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Abstract

Botnets represent one of the most aggressive threats against cyber security. Therefore, botnet traffic analysis is one the main
approaches to study and classify such threats. Different techniques using different feature sets were proposed for botnet traffic
analysis and classification. However, no work has been performed to study the effect of such differences. In this work, we perform
a systematic study on the effect of (if any) these feature sets differences employed in such works. To this end, we explore five
different traffic flow exporters (each with a different set of flow features) using two different protocol filters (HTTP and DNS)
and five different classifiers. We evaluate all these on eight different botnet traffic data sets. Our results indicate that the use of a
flow exporter and a protocol filter does indeed have an effect on the performance of botnet traffic classification.
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I. INTRODUCTION

A botnet is a network of compromised hosts that are remotely controlled by a master (aka botmaster). Different types of
botnets have been created to perform various malicious tasks such as spreading spam, conducting Distributed Denial of

Service (DDOS) attacks, identity theft or simply taking advantage of victims’ computational resources [1]. Hence, with the
high reported infection rate, the vast range of illegal activities and powerful comebacks, botnets are one of the main threats
against the cyber security.

The communication scheme is the main characteristic of the botnet architecture which evolved over time to enhance
botnet functionality and avoid botnet classification (detection) systems. In the architecture, compromised bots interact with
the Command and Control (C&C) server to receive the instructions of the master. Until 2003, the Internet Relay Chat (IRC)
protocol was the most common botnet communication protocol using centralized topology [2]. In the botnet arms race, security
systems adapted to use solutions (such as firewalls) to block ports such as IRC ports or to perform content analysis/filtering
which can reveal botnets communication information. Since 2003, not only botnets have started to use more ubiquitous protocols
such as Hyper Text Transfer Protocol (HTTP) and Domain Name System (DNS) as well as a decentralized topology such
as Peer-to-Peer (P2P), but also they have started to employ techniques such as fluxing and encryption to avoid detection.
Therefore, identifying the botnets and detecting them have become very challenging.

Many proposed detection approaches rely on network traffic analysis classification to detect the botnets. Some of the works
in this category focus on specific types of botnets while others attempt to build a general model for more than one botnets. In
early 2000, most of the proposed systems were specifically focused on botnets utilizing IRC (e.g. [3]) while recent research
is more focused on P2P and HTTP based botnets (i.e. [4],[5] and [6]). Given that botnets use automatic update mechanisms,
botnet monitoring and detection approaches need to be active and continuous as well. This could potentially enable them to
learn new patterns and adapt to the changes in the botnet evolution. Hence, machine learning techniques (i.e. classification and
clustering) are one of the highly employed techniques in this field. The clustering and classification techniques that are used for
traffic analysis require the network traffic to be represented in a meaningful way to enable automatic pattern recognition. Thus,
an important component for such systems is extracting the meaningful features (attributes) from the network traffic. However,
feature extraction has always been a challenge. To this end, different botnet detection and analysis systems have come up with
their own sets of features to represent the network traffic consisting of network packets. Network packets include two main
parts: (i) Packet header, which includes the control information of the protocols used on the network, and (ii) Packet payload,
which includes the application information used on the network. So, some detection and analysis systems only use network
packet headers (i.e. [5], [6] and [7]) as the basis for their features, while others take advantage of packet payloads (i.e. [8],
[9]). Among the group using packet headers, flow-based feature extraction methods are highly employed in the recent literature
[6][7][10][11]. In such methods, communication packets are aggregated into flows and then statistics are calculated. Systems
that generate flows and extract such features are called flow exporters. Given that botnets employ encryption techniques to avoid
the detection systems that analyze the communication information embedded in the packet payload, flow exporters can be very
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effective since they summarize the traffic utilizing only network packet headers. In this research, our aim is to investigate the
magnitude of the effect of flow exporters in botnet traffic detection and analysis systems. Thus, five open source flow exporters,
namely Maji, YAF, Softflowd, Tranalyzer and Netmate, along with five highly employed machine learning techniques, namely
C4.5, SVM, Naive-Bayes, Bayesian Networks and Artificial Neural Networks (ANN), are utilized. Moreover, to study the
effect of protocol filters, we conduct three sets of experiments; the first set of experiments study the analysis and classification
of botnet traffic using all of the traffic flows, the second set performs the same study using only the HTTP traffic flows, i.e.
employing an HTTP protocol filter, and the third set uses only the DNS traffic flows utilizing a DNS protocol filter. Last but
not the least, we have evaluated all of these systems and their combinations on eight different botnet data sets.

