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Abstract

Streaming data analysis potentially represents a significant shift in emphasis from schemes
historically pursued for offline (batch) approaches tothe classification task. In particular, a
streaming data application implies that: 1) the data itself has no formal ‘start’ or ‘end’; 2)
the properties of the process generating the data are non-stationary, thus models that func-
tion correctly for some part(s) of a stream may be ineffective elsewhere; 3) constraints on
the time to produce a response, potentially implying an anytime operational requirement;
and 4) given the prohibitive cost of employing an oracle to label a stream, a finite labelling
budget is necessary. The scope of this article is to provide a survey of developments for
model building under streaming environments from both the perspective of evolutionary
and non-evolutionary frameworks. In doing so, we bring attention to the challenges and
opportunities that developing solutions to streaming data classification tasks are likely to
face using evolutionary approaches.

1 Introduction

Model based evolutionary computation (EC) is taken to to be synonymous with supervised
learning, i.e., finding a mapping from a typically higher dimensional independent variable, ~x, to
a typically lower dimensional dependent variable, y, with credit assignment performed relative
to label information. The goal of this article is to articulate the challenges and opportunities
that follow for model based EC as we increasingly encounter the phenomena of streaming data.
A shortlist of properties that make machine learning (ML) under the streaming task more of
a challenge than when encountered under a non-streaming setting potentially includes some
combination of the following:

• the underlying process creating the data might well be non-stationary / dynamic, imply-
ing that the dataset is subject to concept shift / drift. A classifier effective on one part
of a stream is therefore not necessarily useful elsewhere. Conversely, the majority of ‘of-
fline’ supervised learning frameworks assume that data is independent and identically
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distributed (e.g., [59]). This is the basis for building models from a static sample (the
training partition), validating against an independent sample of data, and testing for the
generalization of trained models to a third independent partition.

• datasets are not necessarily finite, or at the very least, they are sufficiently large to pre-
clude multiple passes, implying that a single pass constraint has to be assumed. When
combined with the non-stationary nature of the stream this implies that learning needs to
be a continuous ‘online’ activity, with solutions available at anytime during the progres-
sion of the stream.

• the cost of labelling the data implies that only a fraction of the data can be labelled. This
places an additional requirement on the model to also detect change in the stream, and /
or actively request label information on demand or make use of unlabelled data cf. online
semi-supervised learning;

• the continuously evolving nature of stream content has implications for learning under
class imbalance, as it is generally not possible to a priori ‘stratify’ the dataset.

Previous reviews or monographs have typically considered the streaming data task from
the specific perspective of ‘classical’ ML without considering how features from model based
EC might be applicable [17, 76, 77, 156]. Conversely, several monographs in evolutionary com-
putation have surveyed the issue of EC in ‘dynamic environments’ (e.g., [51, 141]), but make
little reference to parallel developments from ML or the streaming task in particular. The goal
of this work is to attempt to provide some perspective on what can be gained from drawing on
the rich literature available from both sources of study with respect to evolving model based
solutions to streaming data tasks.

The following survey assumes two distinctions. Firstly, we draw a distinction between the
goal of frameworks for model based EC (such as genetic programming (GP), learning classifier
systems (LCS) or neuro-evolution) and optimization (as in, say, evolutionary strategies). In par-
ticular, the availability of gradient information and a closer coupling between representation
space and search / error space provide additional information for evolutionary optimization
(under dynamic environments) that do not exist under model based EC. Hence, the action
of variation operators (acting on the representation space) can have a wide range of effects
on the search space in GP (e.g., [116]), whereas the real-valued representations assumed un-
der optimization tasks ensure a much closer coupling. Moreover, optimization tasks focus on
the accurate ‘tracking’ of optima and place little emphasis on testing against unseen data or
generalization.

Secondly, most of the research in machine learning for streaming data is associated with
classification as opposed to function approximation / regression. This, on the face of it, is quite
surprising. There is a long tradition of using model based EC for forecasting / prediction.
However, the goal of forecasting is to predict the next instance of a sequence of data, after
each prediction it is assumed that the true value for the dependent variable is known, and the
process iterates.1 Streaming data scenarios frequently do not conform to this mode of operation
because a labelling budget is generally enforced, thus raising the issue of when to request
label information. Having made this distinction, we will make reference to contributions from
evolutionary optimization and (symbolic) regression when they directly contribute to streaming
data issues as characterized above.

1Multi-step prediction implies that several predictions are made before the true values are known.
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In order to develop the concept of model based EC for streaming data, a generic characteri-
zation for the streaming data task is introduced (Section 2), where this also leads to a discussion
of the implications of streaming data on the bias–variance tradeoff. Section 3 introduces at a
high-level various considerations pertinent to the task of model building under streaming data
from three standpoints: general ML requirements, ensemble ML requirements, and generic EC
requirements. Section 4 presents benchmarking issues specific to the streaming data context,
divided into two broad themes: evaluation methodologies and benchmarking datasets. Sec-
tion 5 reviews progress to date vis-à-vis advances in streaming data algorithms in general and
opportunities for using model based EC. A concluding discussion with recommendations for
future research follows in Sections 6 and 7 respectively.

2 Characterizing the streaming data task

Several distinct approaches have been taken to characterizing the nature of streaming data.
The first attempts to place constraints on the relationship between training and test partitions,
or identify the necessary conditions under which model building and generalization can take
place (Section 2.1). This has been a particular concern of classical ML. Conversely, the focus
of EC has (historically) been more associated with characterizing the types of change, with
the goal of then establishing what properties the EC framework for model building under
dynamic environments should retain (Section 2.2). A final subsection reviews the implications
of concept change on the bias–variance dilemma frequently used to characterize properties of
credit assignment in ML model building (Section 2.3).

2.1 Statistical frameworks

The independent (vector of inputs) and dependent discrete class labels – or ~x and y respec-
tively – are frequently characterized using a statistical model (e.g., [81]). Thus, the data stream
is defined as a continuous sequence of (~x(t), y(t)) pairs. However, label information (the de-
pendent variable) is typically only provided by engaging an ‘oracle’ (e.g., human expert), in
which case the stream is characterized by ~x(t) alone with y(t) being available for a subset of t.
Moreover, it is assumed that the ‘training’ and ‘test’ data correspond to consecutive finite length
sequences. Such an assumption leads to the shared distribution assumption, i.e., both training
and test partitions need to be generated by the same distribution, p(~x, y), for generalization to
take place.

The shared distribution assumption implies that the underlying process responsible for
creating the data has the form:

p(~x, y) = P(y|~x)× p(~x) (1)

where p(~x) denotes the distribution of input data, as in attributes / features. Thus, feature
change can be stationary or non-stationary and when non-stationary the transitions might be
smooth (implying multiple processes are simultaneously present) or abrupt. P(y|~x) denotes the
conditional dependencies between input and label distributions. Conditional changes imply
that the label switches for the same input as the stream progresses. Dual changes imply that
both p(~x) and P(y|~x) undergo variation (as the stream progresses).

The shared distribution assumption comes from the constraint that training and test distri-
butions are still assumed to be suitably similar or ptr(~x, y) and pts(~x, y) are statistically equiv-
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alent. This is not to say that all stream behaviours will fit this framework, just that for the
purposes of defining a basis for measuring generalization, such a constraint is adopted. Not
all frameworks for learning under streaming data contexts subscribe to this constraint. Indeed,
should two consecutive sequences of data not conform to this constraint, we have a requirement
for ‘change’ or ‘novelty’ detection.

The shared distribution framework – or more generally a Bayesian causal framework –
provides the basis for identifying six reasons for a shift between training and test distributions
[168]:

• Simple covariance shift: change solely due to temporal variation in the input distribution,
p(~x).

• Prior probability shift: for the same distribution of inputs, p(~x), the probability of labels,
P(y), vary. The implication of this is that (some subset of) data that was at one time
labelled as say class 0, is associated with a different class label.

• Sample selection bias: represents a pre-processing or measurement bias. For example, user
surveys as collected from a single medium (e.g., twitter) potentially result in a bias to-
wards collecting information from a specific demographic. Thus, any prediction based
on such a survey (the training partition) would likely not reflect the overall opinion of a
voting public (the test partition).

• Imbalanced data: is a form of “data shift by design”. That is to say, minor / major classes
are intensionally over / under sampled in order to increase / decrease the sensitivity of
a classifier to specific classes. However, the relative frequency of each class may vary
over the course of a stream. The implication being that any sample will not necessarily
represent all classes. This is also referred to as skewed data (Section 5.6).

• Domain shift: case of variation due to a lack of ‘object invariances’ in the original input
attributes ~x. Examples of this might be sensitivity to lighting intensity or more generally
a requirement for movement invariant attributes.

• Source component shift: the same concept might be described from multiple sources (as in
sensor fusion). However, the differing sources might result in the same concept being
described at different points in time using different subsets of attributes.

2.2 Types of change

Under a general EC setting, multiple authors have characterized the types of change that a
non-stationary task might assume [1, 25, 48, 51, 112, 141]. Three distinct scenarios appear, as
summarized by Table 1. In the case of an underlying process described by random changes, the
point at which a change takes place is unrelated to the observed variable, p(~x), or a previous
change, p(y,~x). Processes of this type might represent sources of breakdown, such as motor
or sensor failure. At the other extreme (bluebottom row, Table 1), the underlying property
describing the stream is a stationary function of the current (and possibly previous) instance(s)
of the observed variable, p(~x). Thus, variation in observed or dependent variables are entirely
predictable and possibly of a cyclic nature. Conversely, the second scenario corresponds to pro-
cesses that are ‘complex’. Thus, there is an underlying relationship between changes p(y,~x),
and previous states, p(~x), but the relation is too complex to identify, i.e., chaotic systems.
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Table 1: Types of change to the underlying process. Adapted from [51].
Type of change Characteristics

Stochasic process changes that are independent of previous state or change
Complex process non-random but subject to multiple feedback paths

within the process (i.e., chaotic)
Deterministic process non-random and predictable change

Hence, as the parameters describing a complex systems vary, then periods of predictable be-
haviour may exist before a phase change takes place and the environment essentially becomes
non-stationary. Naturally, it might be possible to make predictions about complex processes,
but only over relatively short predictive horizons, e.g., as in weather forecasting. We also note
that the three categories of this table are essentially extremes sampled from a continuum of
processes. Delimiting when one process categorization ‘morphs’ into another is likely to be
quite subjective.

