curve, although current benchmarking
practice also tends to emphasize the reporting of the final prequential accuracy estimate for
t = Smax as the indication of overall model quality.

A second performance metric, incremental class-wise detection rate will also be as-
sumed. The basic motivation is to reduce the sensitivity of the performance metric to class
imbalance. This is particularly important under streaming data situations as models are
updated incrementally and therefore sensitive to the distribution of current window con-
tent (typically a skewed distribution of classes even when the overall class distribution is
balanced). The incremental class-wise detection rate can be estimated directly from stream
content as follows:

DR(t) =
1
C ∑

c=[1,...,C]
DRc(t)

DRc(t) =
tpc(t)

tpc(t) + f nc(t)
(6)

where t is the exemplar index, tpc(t), f nc(t) are the respective running totals for true positive
and false negative rates up to this point in the stream.

4.3.2 Comparator Models

The No-Change Classifier requires complete label information, but represents a naive ‘devils
advocate’ solution. The no-change ‘classifier’ is actually a 1-bit finite state machine in which
the state is seeded by the class label, l(t) = c, for the present exemplar, ~x(t). The state
machine ‘predicts’ this class for the next exemplar(s) until there is a change in the exemplar
class label. A change in the label for exemplar ~x(t + n) to l(t + n) 6= c results in a change
in the ‘prediction’ for exemplar ~x(t + n + 1) to that of the new class, say, c′. The process
then repeats with each change in class label for the current exemplar being assumed as the
prediction for the next exemplar. Such a predictor achieves a high accuracy when there are
continuous sequences of exemplars in the stream with the same label. Naturally, such a
no-change classifier provides a ‘feel’ for how much implicit class variation exists in a stream.

The second comparator classifier is documented in a recent study of streaming data
classification under label budgets and drift detection [39], and has been made available
in the Massive Online Analysis (MOA) toolbox.3 Specifically, the Naive Bayes classifier
with budgeted active learning and drift detection under the prequential evaluation task is
employed. The drift detection mechanism selected was the DDM (Drift Detection Method)
algorithm from [21] with default values for threshold (1) and step parameters (0.01). The
‘random’ active learning strategy was selected as it provided the baseline in [39] and is
closest to the stochastic sampling policy adopted in this work. Finally the label budget

3MOA prerelease 2014.03; http://moa.cms.waikato.ac.nz/overview/

Copyright Springer Verlag 12

parameter was selected according to the label budget settings of the StreamSBB method.
Thus, a new classifier is built when the current classifier’s performance begins to degrade,
i.e. the current classifier is replaced when drift is explicitly detected by the DDM. Active
learning with budgeting is managed under a random exemplar selection policy in which
stream data is queried for labels with frequency set by the budget parameter. We also note
that both the Naive Bayes and the StreamSBB classifier are configured to label exemplars
based on each exemplar instance. Thus, no use is made of features designed to represent
temporal properties such as tapped delay lines (see [40] for StreamSBB configured under
this scenario).

5 Results
Section 4.2 discussed configuration of StreamSBB in terms of the generic parameterization,
and higher level design decisions. We start by adopting the basic parameterization decisions
for the duration of pre-training, label budget, sliding window size, gap size and illustrate
the utility of the stream performance metrics (Section 4.3.1). A common minimal label
parameterization is then adopted to enable us to review the impact of making higher level
design decisions regarding: model initialization, oversampling, and support for modularity
in GP. Having established a preferred set of design decisions, we then compare against the
Adaptive Naive Bayesian classifier from the MOA toolbox.

Model initialization and label budget: Figures 2, 3, 4, and 5 provide a behavioural sum-
mary of StreamSBB in terms of prequential accuracy (Equ. (5)) and incremental detection
rate (Equ. (6)) w.r.t. different labelling budgets (Table 2) over the four datasets. In all cases
each curve is the result of averaging the performance of GP over 50 runs for each config-
uration. A common parameterization will be assumed throughout for the generic GP pa-
rameters of StreamSBB (Table 3). Given that the sliding window follows a non-overlapping
definition, then the size of the window is effectively parameterized by the label budget and
corresponding frequency of gap sampling (Table 2). Likewise, the number of labels per slid-
ing window location is fixed (|Gap| = 20) for a data subset of |DS| = 120. Moreover, at this
point we will not consider the impact of more advanced features (oversampling etc), thus
one training epoch is performed per window location.