The remainder of the paper is organized as follows: The botnet traffic analysis and classification systems reported in the
literature are summarized in section II. All the tools, the data sets and the methodology employed are presented in Section III.
Evaluation and results are discussed in Section IV. Finally, conclusions are drawn and future work is discussed in Section V.

II. BACKGROUND AND RELATED WORK

A bot program is a self-propagating malware that infects vulnerable hosts known as bots and is designed to perform a
malicious task after being triggered. The infected bots network is referred as a botnet, which is under the remote control of a
master called the botmaster. Usually bots receive commands from the master through C&C channel and carry out malicious
tasks such as DDoS, spamming, phishing and identity theft attacks [1].

Today a typical advanced bot uses five stages to create and maintain a botnet [1]. The first stage is the initial infection stage.
In this stage, attacker infects the victim using several exploitation techniques to find its existing vulnerabilities. In the second
stage, secondary injection, the shell-code is executed on the infected victim to fetch the image of the bot binary. Bot binary
then installs itself on the victim. At this time, the infected machine is completely converted into a bot. The next stage is the
connection stage. In this stage, the bot binary establishes the C&C channel to be used by the bot master. Once the connection
is established then the malicious C&C stage, the fourth stage, starts. This is when the master sends the commands to the
botnet, short for bot network. Finally, when the master needs to update the bots for one reason or another, the update and the
maintenance stage starts.

A. Related work

Over time, botnets have employed different protocols, topologies and techniques to implement the aforementioned five stages
while avoiding detection. Hence, an arms race has started between the botnets and the detection systems.

Gu et al. developed a system called BotMiner based on the group behavior analysis to detect botnets [12]. BotMiner uses
a clustering approach to find similar C&C communication behaviors, which form clusters, and then employs Snort to find the
type of activity in the detected clusters. They evaluated BotMiner on traffic data sets. These data sets included their campus
network traffic, which represented the normal behavior. Moreover, it included the Honeynet traffic and traffic captured by
running bot binaries in a sandbox environment. These represented the attack behavior. Then, they converted their captured
traffic files into flows using a tool they developed. This flow exporter included features such as the number of packets per
flow, the average number of bytes per packet and the average number of bytes per second. Their results showed that BotMiner
could detect botnets with detection rates between 75% and 100% on different types of botnets.

Strayer et al. developed an IRC botnet detection system that made use of machine learning techniques (classification and
clustering) [3]. First, they used a classification technique to filter the chat type of traffic and then a clustering technique to
find the group activities in the filtered traffic. Finally, a topology analyzer was applied to the clusters to detect the botnets.
In this three layer approach, they employed flow-based features extracted from packet headers. Data employed in this work
was gathered from a controlled testbed running bot binaries. They employed and evaluated Naive-Bayes, C4.5 and Bayesian
Networks as the classifiers against a multi-Dimensional flow correlation technique that was designed and proposed.

Wurzinger et al. proposed an approach to detect botnets based on the correlation of commands and responses in the monitored
network traces [8]. To identify traffic responses, they located the corresponding commands in the preceding traffic. Then, using
these command and response pairs, the detection model was built focusing on IRC, HTTP and P2P botnets. Data sets used in
this work were collected by running bot binaries in a controlled environment. Traffic features such as the umber of non-ASCII
bytes in the payload were analyzed to characterize bot behavior.