Morrison and Branke also emphasize the relative size and frequency of change [25, 141].
Both properties have implications for the stability versus plasticity tradeoff (Section 3), where
from the perspective of model based evolution, this is related to the balance between exploita-
tion and exploration in credit assignment. Abbass et al. emphasize a binary categorization in
which sources of change are either ‘model boundary’ changes or sample changes [1]. Model
boundary changes are associated with changes to the underlying process responsible for gen-
erating the data (e.g., cyclic or stochastic variation in the generating process), whereas sample
changes are associated with biases introduced by issues unrelated to the underlying data gener-
ation process (e.g., noise, class distribution / skew (within a finite sampling period)) or factors
associated with the ML interface to the data stream.

2.3 Bias–variance tradeoff

Setting aside the online versus batch concept of data access / credit assignment, streaming data
scenarios can be considered an example of learning from a ‘large’ dataset. The bias / variance
characterization of error from a machine learning algorithm in general are summarized as
follows (e.g., [59, 129]):

• Error variance: measures the sensitivity of a model to a particular subset of data or,
equivalently, the sensitivity to the underlying model complexity. Thus, under classifica-
tion tasks, variance characterizes how much decision boundaries change as a function of
data / model initialization.

• Error bias: measures the degree to which the typical response of a model (i.e., w.r.t. all
data) varies from the desired value. Thus, bias is associated with basic topology (of a
model) and variance characterizes a specific parameterization.

With these definitions in mind, most ML algorithms have concentrated on variance reduc-
tion [23], particularly given that in the case of classification tasks the bias–variance tradeoff
is multiplicative and non-linear [59]. Thus, classification using Naive Bayes is known to em-
phasize variance reduction alone, whereas methods for combining multiple weak learners are
potentially effective at both variance and bias reduction [23, 129]. Over a series of benchmarks,
Brain and Webb demonstrate that the overall contribution of error variance under classification
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tasks decreases as the size of the dataset increases, whereas the contribution of bias terms may
actually increase [23]. Gama notes that such a finding may also be significant to the context
of model building under streaming data [76, 77]. However, this does not imply that variance
reduction should be ignored. Indeed, given that streaming data implies that it is necessary to
construct models from small subsets of the data (e.g., a sliding window), then variance reduc-
tion is still the principal objective of recent ML approaches to streaming data classification (e.g.,
[203]).

2.4 Discussion

Naturally, the above characterizations are independent of the approach to model building.
However, given the much tighter coupling between representation and credit assignment as-
sumed in the case of classical ML, and the increasing incidence of Bayesian frameworks, it is not
surprising that a conditional probability model lies at the centre of ML characterizations for the
streaming task. Conversely, EC as applied to dynamic environments has placed more emphasis
on the types of change. Taken purely from a historical perspective, most benchmarking results
to date assume two basic characterizations of the concept shift task: discrete switches between
different underlying processes or some form of continuous variation in the underlying process.

One area that is often an oversight in the characterization of concept drift in the streaming
data task is that of variation in attribute support. On the face of it, this is implicit in the concept
of, say, change as applied to the independent variable, ~x. In practice, most benchmarking
assumes that all attributes are employed, whereas associating different subsets of attributes
with different generating processes results in multiple forms of the curse of dimensionality
[111, 196]. Recently an ε-greedy approach was proposed with linear classifiers in which new
samples were taken from the stream in order to periodically resample the attribute space [189].
We note that GP will naturally support stochastic resampling of the attribute space as part of
the training cycle.

3 Identifying generic ML properties for the stream learning
task

The properties considered appropriate to the task of model identification under streaming data
have been developed independently by the generic ML versus EC communities. We again begin
by establishing two ML perspectives – generic ML issues and somewhat more specific issues
relative to ensemble methods – before reviewing properties pertinent to EC model building
under streaming data.

3.1 Generic ML perspective

Relative to offline (or batch) model identification, as performed against a single training–
validation–test partition, the streaming data task presents various additional generic challenges
summarized as follows [57, 80, 76]:

Computational: both time and memory efficiency should be constant (and preferably lin-
ear) with respect to the data throughput of the stream. Assuming that the stream is labelled,
this has at least two interpretations: continuous / online updating (e.g., [70, 149]) versus some
form a batch / incremental update policy (e.g., [137, 154]). Batch update policies are only likely
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to approach this objective ‘on average’. However, depending on the data rate of a streaming
application, this may be perfectly acceptable. Conversely, if the stream is not labelled, then
credit assignment is potentially limited to the rate at which labels are provided.2 Section 5.3
investigates this issue further in the case of change detection without the aid of labels. We also
recognize that not all attributes necessarily carry an equal evaluation cost. Anytime interrupt-
ible ML algorithms attempt to incrementally construct a model given prior a computational
budget for attribute evaluation [66]. Thus, a decision tree representation might be assumed on
account of bluethe ability to build models without necessarily utilizing all attributes.3 Indeed,
attribute evaluation costs as well as model accuracy are used to bias tree construction.

Single pass: given that data is being received on a continuous basis, a model can only index
data over some finite interval relative to the current time step, t. This is generally taken to
imply that either a sliding window or consecutive blocks of non-overlapping data characterize
the interface to the stream. Once there is a shift in the location of the sliding window / data
block, it is not possible to revisit data previously encountered. An exception to this is when
the learning algorithm introduces a finite archive of data that is in some way pertinent to the
identification of useful models (e.g., active learning). A tradeoff naturally exists in terms of: 1)
archive size versus real-time operation; and 2) the ‘age’ versus diversity of exemplars retained in
such an archive. This topic will be discussed more explicitly within the context of EC methods
in Sections 3.3 and 5.1.2.

Anytime operation: independent from the process of model identification (continuous or
batch), the ML framework must be able to provide estimates for the dependent variable, y, at
any point in the stream. From an EC perspective this implies that a ‘champion’ individual
/ ensemble must always be available. This naturally raises questions regarding how such a
champion is identified, given that a convenient definition for a validation partition might not
be readily apparent (Section 3.3.3).

Generalization: is relative to the point in the stream that a prediction is made. Depending
on the type of stream, various forms of generalization might be applicable. In the case of a
stationary process, the single pass constraint would imply that we might desire generalization
(under test) to approach that of batch learning with the same computational cost. Conversely,
for non-stationary streams it might be expected that model accuracy should be maintained until
a ‘significant’ change in the stream is detected, i.e., the shared stationary distribution assump-
tion of Section 2.1 is suitably well maintained. After a significant change is detected, updates to
the model should be performed before a new solution can be identified and operation resumed.

Stability versus plasticity: relates to the tradeoff in balancing the capacity to react to change
versus losing the capability to generalize to the underlying process, i.e., the balance between
new and prior knowledge. Thus, distinctions need to be made regarding what of previous
model(s) should be retained versus introducing completely new model(s) [65, 88]. From a
streaming data perspective the limited / incremental nature in which data is presented results
in virtual concept drift4 (necessitating updates to current knowledge) versus ‘actual’ concept
drift in which case replacing previous knowledge is more appropriate [65, 194]. Several authors
note that there may also be an inherent correlation with the stability–plasticity dilemma and
the rate at which credit assignment is performed [65, 84, 138]. Thus, ML algorithms based on
exemplar-wise updating tend to emphasize plasticity over stability, whereas algorithms which

2A caveat being semi-supervised learning under streaming data, Section 5.4.
3See model building with embedded versus wrapper or filter frameworks for attribute selection [114].
4See also ‘sample selection bias’, Section 2.1.
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update relative to a batch / chunk of data tend to emphasize stability.5

3.2 Ensemble ML perspective

Ensemble methods represent a framework for combining the predictions from multiple base
learners into a single decision [129]. Indeed, both bagging and boosting represent an obvious
starting point for developing ensembles under streaming contexts [149, 152]. The motivation
for applying ensembles to streaming data (in addition to the stronger performance of ensemble
based learning) is that changes can more easily be accommodated through the addition or
removal of ensemble members than through incremental refinement to a single model, i.e.,
incremental refinements to a single model might be more sensitive to epistatic interactions.
An early characterization of ensemble methods as applied to streaming data assumed three
categories of which only one category reflected addition / subtraction of ensemble members
[113]. However, recent research has concentrated on approaches that actively grow / replace
ensemble membership. Moreover, it may even be possible to maintain multiple ensembles in
order to: 1) react to cyclic behaviours in the stream [160]; or 2) explicitly maintain multiple
ensembles with different diversity properties [139]. A summary of potential design decisions
associated with ensembles as applied to streaming data might therefore include:

• Ensemble base learner diversity: Different base learners or mixtures of base learners com-
prising the ensemble might be considered depending on the type of stream [65, 102].

• Incremental change to current knowledge (e.g., [107, 160]) as opposed to the outright
dropping of previous knowledge (e.g., [68, 169]);

• Adapting the weight associated with learners versus no weighting: Weight adaptation
represents an intermediate level of refinement in which the models denoting the ensem-
ble remain unchanged but their relative contribution to the voting is modified [2, 90, 154].
Conversely, weightless frameworks emphasize plasticity and tend to drop weaker ensem-
ble members immediately (e.g., [81, 169]);

• Classifier weight adaption versus data instance based weight adaptation: The weighing of
votes from an ensemble is generally a function of either classifier performance [54, 65, 154]
or of the data from which a member of the ensemble was constructed (e.g., [20, 152]);

• Identification of ensemble member for replacement: Various heuristics have been pro-
posed for targeting the ensemble member for replacement when performance as a whole
is deemed to be poor, e.g., replace the oldest [169] or member with least ‘contribution’
[107, 172].

• Role of diversity on ensembles: Within an environment undergoing change, diversity pro-
vides faster reaction times to a change, but does not necessarily facilitate fast convergence
to the new concept [138, 167]. One implication of this might be that the amount of diver-
sity / plasticity needs to in some way ‘match’ the amount of concept drift / shift in the
stream. This result mirrors the scenario in GP where conflicts can appear between fitness
improvement and maintaining population diversity (e.g., [64]).

5We note that this in itself is a function of assumptions made regarding parameterization. At some point
decreasing the size of data chunks will result in performance approaching that of exemplar-wise updating. Ob-
servations of this type have informed the use of differing pairwise sliding window durations (Section 5.1.1) and
evolved temporal features, e.g., [126, 188].
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Table 2: Basic design decisions for ML ensembles under streaming data

Task Parameters
Constructing new Diversity of base learner [65, 102]
ensemble member Sample stream data using Boosting versus Bagging [149, 152]
Identify ensemble Age based heuristics [169]

member for replacement Performance based heuristics [107, 172]
Class imbalance Effect of sampling biases [34, 55, 86, 190]

Drift management Incremental updating of current models [107, 160]
Adapt voting weights [2, 90, 154]

Shift management Outright replacement of one or more
ensemble member [81, 68, 169]

Diversity management Impact on capacity for change [26, 138, 167]

• Change detection is now potentially a property of the behaviour of the ensemble: With
different models sensitive to different properties of a stream, analysis of variance has
been proposed as a mechanism by which members of an ensemble can be targeted for
replacement [203].