As mentioned during Section 4.2, the first 10% of the stream is made available for initial
model construction.4 The performance curves reflect the operation of the champion classifier
(Section 3.3) as the stream data passes. Insight into the degree of mixing of class labels as
the stream progresses is provided by the ‘no-change’ classifier curve (black solid curve).
Thus, the artificial drift dataset begins with continuous sequences of the same class and
then experiences a 20% reduction as the stream progresses (Figure 2). However, the artificial
shift dataset experiences a high degree of mixing of class label throughout (Figure 3). As
previously been pointed out [7], the electricity dataset has a low degree of mixing (Figure
4) whereas the cover type dataset sees both periods of variation and continuity in the label
during the stream (Figure 5).

During the artificial concept drift dataset, steady gradual improvements are made through-
out the course of the stream, resulting in performance eventually surpassing / reaching
that of the no-change classifier under both metrics. Note that the no-change classifier per-
formance is always described in terms of accuracy. The decaying trend of the no-change
classifier implies that label mixing increases as the stream progresses.

Under the artificial shift dataset, there is insufficient continuity in labels for the no-
change classifier to approach the performance of StreamSBB. Note also that under the shift

4Implying that 10% of the label budget is consumed in pre-training.

Copyright Springer Verlag 13

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

Points Seen X 15000

Drift Stream, Different Labels Budgets

Acc (gen=500)
DR (gen=500)
Acc (gen=1,000)
DR (gen=1,000)
NoChange

Figure 2: StreamSBB on gradual
concept drift stream. Curve of
GP accuracy (solid) and DR (dash)
during stream. First 10% of stream
(1.5 × 104 exemplars) are used to
construct the initial model. Red:
Label budget ≈ 6.7% or imax =
500; Blue: Label budget of ≈ 13.3%
or imax = 1, 000; Black: No-Change
model.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Points Seen X 650000

Shift Stream, Different Label Budgets

Acc (gen=1,000)
DR (gen=1,000)
Acc (gen=10,000)
DR (gen=10,000)
NoChange

Figure 3: StreamSBB on sudden
concept shift stream. Curve of
GP accuracy (solid) and DR (dash)
during stream. First 10% of stream
(6.5 × 105 exemplars) are used to
construct the initial model. Red:
Label budget ≈ 0.3% or imax =
1, 000; Blue: Label budget of ≈
3.1% or imax = 10, 000; Black: No-
Change model.

0 1 2 3 4 5 6 7 8 9 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Points Seen X 4531

Electricity Dataset, Different Labels Budgets

Acc (gen=500)
DR (gen=500)
Acc (gen=1,000)
DR (gen=1,000)
NoChange

Figure 4: StreamSBB on electric-
ity dataset. Curve of GP accu-
racy (solid) and DR (dash) dur-
ing stream. First 10% of stream
(4.5 × 103 exemplars) are used to
construct the initial model. Red:
Label budget ≈ 22.1% or imax =
500; Blue: Label budget of ≈ 44.2%
or imax = 1, 000; Black: No-Change
model.

0 1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Points Seen X 58101

Cover Dataset, Different Label Budgets

Acc (gen=1,000)
DR (gen=1,000)
Acc (gen=10,000)
DR (gen=10,000)
NoChange

Figure 5: StreamSBB on cover
type dataset. Curve of GP accu-
racy (solid) and DR (dash) during
stream. First 10% of stream (5.8×
104 exemplars) are used to con-
struct the initial model. Red: La-
bel budget ≈ 3.4% or imax = 1, 000;
Blue: Label budget of ≈ 34.4% or
imax = 10, 000; Black: No-Change
model.

Copyright Springer Verlag 14

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 15000

Drift Stream, Pre training Epoch Bias

Initialization Time = 10%
Initialization Time = 20%
Initialization Time = 40%

Figure 6: Pre-training epoch bias
experiment. preqDR on drift
stream. Black: default 10% (case
1); Red: 20% (case 2); and Blue:
40% (case 3).