• Separation of duties: Different aspects of the decision making process can be distributed
to specialist parts of a wider framework, potentially resulting in hybrid architectures. For
example, the combination of entropy based change detection (relative to sliding window
content) with random forest style ensembles [2] or the pairing of ensembles based on
Hoeffding decision trees with Kalman filter style change detection [18].

• Hybrid frameworks: If labels are freely available or available at a sufficiently low cost, it
becomes feasible to pursue the incremental refinement of all classifiers currently available
as well as test for the introduction of an entirely new classifier to the ensemble [27].
Adopting such a dual strategy has the advantage of providing the ability to accurately
track concept drift as well as reacting to concept shift (gradual versus sudden change).

Table 2 summarizes the role of different design decisions when constructing an ensemble.
Various redundancies are apparent, in that several different design decisions might have the
same effect. There has been little work on identifying best practices for ensemble design in
streaming data, in part due to the lack of formal results (discussed further below). However,
there is also a potential opportunity for deploying hyper-heuristics for the purpose of more
explicitly searching the space of algorithms for ensemble design (see Section 7).

Many open issues remain, not least regarding appropriate metrics for quantifying ensem-
ble diversity, thus making it difficult to answer questions regarding credit assignment. Some
results exist for static tasks, including the role of ensemble voting margins in determining gen-
eralization error [159]. Moreover, the ensemble misclassification rate can be expressed in terms
error associated with individual members and a diversity term. The diversity term can be
characterized as being ‘good’ or ‘bad’ [26], a result that has a corresponding observation in EC
[191]. Under non-stationary data, it has been established that reducing the absolute value for
the ensemble margin produces an equivalent increase in diversity [167].

A second open question is in regard to the method assumed for combining the outcome
from multiple models under a non-stationary task. Specifically, bounds on the expected loss
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associated with different ensemble frameworks are only available for the training partition (e.g.,
Adaboost [75]), whereas concept shift / drift will likely invalidate such an estimate. Various
constraints have been proposed in an effort to identify “well behaved” loss functions, e.g.,
convex versus non-convex. However, attempts to provide formulations for ensemble methods
under non-stationary data currently lack transparency [56]. Finally, we note that once a change
is detected, the issue of whether to retain in whole or in part the material from the current
ensemble, versus dropping all models and retraining from scratch, can potentially be addressed
by maintaining multiple ensembles with different diversity properties [139]. Maintaining such
diversity under label budgets remains an open question.

3.3 Generic Model-based EC perspective

In adopting an evolutionary approach to model building a frequently made observation is that
we need to resist the tendency for the population to ‘converge’ while also introducing mech-
anisms that explicitly promote the capacity to react to change. Such a statement comes from
general ML observations regarding ‘stability versus plasticity’ of ensemble methods as applied
to online learning tasks with concept drift [138], experiences from evolutionary methods as
applied to dynamic optimization tasks [22, 51], and empirical studies from related tasks such
as neural evolution under partially observable non-Markovian reinforcement learning tasks
[135, 166]. With this in mind, three basic properties will be adopted for the purposes of the
following discussion: evolvability / plasticity, memory, and diversity.

Evolvability / plasticity characterizes the efficiency by which ‘useful’ phenotypic variation
is generated, given the current state of the environment. As pointed out in the introduction, un-
like ML or EC as applied to (dynamic) optimization tasks, the mapping between representation
and search spaces is not tightly coupled under GP. Thus, it is not generally possible to pro-
vide an ordering of the representation space (as is possible under real-valued representations)
[116]. Instead evolvability is related to the development of neutrality, support for evolving the
genotypic to phenotypic mapping, and modularity (Section 3.3.1). Modularity, for example,
enables model based evolution to delimit the scope of variation operators, thus clarifying credit
assignment [67]. Moreover, when changes to the task have structure (as opposed to random
variation) then support for modularity facilitates faster rates of adaptation [151].

We recognize two potential sources of memory: the (population of) candidate models and
the (subset of) task instances from which models are evolved. Thus, as EC maintains multiple
solutions in parallel, the potential exists for switching between different candidate solutions
during the stream. We note that in the case of slowly changing environments, the population
as a whole acts as a source of genotypic memory [186]; especially if the form of variation is
limited to past instances of the environment or combinations thereof. Conversely, success under
rapidly changing environments implies that a population is capable of adapting to multiple
environments simultaneously [186].

Supporting such a capability implies that appropriate mechanisms will be required to ‘man-
age’ such complexity. In the following we explicitly note contributions from diversity main-
tenance, modularity (cf., evolvability) or multiple forms of reward [191]. Reward is related to
both the organism and the environmental context. From the perspective of streaming data, the
latter represents the subset of data against which evolution is performed, i.e., not all exemplars
are equally informative. In the following survey we highlight the role of active learning (cf.
coevolution) in identifying useful instances of data from the stream to learn from. The implica-
tion being that both candidate solution and task instance receive some form of reward (Section
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3.3.2).

3.3.1 Evolvability

A working definition for evolvability was recently proposed as “the capability of a system to
generate adaptive phenotypic variation under certain environmental conditions and to transmit
it via an evolutionary process” [94, 96]. Turney characterizes this in terms of two equally fit
individuals, A and B [173]. If the children of A are likely to be fitter than children of B, then
individual A is more ‘evolvable’ than that of B. This implies that evolvability is not a direct
function of fitness (as in performance) based selection, but rather a function of other genotypic
properties, e.g., neutrality, the genotypic-to-phenotypic mapping, or the inherent plasticity of a
representation (Baldwin effect).

Wang and Wineberg build on Turney’s observations and propose to characterize evolvabil-
ity through [191]: 1) the ability to improve fitness (as opposed to the absolute value of fitness,
or an EC perspective); and 2) the amount of genotypic variation (a biological perspective). With
this in mind a three-population model is adopted in which each population assumes a differ-
ent performance metric: 1) absolute scalar fitness (core population), 2) offspring outperforming
their parents (fitness change; subpopulation), and 3) offspring which are most genotypically
distinct (genotypic change; subpopulation). In doing so, the authors are explicitly rewarding
evolvability as well as absolute fitness. Moreover, the authors demonstrate that diversity is
maintained through evolvability and not diversity for diversity’s sake. Wang and Wineberg
also make use of Price’s equation to adapt the size of the two secondary populations, where
adaption of population size in dynamic environments is a recurring theme. Specifically, adapt-
ing population size in order to maintain a constant rate of genotypic substitution potentially
represents a mechanism for adapting to a slowly changing environment in GP [95, 182].

Hu and Banzhaf make the observation that a continuous background level of neutrality in
GP facilitates ‘bursts’ of (phenotypic) variability once the environment undergoes a change [94].
Neutrality can also be viewed as a memory mechanism by which previously useful or entirely
new genotypic material can be switched in and out of the phenotype. Wagner et al. utilize
such a mechanism in a GP framework for forecasting [188]. Sources of phenotypic variation
are potentially related to the plasticity of the genotype-to-phenotype mapping [187] and might
therefore be characterized in terms of the amount of: variability and neutrality.

Providing explicit support for genotype-to-phenotype mappings in EC in general may then
have beneficial properties under dynamic environments [61]. The GE2 framework provides a
scheme for evolving pairs of genotypes, one to specify a ‘meta grammar’ and the second a ‘so-
lution grammar’ [148]; the latter defining specific GP solutions in terms of the meta grammar.
Naturally, the use of a meta grammar introduces additional paths through which the same ul-
timate phenotype can be discovered. Moreover, additional paths also exist for the introduction
of neutral genetic material or gene duplication. Later work extended the solution grammar to
provide a much stronger representation for evolving constants, a characteristic frequently over-
looked in GP, and demonstrated to provide significant advantages under stock trading tasks
[50]. Open questions include defining the most effective scheme for coevolving meta gram-
mar and the individuals using an instance of the meta grammar. Other researchers have also
demonstrated the utility of GP with genotypic-to-phenotypic mappings under dynamic envi-
ronments, this time with an emphasis on identifying the most appropriate instruction types
[195].

The capacity to support modularity represents one of the earliest factors explicitly articu-
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lated as pertinent to model building under dynamic task domains [163]. However, for such
modularity to demonstrate more than a mere sum of its parts, it is necessary for there to be
non-trivial interdependencies between modules or ‘near decomposibility’ [192]. This then has
implications for the type of search process that are capable of efficiently manipulating modules.
Watson and Pollack make the case for multiple levels of selection [192]. Recently, the (neuro-)
evolution of modularity itself was demonstrated when the cost of ‘connectivity’ was also in-
cluded in the reward scheme [36]. Moreover, when the properties of the environment (goals)
undergo structural variation, then the rate of evolutionary variation when the representation
supports modularity has been shown to be significantly faster than with non-modular repre-
sentations [103]. Further schemes explicitly reporting on the utility of modularity in dynamic
environments include: gene-duplication under neuro-evolution [30], and a role for automati-
cally defined functions [14].

3.3.2 Memory

Memory – relative to evolution of models – for the most part is associated with maintaining
multiple candidate solutions simultaneously. Dempsey et al. recognize two forms: implicit and
explicit [51]. Typically, explicit memory mechanisms are related to reusing previously evolved
individuals as seeds when events are encountered that trigger the archiving of individuals for
later use [63]. This brings us back to evolvability, i.e., sufficiently strong parents give rise to
offspring with even better adaptations. Moreover, explicit memory mechanisms also imply a
need for memory management to protect the development of potentially useful genetic material
for later use.

Multiple works based on genetic algorithms assume some form of distance metric based on
genotypic similarity (e.g., [140, 198]). From the perspective of EC both genotypic and pheno-
typic measures of diversity appear to be sensitive to the application on which they are applied
[28]. Related research with ensemble algorithms under streaming data indicates that the explicit
maintenance of diversity across multiple models is beneficial, although caveats apply (Section
3.2). Conversely, several forms of neuro-evolution applied to non-Markovian policy discovery
tasks have been able to make explicit use of genotypic metrics for diversity maintenance (e.g.,
speciation in [135, 166]); however, evaluation under streaming data tasks has not to date been
performed. Mechanisms for explicitly maintaining diversity will be discussed further in Section
3.3.3.

Implicit memory mechanisms relate to memory through genotypic redundancy. Under
the guise of genetic algorithms, a lot of attention has been paid to diploid representations
[121, 174, 198]. Again, these have not tended to carry over to the case of GP. Part of this is likely
due to the widespread abundance of code bloat (introns) in GP [24, 116]. As such, introns6

can act as an alternative mechanism by which previously functional code are reintroduced (see
also neutrality under ‘Evolvability’, Section 3.3.1). Such an implicit memory mechanism has
been shown to be effective under GP applied to dynamic time series forecasting [188]. Indeed,
Dempsey et al. note that such alternative implicit memory mechanisms have the additional
advantage of avoiding the need to introduce suitable ‘dominance functions’ to define under
what conditions to switch between the dominant versus recessive material. A third form of
implicit memory is also available in the form of the population model itself [155] (i.e., multi-

6Introns, although non-coding for proteins in biology, appear to describe RNA that play an important role in
gene regulation in eukaryotes [35]. In the case of GP, there is generally little or no distinction between genotype
and phenotype, and more non-functional code observed than functional code [24, 116].



Copyright Springer Verlag 13

ple individuals retain the same ‘building blocks’), albeit configured in different ways – thus,
searching multiple parts of the search space simultaneously. However, this is only useful if
suitable mechanisms can be found for maintaining population plasticity and / or diversity (see
Sections 3.3.1 and 3.3.3 respectively).

Finally, memory has more recently been conceived of from the perspective of data archiving,
where this represents a form of active learning (Figure 2). In this case, model building is
performed against the content of the data archive (DS(i), Figure 2) as opposed to all the stream
content (SW(t), Figure 2). Under an active learning context the goal is to solve the dual learning
task of caching what is most informative to learn from, as opposed to merely treating all data
as equally relevant (see also ‘scaffolding’ [65]). More pragmatically, the data archive serves
to decouple the rate at which evolution is performed from the rate at which stream content
updates. This is particularly important given that the cost of model construction might preclude
operation at the rate data passes through the stream. Updates to the data archive content
(DS(i), Figure 2) can potentially be decoupled from the rate at which new material enters
the sliding window (or SW(t), Figure 2). Moreover, from a streaming data perspective, the
data archive can also provide a mechanism for addressing the issue of class-imbalance (skewed
data). For example, all classes might be represented in the data archive with equal frequency,
whereas there is no guarantee that all classes appear in the stream with equal frequency.

Finally, we note that at all points in time, a model is available for suggesting data labels, but
such models can also be used as the basis for potentially requesting label information. This im-
plies feedback loops exist between the population of models, data archive, and interface to the
stream. In effect bootstrapping is being performed relative to the certainty with which a model
provides label information and / or data sampling is performed. Such an approach is poten-
tially distinct from that typically assumed by ML approaches to streaming data. Specifically, it
is generally assumed that the cost of incremental refinement of models using ML is sufficiently
low and / or entirely new models are constructed when changes are detected relative to the
most recent sample of data from the stream. These topics will be developed further in Section
5.3.1.

3.3.3 Diversity

The convergence property of schema theory explicitly points to the loss of diversity in popula-
tion based frameworks (e.g., [116]), whereas sufficient diversity needs maintaining in order to
provide the basis for reacting to changes [138, 139]. With this in mind we adopt the two cat-
egories of diversity maintenance as initially proposed by Dempsey et al. [51] and revisit from
the explicit perspective of evolutionary model building under dynamic tasks:

Reactive: approaches imply that decreases in fitness are associated with a need to increase
the rate of mutation [37]. This naturally implies that some measure of fitness is readily available
(possibly implying that the stream is labelled) or that label free change detection is possible (see
Section 5.3). Moreover, on detecting a change, evolving the entire population from a completely
new initialization might be appropriate [126, 195], whereas in other applications an incremental
reseeding of a new population using material from the previous population is recommended
[49, 188].

Continuous maintenance: implies that schemes are introduced that attempt to maintain
the diversity of the population on a continuous basis. Grefenstette’s concept of ‘random immi-
grants’ [87] introduces a fixed number of randomly initialized individuals at each generation
and as such is sufficiently generic to be applicable to GP, albeit lacking efficiency (most off-
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spring are likely to be replaced). More interesting is the concept of age biases. Under genetic
algorithms, age biases have demonstrated their utility in dynamic [85] and static (multimodal)
environments [93]. Under dynamic environments, an age bias was introduced to prefer the
‘middle aged’ over the young or old.7 Conversely, under static environments the role of ag-
ing was to ensure a fair competition between similarly ‘developed’ individuals in combination
with the continuous introduction of new offspring through stochastic sampling alone. More
recently, aging and fitness sharing metrics have been compared under streaming classification
tasks [6, 7]. Both appear to be effective, with a preference for fitness sharing under Markov
style environments, whereas a combination of aging and fitness sharing appears to be more
effective when the underlying task is subject to gradual variation. However, fitness sharing
again assumes that a suitable performance metric is available, e.g., a labelled stream.

The introduction of evolutionary multi-objective (EMO) fitness functions in GP has also
resulted the adoption of explicit mechanisms for maintaining diversity [15, 134]. This is par-
ticularly relevant in the case of unbalanced data in which solutions take the form of multiple
GP individuals. Thus, diversity is useful in ensuring that when constructing ensembles of clas-
sifiers, each classifier complements the performance achieved to so far (e.g., [132]). Without
this, performance on infrequent classes is potentially penalized in favour of performance on
dominant classes. Indeed, recent results indicate that the development of GP models under
streaming data identify classifiers for the most frequent classes first and only later add the less
frequent classes as the stream progresses [8].

Finally, frameworks for maintaining diversity through the use of multiple populations have
been proposed, albeit not specifically with respect to streaming data (e.g., [74]). Thus, dif-
ferent populations have access to different partitions of the dataset, as in ensemble boosting
methodologies (Section 3.2). The restricted partitioning and distribution of the data as seen by
different populations helps maintain diversity and therefore increases the likelihood of building
ensembles from uncorrelated errors [100]. Combining with appropriate pruning heuristics may
help maintain the relevancy of independent populations [15], although achieving this under
the constraints enforced by the streaming data context is still an open question.

3.4 Discussion

The interrelated nature of evolvability, memory, and diversity points to the evidence of multiple
feedback loops that potentially impact the quality of solutions discovered by model based
EC (Section 3.3). Moreover, it is apparent from the number of directions presently taken by
ensemble based ML (Section 3.2), that there are multiple (possibly redundant) dimensions to
the ‘design space’ associated with streaming algorithm design. This then makes the design of
systems for streaming data tasks especially challenging. One potential path for addressing this,
albeit not yet considered in the wider literature, is through evolving hyper-heuristics (or the
evolution of the evolutionary algorithms), e.g., [150]. Current research has not considered this
avenue, so we revisit the opportunity in the context of future research (Section 7).

4 Benchmarking issues

As noted in the introduction, frameworks for streaming data have been dominated by applica-
tion scenarios associated with classification style tasks. The following discussion of evaluation

7Younger / older individuals should only be maintained if they were suitably fit.



Copyright Springer Verlag 15

methodologies and datasets will reflect this bias.

4.1 Evaluation

Performance metrics employed under the streaming data scenario also face a set of unique
challenges [79, 17, 80]. Thus, performance is not a static concept, but relative to the point in the
stream at which the evaluation is performed. Hence rather than just being interested in some
overall measure of accuracy, we might also be interested in the time taken to adapt to a change.
The following shortlist specific scenarios have been reported in the literature:

• Online ‘running’ average of each exemplar before updating the model [12]. This leads to
the concept of prequential error [46], or given a suitable loss function, L(·, ·), the model’s
prediction, ŷt and the actual label, yt:

p0 =
n

∑
t=1

L(ŷt, yt) (2)

Sensitivity to specific positions within the stream can be further reinforced through es-
timating over a sliding window (as opposed to the entire stream) or introducing an ex-
ponential weighting term (fading factors) [79, 80]. Equivalences have been demonstrated
between (batch) Bayesian error estimation and (weighted) prequential error [79].

• Performance of the model classifier is evaluated relative to a ‘block’ of the future or both
future and past exemplars from the stream (e.g., [138, 160]). The goal of such a dual
performance metric is to assess the degree of forgetting and / or model specificity that
has taken place between concept shifts in the stream. Such metrics are naturally most
informative in the case of streams with an abrupt transition between concepts.

• Evaluate against streaming data not seen during model construction (e.g., [169, 107]).
For example, training could actually be performed relative to a sample taken from the
data stream, with test performed against the entire stream content or that not explicitly
sampled [7].

Naturally, the use of accuracy style metrics implies that the drawbacks common to evalua-
tion under static non-streaming scenarios will be apparent [101]. In the case of streaming data
as applied to classification tasks, the Kappa statistic is of particular relevance, in which case
performance of the proposed algorithm is evaluated relative to that of a suitable naive model
of classification:

κ =
p0 − pc

1− pc
(3)

where p0 is the aforementioned prequential error of the proposed model, and pc is the probabil-
ity that the naive model makes a correct prediction. As κ → 1, the proposed model approaches
the ideal, whereas κ → 0 implies that the proposed model’s predictions increasingly coincide
with that of the naive model.

Under classification tasks Bifet et al. note that assuming, say, a Naive Bayes classifier or
even a simple majority class ‘coin toss’, would be informative for the case of data conforming
to the i.i.d. assumption [21]. However, as noted in the preceding sections, streaming data does
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not conform to such an assumption. Indeed, streaming data might well demonstrate periods
with a common trend. From a class label perspective this means that ‘periods’ can appear with
sequential exemplars having the same label. Under such conditions a ‘no-change’ or autocor-
relation rule represents a much more effective basis for a naive classifier under streaming data,
i.e., given a class label yt = c, assume all following exemplars are class c until there is a change
in class label, then update the naive classifier’s ‘prediction’ to reflect the new class. Such a
heuristic was observed to perform better than many streaming classification algorithms on the
widely used Electricity benchmark dataset [21].

Finally, we present the following comments regarding streaming data evaluation under class
imbalance. A prequential error estimator, Pe(t), as estimated across all sequence history (e.g.,
[79]) has the form:

Pe(t)←
e(t) + (t− 1)× Pe(t− 1)

t
(4)

where t is the sequence index, Pe(t = 0) = 0, and e(t) is the error on exemplar t.
Naturally, given such a definition, prequential error will weight all classes equally resulting

in an accuracy style metric. Unfortunately accuracy style metrics are not particularly informa-
tive when the distribution of class labels are imbalanced, whereas ‘rate’ style metrics might
be much more appropriate [101]. For instance, taking the specific case of detection rate, the
following definition might be assumed for streaming data contexts [180]:

DRc(t) =
tpc(t)

f pc(t) + tpc(t)
(5)

where tpc(t) and f pc(t) are the corresponding true positive and false positive counts w.r.t. class
c up to exemplar t in the stream.