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 650000

Shift Stream, Pre training Epoch Bias

Initialization Time = 10%
Initialization Time = 20%
Initialization Time = 40%

Figure 7: Pre-training epoch bias
experiment. preqDR on shift
stream. Black: default 10% (case
1); Red: 20% (case 2); and Blue:
40% (case 3).

dataset, the first 1,500,000 exemplars of the stream are drawn from concept C1. This lasts for
nearly twice as long as the initial period of pre-training. Thus, as the concept generating the
5 classes shifts from C1 to C2 during the remaining course of the stream, a decay of ≈ 10%
in either metric appears irrespective of total label budget.

The accuracy and detection rate curves for GP are almost identical for the electricity
demand dataset and quickly reach a plateau under this configuration of StreamSBB (Figure
4). Performance of the no-change classifier benefits from continuous sequences of exemplars
carrying the same class label. Note that the electricity dataset is a 2 class dataset with 58%
to 42% class distribution (almost balanced). Finally, the forest cover type dataset illustrates
several dynamic properties. Pre-training only results in 6 of 7 classes appearing. Thus, when
instances of the 7th class do appear (approximately where index 3 appears in the x-axis), then
there is a corresponding drop in detection rate (detection rate having been estimated over
6 classes up to this point). There are also several transient properties earlier in the stream,
which appear to be indicative of sudden context switches in the underlying process as they
impact both metrics and forms of classifier.

It is also evident that the accuracy metric is strongly biased by the class distribution, re-
sulting in an ‘over optimistic’ performance curve in all but the balanced data set (electricity);
a property widely observed under non-streaming classification benchmarks. With this in
mind, we will adopt the detection rate metric in the remainder of the study.

Pre-training epoch bias experiment: Figures 6 and 7 illustrate the impact of varying the
distribution of StreamSBB training epochs between pre-training and the remainder of the
stream. Note that previously the pre-training period (performed against 10% of the data)
consumed an equal amount of the total training epochs (10%). In the case of these experi-
ments, pre-training is still performed against 10% of the data (thus still only utilizing a 10%
label budget), but consumes 20% or 40% of the training epochs. Naturally, the total number
of training epochs per stream is unchanged, leading to the following three configurations:

Case 1 The default case, i.e. 10% of evolution time is dedicated to model construction and
90% after.

Case 2 20% of evolution time is dedicated to model construction and 80% after.

Case 3 40% of evolution time is dedicated to model construction and 60% after.

Copyright Springer Verlag 15

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 15000

Drift Stream, Pre training Label Budget Bias

Initialization Budget = 10%
Initialization Budget = 20%
Initialization Budget = 40%

Figure 8: Pre-training label budget
bias experiment. preqDR on drift
stream. Black: default 10% (case
1); Red: 20% (case 2); and Blue:
40% (case 3).

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 650000

Shift Stream, Pre training Label Budget Bias

Initialization Budget = 10%
Initialization Budget = 20%
Initialization Budget = 40%

Figure 9: Pre-training label budget
bias experiment. preqDR on shift
stream. Black: default 10% (case
1); Red: 20% (case 2); and Blue:
40% (case 3).

It appears that there is no lasting benefit to be gained from biasing more training epochs
to the pre-training period. Under the shift dataset (Figure 7), a significant regression back to
the vicinity of ‘case 1’ detection rate appears by the end of the stream. In short, the benefit
gained by introducing biases towards more pre-training time are lost over the remainder of
the stream.5

Pre-training label budget bias experiment: Here we ask wether using more of the label
budget during pre-training will provide the basis for better models during the remainder
of the stream. Specifically, rather than providing more time to the pre-training period we
provide a larger proportion of label budget to the pre-training period. Note that the overall
label budget is intact, however more labels are requested during model construction and
less thereafter. This leads to the following three configurations:

Case 1 The default case of uniform sampling through the stream, i.e. 10% of label and
training budget is requested during construction and 90% after.

Case 2 20% of label and training budget is requested during model construction and 80%
after.

Case 3 40% of label and training budget is requested during model construction and 60%
after.

Figures 8 and 9 summarize the impact of pre-training label budget bias on detection rate
for the concept drift and shift datasets respectively. In both cases the results are very similar
to those observed under the bias to training epochs.6 Any improvement relative to the drift
data set (compare Figure 8 to 6) being lost under the shift data set (compare Figure 9 to
7). In short, no real benefit is observed in biasing more training generations or label budget
towards the initial pre-training period.