Likewise the corresponding overall (average) detection rate takes the form DR(t) = 1
C ∑c∈C DRc(t),

i.e., only when all classes are correctly classified (relative to point t in the stream) will DR(t) =
1. Thus, a degenerate classifier that labels the entire stream as the majority class has a de-
tection rate of 1

C . Such a formulation naturally assumes that the number of classes is known
a priori, implying that a suitable heuristic would need adopting when additional classes are
encountered [180]. In short, the average detection rate, DR(t), can be estimated incrementally
through the course of the stream and, unlike the prequential error estimator, reflects a model’s
sensitivity to class imbalance.

4.2 Datasets

There are three broad categories of dataset employed for benchmarking machine algorithms
as applied to streaming tasks: artificial, real-world time varying, and artificially modified real-
world datasets. The following discussion summarizes the sources and basic motivations for
each case.

4.2.1 Artificial datasets

Purely artificial datasets represent the most widely occurring scenario employed for empirical
benchmarking purposes. Naturally, the principle motivation is that specific forms of variation
can be introduced to test particular aspects of a ML algorithm. The potential drawback is that
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there is no guarantee that real-world datasets should necessarily be limited or place the same
emphasis on the properties appearing in the artificial datasets.

Two generic schemes have for the most part been adopted, either change as a gradual drift
or as a sudden shift [199]. However, as established in Section 2.2, categorizing the types of
change is in itself a multifaceted task, thus artificially generated datasets should reflect more
than one aspect. The library provided by Minku et al. provides broad coverage in terms
of facets included within an artificial dataset [136, 138]. Specifically, in developing a set of
datasets for benchmarking different aspects associated with the task of learning under dynamic
environments, Minku et al. propose a separation of properties that characterize different aspects
of drift generation [138]:

Isolated properties: distinguish between two micro properties associated with drift generation:

1. Severity: that is the amount of change (in magnitude terms), and can be associated
with either the dependent or independent variable. Some authors associate concept
drift with gradual changes and concept shift with abrupt changes to the underlying
process (e.g., [199]).

2. Speed: describes the time taken for replacement of one generating process by an-
other.

Group properties: distinguish between processes used to compose an isolated drift into a se-
quence or wider pattern of behaviour. Three properties are identified:

1. Predictability: is taken to imply that sequences of the generating process are either
random or follow a specific pattern.

2. Frequency: determines whether a drift / shift is periodic or not.

3. Recurrence: establishes whether previously encountered drifts / shifts are possible,
and if so whether they are cyclic or not.

Thus, a total of six task types are described (essentially reflecting the different distributions
of the process generating the data) and subject to nine different types of drift (three severities
and three speeds). In addition, in the case of the planar dataset, labels were corrupted and irrel-
evant attributes were included. More recently, datasets have been proposed which incorporate
loss of classes as well as drift, shift and cyclic behaviours [65, 153].

4.2.2 Real-world, time varying datasets

Various application domains are believed to possess non-stationary or time varying properties
and potentially of interest as a benchmark. Naturally, little can be explicitly said regarding the
specific non-stationary properties embedded in real-world datasets. However, benchmarking
with such data validates both: 1) how appropriate proposed models are under real-world sce-
narios, as well as, 2) confirming how appropriate the properties explicitly embedded in artificial
datasets are for validating model capabilities. This is particularly important, as for example,
benchmarking of early ML approaches to batch (as opposed to streaming) classification tasks
indicated that simple attribute thresholding was more robust than ML models as evaluated
under real-world datasets, resulting in the development of more appropriate ML algorithms
and evaluation practices [92].
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Table 3: Example real-world classification datasets with non-stationary properties.

Task domain Num. classes Repository
Airline delays 2 [99]8

Churn prediction 2 [183]9,10,11

Credit card default 2 [84, 142]12

Electricity market 2 [21, 89]13

Poker hands 10 [10]14

Spam filtering 2 [13, 69]15

Weather prediction 2 [65, 147]16

Table 3 represents a summary of the most frequently used real-world datasets for streaming
data analysis. In general, we note that most datasets have a binary outcome, reflecting a fail /
not failed characterization of the task outcome. Thus, in the case of the ‘Airline delay’ task the
goal is to predict whether a flight will be delayed or not, whereas under the credit card dataset
the goal is to predict a default on paying the minimum balance on the account. Both tasks
are ‘dynamic’ as the likelihood of airline delays reflect weather conditions or dependencies
between flights and credit defaulting is a function of the wider economic situation.

We also note that different tasks may or may not benefit from deriving conclusions from
data sequencing properties (implicit in the stream) versus the prediction associated each data
instance being a self contained property of the current input attributes alone. Thus, in the
case of the poker hands dataset, each card is represented as a pair of integers denoting suite
and numerical face value. However, dealt cards can appear in any permutation, implying that
recognition of a specific hand for say, three of a kind or two pairs would need to be invariant
to card location. Indeed, this also raises the issue of whether attributes representing a hand
are presented as a vector or as a sequence. Although learning from attribute sequences is
more difficult, it can also lead to more general results. For example, as in the case of evolving
solutions for the generalized parity task [98].

4.2.3 Artificially modified real-world datasets

Various repositories already exist for benchmarking datasets (e.g., the UCI database [10]), but
for the most part consist of datasets with stationary properties.17 Evaluating streaming algo-
rithms on such datasets has the potential to confirm to what degree performance is impacted
by the assumptions used to develop the streaming algorithm (see for example [8, 107]). Con-

8http://kt.ijs.si/elena_ikonomovska/data.html
9www.fuqua.duke.edu/centers/ccrm/datasets/download.html

10www.kddcup-orange.com
11www.sgi.com/tech/mlc/db
12http://sede.neurotech.com.br:443/PAKDD2009/
13http://moa.cms.waikato.ac.nz/datasets/
14http://archive.ics.uci.edu/ml/datasets/Poker+Hand
15http://www.esi.uem.es/~jmgomez/spam/index.html
16http://users.rowan.edu/~polikar/research/NSE/
17The majority of datasets employed to date for benchmarking purposes on account of their temporal properties

are distributed across multiple repositories (Section 4.2.2).
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Table 4: Example of introducing drift into a static dataset. Example adopted from [138].

Overall label distribution Partition
Original Shift #1 Shift #2

Setosa (33.3%) 1 4 4

Versicolour (33.3%) 2 1 2

Virginica (33.3%) 3 3 3

Dummy class (0%) 4 2 1

versely, the original dataset can be modified to introduce properties associated with concept
drift / shift. In so doing, users are again in a position to verify the types of adaptive behaviour
that respond to particular instances of concept change.

In one such approach, the original dataset is divided into a series of partitions consisting
of an equal number of exemplars, sampled with uniform probability [138]. The first partition
reflects the original allocation of labels to exemplars. Thereafter, for each partition, pairs of
labels are interchanged potentially resulting in multiple changes between partitions. Table 4

summarizes such a process in the case of the well known ‘Iris’ dataset [10]. Note that by
introducing a ‘dummy’ class label it is possible to mimic different classes dropping out during
a partition. Gao et al. take a similar approach to make small benchmark out of a larger dataset
[81].

Yang et al. adopt a probabilistic framework for describing the probability of transitioning
between different classes [199]. This results in a sequence of classes from which corresponding
exemplars are then selected. The opportunity then exists to change the transition probabilities
over the duration of a sequence.

One final approach is to take a suitably large dataset and order it relative to one specific
attribute. Thus, in the case of the frequently employed ‘forest cover type’ dataset, the elevation
attribute has been employed to ‘order’ the sequence [177]. Unlike the above forms of modi-
fication, this results in a gradual drift in concept as opposed to shift. Given that the dataset
describes a multi-class task with significant amounts of class imbalance, from a streaming per-
spective, it is still capable of posing difficulty especially when evaluated against a naive base
classifier as discussed in Section 4.1. The same authors also describe the modification of multi-
class datasets to binary categorization in which the set(s) of classes from the original dataset
associated with an in-class classification are varied over the course of the dataset, i.e., concept
shift. Such a practice was applied to datasets that originally represented a database of movie
genre18 and document categorization [120].

5 Progress to date

In the following, developments to model building under streaming data are considered from six
different perspectives: stream interfacing, temporal feature construction, label free change de-
tection, semi-supervised learning, learning classifier systems, and class imbalance. The general
goal of which is to identify the key themes and highlight remaining unresolved issues. Table 5

provides a ‘snap shot’ of the association between research themes and approaches pursued to

18http://meka.sourceforge.net/
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date whereas Table 2 (Section 3.2) provides a similar characterization in the case of ensemble
methods.

5.1 Stream interfaces

The sliding window represents an initial interface to the streaming data that delimits how much
data a model can access at any point in time. Implicitly, constraints are enforced regarding how
much historical information is present versus what sample rate to assume, i.e., window length
versus sample interval or tap period (Figure 1). Two scenarios are recognized: windows of a
fixed prior parameterization versus sliding windows with an evolved parameterization (Section
5.1.1). A second related issue takes the form of archiving specific data instances for use beyond
the duration of the sliding window (Section 5.1.2). In essence, this addresses questions regard-
ing what to learn from. For maximum reactiveness, models might only be evolved against
the content of the current sliding window location. However, most of the content of a sliding
window location might be highly correlated with the previous, potentially implying that there
is not a lot of new material to learn from. Introducing a sampling algorithm between slid-
ing window and a subset set of data against which evolutionary model building is performed
addresses this issue and leads to mechanisms for label decoupling (discussed in Section 5.3.1).

Finally, we note that some researchers adopt a stream interface that is limited to the current
exemplar, ~x(t), alone. Models applied under such a limitation assume that labels are available
for all the stream [84, 107]. Such models are purely pattern recognizers as opposed to incor-
porating spatio-temporal information. Moreover, a greater emphasis is placed on reacting to
label information, as opposed to say detecting change and then reacting. Exceptions to this
would be a model that is capable of recording internal state (e.g., neural representations with
recurrent connectivity or GP with indexable memory) or ensemble approaches in which each
different model responds to different probability distributions. In this latter case an ensem-
ble could potentially capture the transition between different probability distributions (i.e., a
spatio-temporal relation).

5.1.1 Sliding windows

Sliding windows assume a first-in, first-out style of operation in which the oldest samples are
shifted out as new samples are recorded. Parameters define the number of samples retained
and interval between samples (also referred to as tap or skip length, Figure 1).19

Fixed window parameterization and attribute selection: The parameterization of a sliding
window defines the length of the window and the interval between the consecutive samples
(sampling interval). Any such characterization is task specific. Moreover, there is a tradeoff
between longer and shorter windows (and corresponding decreased / increased sample reso-
lution) [9, 45]. Thus, a short high resolution window and a longer low resolution window are
often applied together. Indeed, GP as applied to multi-step prediction has been reported with
multiple window resolutions [31] as do streaming approaches to decision tree induction, see
Section 5.3.1.