DS Oversampling experiment: Sections 3 and 4.2 made the case for relaxing the rela-
tion between updates to the data subset (DS(i)) and performing a training epoch (Gen(j),
Figure 1). Thus, for each update to the data subset rather than conduct a single generation,

5Electricity demand and forest cover type datasets observed similar effects and therefore results are not explic-
itly reported.

6Similar effects being observed for the electricity and forest cover type datasets.

Copyright Springer Verlag 16

0 1 2 3 4 5 6 7 8 9 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 15000

Drift Stream, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5

Figure 10: Oversampling experi-
ment. preqDR on drift stream.
Black: default sampling; Red: ×2
oversampling; and Blue: ×5 over-
sampling.

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

Points Seen X 650000

Shift Stream, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5

Figure 11: Oversampling experi-
ment. preqDR on shift stream.
Black: default sampling; Red: ×2
oversampling; and Blue: ×5 over-
sampling.

multiple generations might be performed. This does not change the label budget and does
not represent a bias towards pre-training as it is performed throughout the whole stream.
Three parameterizations are considered:

Case 1 The default case of uniform sampling through the stream.

Case 2 DS oversampling by a factor of 2.

Case 3 DS oversampling by a factor of 5.

Figures 10 and 11 illustrate the impact of oversampling in terms of incremental detec-
tion rate curves for concept drift and shift streams. Higher detection rates are now main-
tained throughout the stream. Indeed, the higher rate of oversampling appears to be prefer-
able throughout, although further increases to the oversampling (a factor of 10) only had
marginal effects compared to the case of oversampling to a factor of 5 (overlearning). Re-
sults for electricity and cover type were also positive and will be reported later when we
compare with the Adaptive Naive Bayesian framework for streaming classification.

Monolithic vs. modular: In all the previous experiments StreamSBB was used in its
original modular configuration, i.e. the number of symbionts per class labels were allowed
to freely evolve. Previous benchmarking performed under a classical non-streaming set-
ting of classification through supervised learning indicated that such open-ended evolu-
tion of modularity was particularly beneficial [30]. Other researchers have also noted that
the open-ended evolution of modularity can be potentially beneficial in ‘dynamic’ environ-
ments (Section 2). In this experiment we compare StreamSBB with a modified version in
which there can only be a single program per team per class. Although, still modular at
some level (there are as many programs as classes) we will refer to this as a monolithic
classifier, and StreamSBB as a modular classifier.7 The objective of this experiment is to
quantify to what extent support for such open-ended evolution of modularity is beneficial
under non-stationary streaming classification tasks.

Figures 12 and 13, summarize detection rate on the concept drift and shift streams re-
spectively. There is a statistically significant difference in favour of assuming open-ended

7Other than the monolithic formulation of SBB being subject to the constraint that only one program may
represent each class, the two implementations are the same.

Copyright Springer Verlag 17

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Points Seen X 15000

Drift, DR, Monolithic vs Modular

Modular
Monolithic

Figure 12: Detection rate of con-
cept drift stream under modular
(solid) vs. monolithic (dash) con-
figurations.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Points Seen X 650000

Shift, DR, Monolithic vs Modular

Modular
Monolithic

Figure 13: Detection rate of con-
cept shift stream under modular
(solid) vs. monolithic (dash) con-
figurations.

evolution of modularity (Student T-test p-value of 3.14× 10−237 and 0 for concept drift and
concept shift streams respectively under 0.01 significance level). Thus, modularity is syn-
onymous with task decomposition, which under domains that undergo change potentially
implies that only a subset of programs within a modular solution need to be revised when
a change occurs. Conversely, under monolithic solutions, it is more difficult to explicitly
delimit what variation operators modify, hence identifying the relevant parts of a program
to modify becomes more difficult.

Under non-stationary streams, given that change takes place throughout the stream we
can also review the development of age of the champion individual through the course of
the stream. Note that the champion solution is the individual used to provide labels as the
stream progresses, with identification of the champion performed relative to the current
content of the data subset (Section 3.3). Naturally, each time the data subset is updated,
the champion might change. Age is the number of training epochs for which an individual
manages to exist.

Figures 14 and 15 illustrate the average age of the champion for concept drift and shift
streams respectively. Both plots suggest that the average age of champion hosts of the
modular configuration (red curve) remains lower throughout the stream. In effect, there is a
higher rate of turn over of champion individuals when modularity is supported (implied by
the lower age of champions). This reflects a stronger ability to react to change. Conversely,
the much higher age of champions under the monolithic framework appears to indicate that
the same champion has to be used for longer before better replacements are found. This has
obvious decremental consequences for classifier performance.

StreamSBB vs. Adaptive Naive Bayes: Results for the second baseline classifier, the
Adaptive Naive Bayesian (ANB) framework for streaming data classification under label
budgets as implemented in the MOA toolkit (Section 4.3.2) are summarized in Figures 16

through 19. Detection rate of StreamSBB and ANB models with similar label budgets are
compared against each other for the 4 datasets.

StreamSBB results are presented in terms of a set of curves illustrating the impact of
assuming different DS oversampling rates, i.e. the number of training epochs performed
per DS update. As noted in the earlier experiments this appears to be the most important
design decision and has no impact on the label budget. In all cases the solid black curve is
the incremental detection rate for ANB. Under the drift stream, ANB appears to take longer

Copyright Springer Verlag 18

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Points Seen X 15000

Drift Stream, Average Age of Champion Hosts

Modular
Monolithic

Figure 14: Average age of the
champion individual during
evolutionary loop, concept drift
stream.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Points Seen X 15000

Shift Stream, Average Age of Champion Hosts

Modular
Monolithic

Figure 15: Average age of the
champion individual during
evolutionary loop, concept shift
stream.

to develop an initial classifier. Thereafter, both models alternate until the end of stream
where they settle on the same detection rate. Conversely, ANB appears to over learn the
initial configuration of the shift stream (corresponding to concept C1), and then lose 25%
of its initial detection rate (going from 80% to 55%) over the remaining 75% of the stream.
Conversely, StreamSBB experiences significantly less loss over the course of concept C2 being
introduced during the last three quarters of the stream (Figure 17).

The electricity dataset results in StreamSBB returning a constant detection rate of 58
to 60% throughout the stream, but never approaching the performance returned by ANB
(Figure 18). The behaviour under the covertype dataset is more interesting. During the
first three intervals of the stream, both models undergo sharp changes in the detection rate
(Figure 19). A sudden drop then appears as the seventh class is encountered for the first
time, and therefore all models miss-classify this class (see x-axis value ≈ 3). The ensuing
gradual recovery of the detection rate undergoes a final jump in the last 20 000 exemplars of
the sequence (last interval of the x-axis).

In summary ANB appears to have problems when there are sudden changes to the con-
tent of the stream (shift stream), whereas both algorithms are effective under the drift stream.
In both real-world datasets, ANB was more effective, however, StreamSBB might well bene-
fit from the use of tapped delay lines when contracting models for such tasks (both models
make classification decisions on the basis of a single exemplar). Further research indicates
that StreamSBB does indeed benefit considerably from the use of a delay lines on real-world
data sets [41].

6 Conclusion
A framework for applying GP to streaming data classification tasks under label budgets is
presented. To do so, GP is evolved against a data subset. The subset makes use of Pareto
archiving policy with diversity / age heuristics to prioritize exemplars for retention beyond
the lifetime of the current window to the stream. A simple uniform sampling scheme is
assumed for selecting exemplars for labelling. Attempts to introduce more complex sam-
pling policies (such as biasing label requests towards exemplars that have lower confidence

Copyright Springer Verlag 19

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 15000

Drift Stream, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5
Naive Bayes

Figure 16: Detection rate of
StreamSBB vs. ANB model on con-
cept drift stream (label budget =
6.6%).

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

Points Seen X 650000

Shift Stream, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5
Naive Bayes

Figure 17: Detection rate of
StreamSBB vs. ANB model on con-
cept shift stream (label budget =
0.3%).

in classification) generally resulted in worse results than the uniform sampling policy.8 The
data subset was also used as the basis for supporting anytime classifier operation. It is
only the data subset that contains labelled exemplars, however, we also make use of Pareto
archiving to limit the set of GP individuals to those that are non-dominated (cf. effect of
class imbalance on the data subset).

Two factors were identified that had particular significance with respect to StreamSBB
performance:

• perform multiple generations per data subset – where this appears to improve the rate
of adaptation in GP to updates to the data subset content.