Variable window lengths: if the underlying process is non-stationary, then assuming a win-
dow size optimized relative to some historical ‘training partition’ will at some point result in

19In addition non-overlapping windows have been used, in particular with ensemble methods, with different
members of the ensemble being constructed with each new ensemble location (see Section 3.2).
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Table 5: Characterization of research themes and approaches introduced in the course of this
survey. Broad distinctions are made in terms of evolutionary versus non-evolutionary. Some
theme specific or GA / GP / LCS distinctions are also employed where appropriate. Section
referencing is provided in order to facilitate identification of the appropriate commentary. See
Table 2 for a characterization of research themes in (non-evolutionary) ML ensembles.

Theme Approach
Evolvability / Modularity GA: [173, 174, 187, 191, 198]

(3.3.1) GP: [14, 61, 63, 148, 192, 195]
Environment: [30, 36, 67, 103, 151]

Selection / replacement GA: [85, 87, 93, 121, 141]
(3.3.1, 3.3.3) GP: [7, 8, 94, 95, 179, 182, 188]

Memory GA: [121, 174, 198]
(3.3.2) GP: [63, 188]

Distance metrics GA: [22, 140, 198]
(3.3.2) GP: [28, 64]

Sliding window Evolve: [29, 49, 52, 126, 188]
(5.1.1, 5.2) Non-evolve: [9, 18, 19, 45]

Feature construction Evolve: [3, 71, 126, 144, 161]
(2.4, 5.2, 5.3.1) Non-evolve: [171, 189, 196]

Class imbalance Evolve: [7, 8, 157, 179]
(3.3.3, 5.6) Non-evolve: [84, 143]

Active learning Evolve: [8, 7, 179]
(5.1.2) Non-evolve: [86, 97, 128, 176, 177, 203]

Change detection Input: [4, 19, 44, 53, 73, 105, 162, 171, 185]
(5.3) Model (GP): [126, 157]

Model (non-GP): [12, 38, 78, 118, 119, 124, 125, 145, 175, 176, 177, 203]
Label budgets Evolve: [13, 179]

(5.3) Non-evolve: [122, 124, 125, 177]
Semi-supervised Evolve (non-streaming): [5, 41]

(5.4) Non-evolve: [54, 60]
Prototype based LCS: [1, 13, 32, 43]

(5.5) Non-evolve: [181, 197]
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Figure 1: Generic sliding window (SW). In this example a SW parameterization is assumed in
which a window length of 9 samples is employed, spanning a historical interval of 24 consecu-
tive records, sampled at a resolution of every 3rd instance. The following evolutionary model
builder is limited to the set of 9 samples xi; i ∈ {0, ..., 8}. Each sample is potentially a vector
of attributes, e.g., sensor values. The resulting model need not explicitly index all samples /
sensor values.

a deterioration in performance. The continuous re-parameterization of such windows there-
fore becomes important. However, it might be useful to retain the capability to make use of
previously evolved windows and / or models from the perspective of getting a ‘head-start’ on
the construction of a new model. The DynFor algorithm [188] begins with a pair of candidate
sliding window lengths n and n+ 1 and selects a solution window length relative to the current
training partition. The process repeats with new sliding window lengths chosen relative to the
‘direction’ of improvement. Moreover, the authors note that for a stationary process the window
size is likely to undergo incremental increases, whereas during a transition between different
underlying processes, the window size is likely to decrease [188]. The process although capable
of tuning the size of the sliding window assumes that the stream is appropriately labelled to
facilitate continuous evolution. That said, similar assumptions are also central to the ADWIN
algorithm employed with online decision tree induction (e.g., [19]). However, as will become
apparent within the context of label free change detection (Section 5.3), various frameworks
have recently been proposed to address online learning under limited label budgets that are
compatible with broad classes of ML and EC.

5.1.2 Sampling

Following from the immediate interface to the stream (i.e., some form of sliding window)
the machine learning algorithm might act directly on the sliding window content alone, or
more generally, a decision is made regarding what to retain from the immediate content of the
current sliding window location, SW(t), for retention within a finite size sample (Figure 2).
Such schemes have been widely deployed under classical stationary offline learning algorithms
in order to decouple the original training partition cardinality from that of the training ‘sample’,
i.e., an EC generation is only performed relative to the content of the data subset, DS(i) (Figure
2). Active learning represents one of the most widespread examples of such a methodology in
which performance of the model is fed back to bias the selection of exemplars as used for the
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Figure 2: Relationship between sliding window (SW) and data subset (DS) identified through
active learning. SW(t) location of sliding window at shift location t. Sampling policy defines how
a Gap sample of data from SW(t) is identified, where Gap ∈ {SW(t)} and |Gap| ≤ |SW| and
|Gap| ≤ |DS|. Update rates for the stream and Gap need not be the same or f req(t) 6= f req(i).
DS(i) is the data subset against which generation, i, of EC is performed. Data Archiving policy
defines how |DS| − |Gap| samples are identified for replacement from the Data subset before
the next EC generation is performed. Illustration adopted from [6, 179].

next round of model construction [39].
Under the context of active learning as applied to streaming data, we note that two sets

of policies are necessary: a Sampling policy or how much to sample from the current sliding
window location; and an Archiving policy or what data currently in the data subset is replaced
between EC generations (Figure 2). With this in mind, there are two parameters that are sig-
nificant to evolution under streaming data: 1) rate of data subset updates, f req(i), versus rate
of sliding window shift, f req(t); and 2) the amount of data transferred between the sliding
window and the data sample, Gap. The interaction between the proportion of the sliding win-
dow content transferred, Gap, and the frequency of sliding window shifts f req(t) defines the
labelling requirement. As long as f req(i) and / or |Gap| are less than the corresponding slid-
ing window parameters ( f req(t) and |SW|) then there is a reduction in the proportion of the
stream requiring labels. Naturally, credit assignment is only performed at the frequency of
subset updates, f req(i).

Probabilistic sampling: represents one of the earliest schemes for introducing biases into
the selection of exemplars for decoupling fitness evaluation from the cardinality of the data.
Gathercole and Ross compared pure random sampling to a scheme in which both exemplar
difficulty and exemplar age biased the selection of exemplars to the subset of exemplars ac-
tually employed for fitness evaluation [83]. Extensions included hierarchical ‘cache friendly’
frameworks [165] and their use for supporting model building through stacked generalization
[42]. Other biases frequently employed include those for representing each class equally –
where this is correlated with maximizing the AUC, as opposed to sampling exemplars with
equal probability which is correlated with maximizing the accuracy metric [193]. Naturally,
streaming data implies that no revisiting can take place. Thus, probabilistic methods as dis-
cussed here are limited to constructing statistics from the current content of the sliding window.
How many of the previously mentioned results, which are known to be sufficient for the case
of static datasets, carry over to the case of streaming data, is for the most part unknown.
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Pareto archiving: provides a formal scheme for characterizing which subset of exemplars
to retain through the concepts of distinctions and Pareto dominance. In particular, the goal
of (archived) exemplars is to distinguish between different models, and the non-dominated
models in particular [47, 72, 146]. One potential drawback of the approach is that the exemplar
archives might grow considerably. However, enforcing a finite archive through the introduction
of diversity measures (such as fitness sharing) has been empirically shown to be effective for
efficiently decoupling fitness evaluation from training partition cardinality under batch (offline)
learning [133, 134]. The extension to sliding window interfaces and single pass constraints
for online learning indicate that it is possible to match the performance of multi-pass batch
algorithms when there is no labelling error [8]. Moreover, it may also be appropriate to tune
the heuristic used to maintain a finite archive size depending on whether the stream is subject
to sudden changes or continuous gradual changes [6, 7].

Scaffolding: is a concept from psychology used to express the role of tutoring during de-
velopment which has been widely used in the context of incremental evolution in robotics (e.g.,
[204]). Elwell and Polikar cite the scaffolding concept as the motivation for the approach taken
to selecting ‘batches’ of streaming data to re-evaluate and potentially modify their neural net-
work based ensemble algorithm [65]. In particular, they relate scaffolding to drift detection and
redundancy prevention.

5.2 Evolved temporal features

Sliding (or non-overlapping) windows represent the initial mechanism for delimiting how
much data to present an evolutionary model building framework. The next obvious ques-
tion is how to explicitly capture temporal properties from the window. We identify to generic
themes:

1. Apply an a priori set of features – Candidates might include wavelet and Fourier coeffi-
cients20 versus assuming an indexing pattern relative to the sliding window definition. In
either case, the use of evolutionary methods capable of attribute identification (as in, say,
GP) could result in the discovery of further application specific refinements. Thus, given
a pre-specified window length and sampling rate, GP is capable of refining this further
to determine which subset of taps to utilize (e.g., [165]). In addition, application domains
might well have built up a set of primitives for capturing temporal properties deemed
appropriate for a specific task, for example, as in the role of technical indicators in finan-
cial data analysis (price channel breakout, relative strength indexes etc.). An evolutionary
model builder would then identify what combination of such primitives to utilize in the
model (e.g., [52]).

2. Let the evolutionary method design temporal features directly – In this case a mathe-
matical expression is designed as a function of time and attributes. Specific examples
include differential, rational or integral transforms (e.g., [3]), primitives based on some
form of moving average,21 trigonometric functions, higher order statistics (e.g., [161]) or
polynomials [144]. Implicit in this approach is the adoption of an axiomatic approach to
(temporal) feature construction where prior knowledge regarding the task domain is used
to identify a suitable kernel for constructing future temporal features.

20Denoting how much of a specific spatio-temporal basis function are present.
21For example, as in parameterizing specific technical indicators for feature construction in finance [71].
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In both cases, the resulting temporal features are evolved relative to the prior parameteri-
zation of the sliding window (only data within the sliding window contributes to the outcome
from temporal features). Naturally, adopting the first approach implies that model building
can take place immediately, whereas temporal feature construction would then require a sec-
ond independent process to identify the classification or regression model. Several authors
have proposed schemes for feature construction under a batch training context (e.g., [11, 110]),
whereas temporal feature construction is synonymous with the design of technical indicators
(TI) under financial applications. As such, evolutionary methods have been proposed for the
construction of TI with prior decision trees22 [29], as well as the coevolution of both TI and
partnering decision tree [126].