• support for coevolution of programs – where assuming a single (monolithic) program
per class resulted in much lower rates of classification than when the number of pro-
grams per class was an evolved property.

Benchmarking also introduced a incremental formulation for detection rate where this
is more informative of the true classifier behaviour under class imbalance. Future work
will assess the utility of tapped delay lines to enable GP to represent temporal properties
between sequences of exemplars when labelling exemplar t. At present, each exemplar is
labelled independently. Moreover, we will continue to extend the set of real-world datasets
on which benchmarking is performed.

Acknowledgement
The authors gratefully acknowledge funding provided by the NSERC CRD grant program
(Canada).

8Results not shown for brevity.

Copyright Springer Verlag 20

0 1 2 3 4 5 6 7 8 9 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Points Seen X 4531

Electricity Dataset, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5
Naive Bayes

Figure 18: Detection rate of
StreamSBB vs. ANB model on
electricity dataset (label budget =
22.1%).

0 1 2 3 4 5 6 7 8 9 10
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Points Seen X 58101

Covertype Dataset, DR, Different Oversampling Factors

DS Oversampling X 1
DS Oversampling X 2
DS Oversampling X 5
Naive Bayes

Figure 19: Detection rate of
StreamSBB vs. ANB model on
covertype dataset (label budget =
3.4%).

References
[1] A. Atwater and M. I. Heywood. Benchmarking Pareto archiving heuristics in the pres-

ence of concept drift: Diversity versus age. In ACM Genetic and Evolutionary Computation
Conference, pages 885–892, 2013.

[2] A. Atwater, M. I. Heywood, and A. N. Zincir-Heywood. GP under streaming data
constraints: A case for Pareto archiving? In ACM Genetic and Evolutionary Computation
Conference, pages 703–710, 2012.

[3] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[4] M. Behdad and T. French. Online learning classifiers in dynamic environments with
incomplete feedback. In IEEE Congress on Evolutionary Computation, pages 1786–1793,
2013.

[5] A. Bifet. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams,
volume 207 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2010.

[6] A. Bifet and R. Gavalda. Learning from time-changing data with adaptive windowing.
In SIAM International Conference on Data Mining, pages 443–448, 2007.

[7] A. Bifet, I. Z̆liobaitė, B. Pfahringer, and G. Holmes. Pitfalls in benchmarking data stream
classification and how to avoid them. In Machine Learning and Knowledge Discovery in
Databases, volume 8188 of LNCS, pages 465–479, 2013.

[8] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation, 10(4):459–472, 2006.

[9] G. Brown and L. I. Kuncheva. “Good” and “bad” diversity in majority vote ensembles.
In Multiple Classifier Systems, volume 5997 of LNCS, pages 124–133, 2010.

[10] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An information-theoretic
approach to detecting changes in multi-dimensional data streams. In Proceedings of the
Symposium on the Interface of Statistics, 2006.

[11] A. P. Dawid. Statistical theory: The prequential approach. Journal of the Royal Statistical
Society-A, 147:278–292, 1984.

Copyright Springer Verlag 21

[12] E. D. de Jong. A monotonic archive for pareto-coevolution. Evolutionary Computation,
15(1):61–94, 2007.

[13] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammatical Evolution for Dy-
namic Environments, volume 194 of Studies in Computational Intelligence. Springer, 2009.

[14] G. Ditzler and R. Polikar. Hellinger distance based drift detection for non-stationary
environments. In IEEE Symposium on Computational Intelligence in Dynamic and Uncertain
Environments, pages 41–48, 2011.

[15] J. A. Doucette, P. Lichodzijewski, and M. I. Heywood. Hierarchical task decomposition
through symbiosis in reinforcement learning. In ACM Genetic and Evolutionary Compu-
tation Conference, pages 97–104, 2012.

[16] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbiotic coevo-
lutionary genetic programming: a benchmarking study under large attribute spaces.
Genetic Programming and Evolvable Machines, 13(1), 2012.

[17] W. Fan, Y. Huang, H. Wang, and P. S. Yu. Active mining of data streams. In Proceedings
of SIAM International Conference on Data Mining, pages 457–461, 2004.

[18] G. Folino and G. Papuzzo. Handling different categories of concept drift in data streams
using distributed GP. In European Conference on Genetic Programming, volume 6021 of
LNCS, pages 74–85, 2010.