5.3 Label free change detection

Change or drift detection implies that shifts in the underlying process driving stream content
should ideally be detected without recourse to labels. The ‘change detection’ and ‘label budget’
rows of Table 5 provides a summary of algorithms that attempt to address this issue. In the
following we distinguish between two specific scenarios. Section 5.3.1 considers the case of
universal statistical measures used to ‘re-trigger’ model building. Section 5.3.2 introduces sce-
narios that make use of secondary ‘behavioural’ properties that, depending on the application,
may be available to re-trigger model construction at appropriate points in the stream.

5.3.1 Universal measures of change detection

Klinkenberg and Renz previously proposed the following three properties by which a statistical
characterization of change can trigger model reconstruction. In all cases, general statistics are
collected and compared using statistical tests [106]:

Properties of the classification model: implies that measurements are made of the be-
haviour of the classifier as it operates on the stream, and a statistical comparison made against
a reference behaviour. Such an approach has been widely used for characterizing the behaviour
of leaf nodes in decision trees. Thus, frequency statistics or expected loss metrics have both
been proposed [68, 97]. Under fuzzy / neural models of classification, metrics for conflict and
ignorance with respect to a model’s antecedent decision boundaries have been proposed as a
mechanism for triggering requests for label information [128].

Properties in the input data or p(x): implies that a statistical characterization is made of
a reference (sliding) window and comparisons made with the current sliding window content
using various statistics such as: entropy [4, 44, 185], Chernoff bounds [105], Kullback–Leibler
divergence [162], Hoeffding bounds [19], Fractal correlation dimension [73] or Hellinger diver-
gence metric [53]. A significant drawback of such methods however, can be a need for class
labels. Finding schemes for decoupling from the labelling requirement represents an on going
line of research (e.g., [73]). Moreover, input based statistics can be sensitive to the dimen-
sionality of the input space, with various aspects of the curse of dimensionality reducing the
effectiveness of distance metrics as the number of attributes increases [111, 196]. One approach
for addressing this is to assume increasingly application specific solutions. Thus, threshold-
ing word frequencies represented an early approach proposed for the specific case of change
detection under text mining applications [171].

22The decision tree defines the condition under which an action is applied, say, as in sell, buy or hold.
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Properties in the label space or P(y|~x): attempt to characterize variation in the classifier
output. Assuming that labels are available at some fraction of the stream throughput, then
requesting labels randomly (i.e., independently from any other source of information) has been
shown to be surprisingly effective [203]. Attempts to make more explicit use of the classifier
properties include using information regarding class boundaries to prioritize the request for
labels [124, 176] or information about variation in classifiers from an ensemble as a proxy for
change detection [203]. Specifically, statistical tests have been used to make use of classifier
confidence. Thus, changes are detected when either classifier certainty drops below some prior
threshold [125] or the number of confident predictions undergoes a significant change [118].
One of the additional favourable properties of this approach to change detection is that they
are potentially applicable to a wide range of machine learning algorithms, including GP [157].

Naturally, if a previously encountered input instance, ~x, is associated with more than one
class label during the course of a stream, then additional measures are necessary. A recent
work by Z̆liobaitė et al. considered this case from the perspective of a limited budget active
learning framework [177]. Specifically, given a finite labelling budget, the authors show that a
combination of stochastic sampling and initiating classifier ‘boundary biased’ sampling provide
an effective means for detecting unique shifts in P(y|~x).

5.3.2 Task specific change detection

Certain task domains, such as decision making under (currency or stock) market trading envi-
ronments, do not need to rely on labels to characterize performance. That is to say, although the
decision maker being evolved provides one of a finite set of actions (sell, buy, hold), there is no
capacity for providing an ‘ideal’ sell–buy–stay decision at each time step. Instead, performance
is characterized in terms of alternative behavioural properties, such as the amount of acceptable
loss (per time step) or number of consecutive losses. A change is detected when the policy of
the decision maker steps outside of the predefined performance criteria [126, 127]. An open
research question is as to whether other research domains can be approached in a similar way
(e.g., see [183]) or for that matter through reinforcement learning style formulations as used in
learning classifier systems (Section 5.5).

5.4 Semi-supervised learning

Semi-supervised learning algorithms attempt to make use of unlabelled data as well as la-
belled data during model construction (e.g., [33]) and as such have an intuitive relevance to
online streaming data. Two basic formulations exist: inductive and transductive. The typical
starting point is a batch of labelled data, (x(i), y(i)); i ∈ {0, ..., t}, and a batch of unlabelled data,
x(j); j ∈ {t + 1, ..., l}. Inductive approaches attempt to use both labelled and unlabelled data
to build a model with better predictions for x(k); k > l, whereas transductive approaches use
both batches of data to improve performance on the unlabelled interval t < j ≤ l. From the
perspective of streaming data analysis, Zhang et al. benchmark a semi-supervised SVM with
data including concept drift [201], and later describe an approach for updating ensembles us-
ing semi-supervised learning [202]. Few works attempt an explicitly evolutionary model based
approach to semi-supervised learning, and then do so under stationary tasks [5].

More recently, an extreme case is described where, following an initial batch of data with
labels, the stream provides no further label information. Thus, feedback during the stream
is limited to the input variables, ~x, alone [60]. The approach is based on constructing classi-
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fiers using the initial label information such that class conditional distributions are identified
to define a tight envelope around data for each class, or the ‘core’ support. Such regions are
then used as the basis for modelling (the stream) and thereafter updated without label infor-
mation. In this regard, the approach is an example of classification through novelty detection
as opposed to discrimination, where this is widely used in one-class classification [130, 131] or
under GP [41, 134]. Moreover, [60] explicitly emphasize the significance of exemplars contribut-
ing to updating the core of class distributions as opposed to the boundary conditions; the latter
representing the typical emphasis of both active learning and the ‘passive–aggressive’ classes
of algorithms for online classification [40]. One limitation of the approach is that it is presently
specific to drift as opposed to shift.

5.5 Learning Classifier Systems and Prototype methods

Learning classifier systems (LCS) in general use a GA to manage a population of rules (antecedent–
consequent pairs) and reinforcement learning to guide credit assignment, with the latter typi-
cally associated with accuracy-based LCS or XCS [109]. Given a subset of rules with antecedents
matching the current environmental condition, the ‘winning’ action can be selected determinis-
tically (exploitation) or stochastically (exploration), with the latter used to promote non-greedy
evaluation of state–action pairs.

Dam et al. use a real-valued variant of the multiplexer benchmark to introduce a time
varying property into the task [43]. Specifically, the threshold determining when an input is
considered a ‘zero’ or ‘one’ is controlled by a time varying process. Various experiments are
performed with different step changes to the threshold, with and without noise. The standard
formulation for XCS is found to have a recovery time proportional to the magnitude of the
change in threshold. Moreover, a distinct ‘sweet spot’ exists with the amount of noise that XCS
is able to operate effectively under. Dam et al. take this as an indication that XCS is unable to
reuse individuals from a population to accelerate evolution during a change in the underlying
concept. Instead evolution from scratch is more effective. Several recommendations are then
made:

• Adapt the learning rate such that it decreases under ‘noisy’ environments and increases
under concept shift.

• Concept shift is equated with increases in error over a window of consecutive exemplars
(implying that the stream is labelled). Specifically, thresholds for error and a minimum
number of covering rules are employed to recognize a concept shift.

• On detecting a concept shift various learning parameters are reinitialized versus reinitial-
izing the entire population.

Under streams with concept shift alone, the case of reinitializing population content is the
most effective. However, the ability to trigger population re-initialization is a function of prior
knowledge regarding what constitutes a ‘good’ threshold.

Behdad and French note that under batch learning scenarios, LCS are first deployed under a
purely exploratory setting and then under a purely exploitative setting [13]. Such a separation
might not be appropriate in the case of online learning. Instead, the online setting it taken
to require that XCS first classify (exploit) and then receive feedback (explore). Some balance
needs maintaining in the ratio of explore to exploit cycles. Behdad and French assume that
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more exploit (classification) cycles are performed over explore cycles (stochastic updates) in
much the same way that classical algorithms for reinforcement learning mix greedy exploitation
(say Sarsa or Q-learning) with ε-greedy exploration [170]. The ‘delay’ concept appears when
a batch model of updating is reintroduced. Specifically, a delay of τ is taken to represent the
number of exemplars per ‘batch’ of data. However, unlike the regular model for applying
XCS to classification tasks, first XCS is deployed to label the data (exploitation) and then in
an independent pass through the same data, the exploration phase is performed. Finally, the
case of ‘partial’ feedback is considered. That is to say, in the case of some exemplars there
might be no feedback, limiting exploration to only those cases with the feedback. The authors
formulate probabilistic heuristics in an attempt to ‘fill in’ the gaps so that feedback under no
label confirmation is possible [13].

Prototype approaches are frequently employed in clustering algorithms for characterizing
cluster location (i.e., medoid as opposed to centroid style clustering) and have been considered
for online learning under streaming data scenarios (e.g., [181]). Indeed, learning vector quanti-
zation (LVQ) represents a family of algorithms that add label based credit assignment to turn
Kohonen’s Self Organizing Feature Map into a classifier. Moreover, LVQ has itself been adapted
to the case of online learning [197]. Cervantes et al. propose a framework for managing a set of
prototypes incrementally using concepts from particle swarm optimization [32]. Thus, momen-
tum is added to the clusters representing classes and therefore non-stationary properties in the
stream can potentially be tracked. In addition, clusters with the same class label are grouped
using mechanisms from online LVQ [197]. The approach taken to establishing groups is based
on link maintenance and LVQ neighbourhoods. Links are subject to aging and therefore decay
if a prototype no longer classifies data. A total of 8 parameters are necessary to characterize
coefficients for aging, memory, inertia etc., with coefficient selection having an impact on the
memory requirements and degree of adaptability of the algorithm.

A less widely investigated approach is to assume that models can be constructed a priori
for a set of concept drifts, where this implies that it should be much easier to react to changes
with a minimal labelling requirement during the course of the stream [164]. Naturally, various
assumptions need to be made regarding the type of concept drift likely to appear, however,
the payoff is that the cost of training during the stream can be significantly reduced relative
to models that have no access to appropriate prior training. At some level this can also be
interpreted in terms of models designed to react to repeating or cyclic properties.