[19] J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

[20] J. Gama. A survey on learning from data streams: Current and future trends. Progress
in Artificial Intelligence, 1(1):45–55, 2012.

[21] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues. Learning with drift detection. In
Advances in Artificial Intelligence, volume 3171 of LNCS, pages 66–112, 2004.

[22] J. Gama, R. Sebastião, and P. Rodrigues. On evaluating stream learning algorithms.
Machine Learning, 90(3):317–346, 2013.

[23] M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical report, Uni-
versity of New South Wales, 1999.

[24] M. I. Heywood. Evolutionary model building under streaming data for classification
tasks: opportunities and challenges. Genetic Programming and Evolvable Machines, 2015.
DOI 10.1007/s10710-014-9236-y.

[25] S. Huang and Y. Dong. An active learning system for mining time changing data
streams. Intelligent Data Analysis, 11(4):401–419, 2007.

[26] N. Kashtan, E. Noor, and U. Alon. Varying environments can speed up evolution.
Proceedings of the National Academy of Sciences, 104(34):13713–13716, 2007.

[27] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In Proceedings of
the International Conference on Very Large Data Bases, pages 180–191. Morgan Kaufmann,
2004.

[28] C. Lanquillon. Information filtering in changing domains. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages 41–48, 1999.

[29] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving with
Symbiotic Bid-based Genetic Programming. In ACM Genetic and Evolutionary Computa-
tion Conference, pages 363–370, 2008.

[30] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity under
GP. In ACM Genetic and Evolutionary Computation Conference, pages 853–860, 2010.

Copyright Springer Verlag 22

[31] P. Lindstrom, B. MacNamee, and S. J. Delany. Handling concept drift in a text data
stream constrained by high labelling cost. In Proceedings of the International Florida Arti-
ficial Intelligence Research Society Conference. AAAI, 2010.

[32] P. Lindstrom, B. MacNamee, and S. J. Delany. Drift detection using uncertainty distri-
bution divergence. Evolutionary Intelligence, 4(1):13–25, 2013.

[33] L. L. Minku, A. P. White, and X. Yao. The impact of diversity on online ensemble learn-
ing in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering,
22(5):730–742, 2010.

[34] M. Parter, N. Kashtan, and U. Alon. Facilitated variation: How evolution learns from
past environments to generalize to new environments. PLoS Computational Biology,
4(11):e1000206, 2008.

[35] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, editors.
Dataset shift in machine learning. MIT Press, 2009.

[36] R. Sebastio and J. Gama. Change detection in learning histograms from data streams.
In Proceedings of the Portuguese Conference on Artificial Intelligence, volume 4874 of LNCS,
pages 112–123. Springer, 2007.

[37] R. Stapenhurst and G. Brown. Theoretical and empirical analysis of diversity in non-
stationary learning. In IEEE Symposium on Computational Intelligence in Dynamic and
Uncertain Environments, pages 25–32, 2011.

[38] I. Z̆liobaitė, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with evolving
streaming data. In Proceedings of the European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 597–612. Springer, 2011.

[39] I. Z̆liobaitė, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with drifting stream-
ing data. IEEE Transactions on Neural Networks and Learning Systems, 25(1):27–54, 2014.

[40] A. Vahdat, A. Atwater, A. R. McIntyre, and M. I. Heywood. On the application of GP to
streaming data classification tasks with label budgets. In ACM Genetic and Evolutionary
Computation Conference: ECBDL Workshop, pages 1287–1294, 2014.

[41] A. Vahdat, J. Morgan, A. R. McIntyre, M. I. Heywood, and A. N. Zincir-Heywood.
Tapped delay lines for GP streaming data classification with label budgets. In European
Conference on Genetic Programming, volume 9025 of LNCS. Springer, 2015.

[42] P. Vorburger and A. Bernstein. Entropy-based concept shift detection. In Proceedings of
the Sixth International Conference on Data Mining, pages 1113–1118, 2006.

[43] G. P. Wagner and L. Altenberg. Complex adaptations and the evolution of evolvability.
Complexity, 50(3):433–452, 1996.

[44] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using optimal
weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics – Part B,
40(6):1607–1621, 2010.