5.6 Class imbalance

Building classification models under class imbalance or skewed data is a relatively mature –
although by no means ‘solved’ – topic in the machine learning literature (e.g., [91]) and GP
[11, 15, 134]. In part, this interest is driven by the observation that most real-world datasets
are not ‘balanced’, a tendency that increases as multi-class classification is encountered.23 In
general, there are three approaches pursued for addressing the class imbalance problem, albeit
with the assumption that the data is stationary:

• Perform model identification over some sample from the training partition. The scheme
pursued for sampling might include feedback from the model during training (e.g., active

23Attempts to cast a multi-class classification problem into at least C− 1 binary classification problems merely
emphasizes this effect. Thus, even if the C classes appear with equal frequency, each binary classification task
represents an unequal partition of one class versus the rest.
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learning [83, 165]) or enforce some prior heuristic for under / over sampling of specific
classes. From the perspective of evolutionary computation this represents a test case for
learning what to learn from, or competitive coevolution (e.g., [47]). Under the specific
context of regression tasks, schemes have been proposed in which data uniqueness is first
used to recursively eliminate all but the most ‘meaningful’ exemplars from the training
partition after which model building is pursued [184].

• Introduce penalties into the cost function. The basic assumption here is that exemplars are
weighted differently depending on their class. Specific examples include reformulations
of the fitness function to reflect prior knowledge of class frequency or cost (e.g., [16, 115]),
performance on exemplars (e.g., [62]) or Pareto multi-objective formulations (e.g., [15]).

• Combined approaches in which both schemes are pursued together. Such hybrid schemes
have the added advantage of decoupling the cost of fitness evaluation from the cardinality
of the original training partition [58, 123, 134].

In contrast, comparatively little appears with respect to class imbalance under streaming
data. Processing data in batches (e.g., non-overlapping sliding windows) provides one avenue
for addressing class imbalance under streaming data scenarios. That is to say, the distribution
of classes represented in the batch can be artificially balanced with less frequently occurring
classes relying on historical samples, whereas the most frequently occurring classes assume the
most recent samples (e.g., [82]). Various schemes have been proposed for prioritizing retention
of minor class exemplars within the batch used to construct classifiers, with k-NN algorithms
frequently appearing for this purpose [34, 86]. Conversely, Ditzler and Polikar propose to
employ oversampling or data rebalancing with ensemble methods, but not without incurring
computational overheads that might limit the applicability to streaming data [55]. However,
one implication of holding on to minority class data for longer periods of time (relative to the
major class(es)) is that minor class(es) will increasingly be characterized as stationary [55]. This
is an example of a sample bias issue to which any form of resampling can potentially lead to
models with unforeseen classification properties.24

Attempting to address class imbalance under strictly ‘online’ conditions is potentially more
challenging. One approach proposed assumes that labels are freely available. Thus, if all the
streaming data can be labelled at no cost, then approaches might be assumed in which the
model is made as reactive as possible. Class imbalance is addressed by applying different costs
for each class, either under an a priori fixed cost or by adapting the costs online [84]. An
alternative approach is to assume that the stream is sampled. The default being a fixed sample
rate [143].

Various schemes have been proposed that attempt to maintain estimates for the frequency
of different classes while conforming to a strictly online model of deployment [190]. To date,
the principle drawback is that label information is still necessary, implying that only through
subsampling can there be any reduction in the rate at which labels are produced. Possible
schemes for avoiding this require on some form of label free change detection (see Section 5.3),
i.e., a sampling bias associated with data mapped to the decision boundary in the less frequent
class(es).

24For a general discussion of this topic (albeit under a non-streaming scenario) see for example Chapter 9 from
[59].
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6 Conclusion

The field of streaming data analysis has been reviewed from a broad perspective to identify
several current key themes which are equally applicable to EC model building:

• Ensemble methods have been widely utilized to address issues of incremental model
refinement versus generating entirely new models. From the perspective of evolution-
ary computation there are potentially several lessons that can be learnt from ensemble
methods regarding diversity maintenance (synonymous with population diversity) and
ensemble composition (synonymous with teaming in GP).

• A wide range of benchmarking datasets and evaluation metrics are already available pro-
viding a large repository of previous results and established methodologies for evaluation.

• Several generic schemes have been proposed for decoupling the labelling requirement
and / or change detection under streaming data. Such algorithms are equally applicable
to evolutionary methods as they are to more classical forms of ML.

Properties of model based evolutionary paradigms that potentially make them appropriate
to streaming data tasks have been reviewed from the perspective of evolvability, diversity main-
tenance and memory mechanisms. Differences between approaches originally promoted under
genetic algorithms versus their utility under GP were highlighted. With respect to challenges
we anticipate in the near future we highlight the following:

• Model building under an open versus closed world assumption: Supervised learning as classi-
cally deployed makes a closed world assumption, i.e., the training partition is sufficient
to provide a complete description of the underlying task. Conversely, learning under a
non-stationary stream implies that what can be inferred from any part of the stream is
incomplete. Distinctions need to be made between the known (what the model is explic-
itly capable of) and the unknown (what explicitly lies outside the capability of a current
model). This represents a general requirement for novelty detection as opposed to dis-
crimination [130, 131]. To date, there have been a few GP frameworks proposed that
operate under a closed world assumption – for example, by making use of a Gaussian
rather than a Sigmoid style membership function [41, 132, 134, 200]. However, little is
known about their operation under streaming data conditions.

• Local versus global search: Concept drift is characterized by gradual variation in the under-
lying structure pertaining to a model. Many classical ML approaches naturally assume
a greedy credit assignment scheme, thus can readily lend themselves to tracking gradual
changes associated with concept drift. Equivalent formulations for model based evolu-
tionary methods might take the form of specific types of variation operator, applied rel-
ative to a previously identified genome. Deciding when to employ such operators might
be motivated by frameworks proposed by ensemble methods or change detection.

• Forecasting / regression tasks under streaming data: To date, research in symbolic regres-
sion has tended to concentrate on improving model accuracy and trustworthiness. The
latter particularly with respect to regression models as applied to system identification,
in which case the problem might be too little data as opposed to too much (e.g., [184]).
Moreover, there is little emphasis placed on online operation with a labelling budget. That
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said, interesting datasets certainly exist that might provide the basis for the development
of appropriate regression tasks for benchmarking. For example, forecasting benchmarks
are often based on chaotic attractors (e.g., [158]) thus uncertainty regarding concept shift
/ drift. Likewise, some of the most challenging regression tasks include a ‘switch’ be-
tween different model generating processes and dummy attributes [108]. Indeed, similar
challenges exist in related fields, such as regime switching in econometrics (e.g., [117]). To
date, however, there has not been much emphasis placed on performance under reduced
labelling budgets, where this remains a key requirement for streaming data scenarios.

• Evolvability versus diversity: Historically a significant effort has been placed on the role of
diversity maintenance (Section 3.3.3). However, more recently the type of diversity has
been questioned from both the perspective of EC (e.g., [191]) and ensemble learning (e.g.,
[26]). As a consequence, diversity maintenance is increasingly being seen as a byproduct
of other underlying properties associated with evolvability (Section 3.3.1). We anticipate
that mechanisms for supporting evolvability and, possibly more importantly, the identi-
fication of appropriate feedback loops between environment and evolvability to continue
to be a significant challenge for future research.

Finally, we characterize the differences in approach between model building using EC versus
ML in general as follows:

• Level of prescription: Ensemble based ML currently requires specific a priori decisions to
be made regarding the types of ensembles to be maintained, or whether to drop ML
learners after change detection. Conversely, EC frameworks have the potential to evolve
either scenario from the same population by adopting suitable schemes for diversity /
evolvability. On the one hand this leaves the ability to discover the relevant transition
between models. On the other, there is potentially less certainty that such a discovery will
be made.

• Computational: EC model building requires multiple passes through the training partition;
a requirement that is potentially in conflict with the open-ended / non-stationary com-
ponent of the stream itself. ML more often than not assumes some form of greedy credit
assignment, making them more ‘naturally’ online / reactive (although achieving this un-
der label budgets is still an open question). One approach for addressing this issue is by
assuming some form of active learning from the outset (e.g., the data subset of Figure
2). In addition, the cost of model construction through EC itself can often be reduced by
assuming representations that are less costly to evolve. For example, dropping support
for double precision arithmetic. One framework adopting such an approach conducts
1,000 generations on the last 1,000 exemplars from the stream with a population size of
100 individuals in as little as 5 seconds on a regular desktop computer [127]. Depending
on the type of stream, this might in itself be sufficient for real-time operation.

• Type of design decision: We maintain that many design decisions are not specific to adopt-
ing EC versus ML approaches to model building. Thus, decisions regarding the stream
interface, detecting change or operating under label budgets are potentially appropriate
for model building under either EC or ML. However, an ML practitioner might consider
having to make decisions pertaining to population diversity, evolvability and memory as
not providing sufficient control over the properties of the resulting model. This naturally
relates to the ‘level of prescription’ in framework design as discussed above.
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7 Future Research

In the following we motivate a longer term research agenda25 through two themes: evolutionary
hyper heuristics and local versus global search:

• Evolutionary hyper heuristics: GP as heuristic / algorithm generator implies that GP oper-
ates on a search space of algorithm components [150]. From a streaming data perspective
the opportunity then exists for continuous adaptation of the functional components (e.g.,
elements of and / or relation between the modules in Figure 2). Potentially, GP as an
algorithm generator would be able to tune between a spectrum of streaming algorithms,
say semi-supervised to / from active learning – Dyer et al. note that active learning and
semi-supervised learning are quite close algorithmically [60] – or compose ensembles of
learners. Indeed, the wide range of approaches to ensemble learning point to the “design
space” of algorithms for streaming data being both rich and most likely being open to
meta-heuristic search processes. Moreover, navigating the redundancies that appear to
exist in the multiple combinations of ensemble solutions potentially points to automated
algorithm design providing a more effective scheme for rationalizing what properties of
an ensemble are most effective for addressing specific features of the streaming data task.
The principle challenge, of course, is managing to do so in a computationally feasible
manner.

• Local versus global search: Frameworks in which GP is used to find ‘projections’ from the
original attribute space to a new ‘feature space’ are beginning to appear [11, 104]. The ben-
efit of adopting such an approach from a streaming data perspective is that the behaviour
of the stream can be analyzed in the new feature space and we are free to design prop-
erties useful for stream analysis into the feature space. Moreover, whereas construction
of the mapping between attribute and feature spaces might be non-linear, the mapping
from feature space to label space could be pursued using linear models, e.g., Naive Bayes
or Linear Discriminant Functions. Within the context of streaming data, it has recently
been proposed that the task of ‘adaptive preprocessing’ the stream data is significantly
more difficult than that of constructing a streaming classifier [178]. We see the adaptive
preprocessing step as being synonymous with mapping from the original attribute space
to that of a new more convenient feature space and a natural role for model based EC.
Conversely, any number of (greedy) ML algorithms for streaming might be applicable to
mapping from feature to label space. Naturally, the update rates for each stage need not
be the same.
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