Zeidanloo et al. proposed a detection system with a focus on P2P and IRC based botnets [9]. Using filtering, classification
and clustering techniques, they aimed to detect the group behavior of botnets in a given traffic file (trace). To analyze the
traffic, a flow-based approach was utilized while payload inspection was employed for traffic filtering.

Celik et al. proposed a flow-based botnet C&C activity detection system using only headers of traffic packets [7]. Specifically,
they investigated the effect of calibration of time-based flow features. They employed machine learning algorithms such as
C4.5, Naive-Bayes and logistic regression. For the evaluation, they employed Lawrence Berkeley National Laboratory (LBNL)
traces representing the normal traffic and IRC-based simulated botnet traffic representing the attack traffic.

Francois et al. proposed a NetFlow monitoring framework that leveraged a simple host dependency model to track com-
munication patterns and employed linkage analysis and clustering techniques to identify similar botnet traffic patterns [10].
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They obtained the traffic data from an Internet operator company. To analyze the traffic, a flow-based approach was utilized.
In addition to the traffic flows, Google web search engine was employed for linkage analysis.

Wang et al. proposed a fuzzy pattern recognition approach (called BBDP) to detect HTTP and IRC botnets behavioral
patterns [11]. It is known that botnets query several domain names in a given period of time to identify their C&C server, and
then form a TCP connection with the C&C server. So, Wang analyzed the features of DNS queries (such as the number of failed
DNS responses) and TCP flows to detect botnet malicious domain names and IP addresses. To accelerate the detection process
and be able to detect botnets in real-time, traffic reduction and parallel processing were utilized. To evaluate the proposed
approach, malicious bot binaries where collected using Honeytrap and were run in a controlled environment to generate bot
traffic. Their results showed up to 95% detection rate for their system.

Zhao et al. investigated a botnet detection system based on flow intervals [5]. Flow features of traffic packets were utilized
with Bayesian networks and decision tree classifiers to detect botnets. They focused on P2P botnets (such as Waledac) that
employ the HTTP protocol and a fast-flux based DNS technique. To evaluate their system, they employed a combination of
normal and attack traffic some of which was generated in the lab, some was from Honeynet project traces and some was from
Lawrence Berkeley National Laboratory (normal traffic) data sets. Their results showed detection rates up to 90% with false
positive rate around 5%.

Kirubavathi et al. designed specifically an HTTP-based botnet detection system using a multilayer Feed-Forward Neural
network [4]. Given that HTTP-based botnets do not maintain a connection with the C&C server but periodically make a
request to the C&C server (over the HTTP) to download the instructions, they extracted features related to TCP connections
in specific time intervals based on the packet headers. To collect data to evaluate their system, botnets were simulated in the
lab.

Haddadi et al. designed a botnet detection approach based on botnet traffic analysis [6]. Network traces representing normal
and attack traffic were generated by initializing HTTP and DNS communication with publicly available domain names of
botnet C&C servers and legitimate web servers. NetFlow based feature extraction (only from packet headers) was used and
machine learning algorithms (C4.5 and Naive-Bayes) were then employed to detect the botnets. Their results achieved up to
97% detection rate with 3% false positive rate.

In short, most of the recent detection systems reported in the literature focuses on P2P and HTTP protocols [4][5][6][11].
Given that botnets employ DNS protocol to locate the C&C servers, DNS traffic is also analyzed regardless of the utilized
C&C protocol or topology [6][11]. They employ different data mining or machine learning techniques such as decision trees,
neural networks or statistical methods for which mostly flow features were utilized. Last but not the least, most of the time
they integrate some normal traffic file (in the lab) with the generated attack traffic file to be able to evaluate the performance
of the proposed detection systems.

III. METHODOLOGY

As discussed in section II, almost all of the botnet traffic analysis related work reported in the literature employ some form
of network flow information which is based on packet headers. Moreover, most of them focus on certain type of botnets for
detection purposes. This means that they focus on certain type of protocols such as HTTP or DNS. This in return indicates
the utilization of protocol filtering in the analyzed traffic data. Therefore, in this research, we aim to study the effect (if any)
of the flow exporters and protocol filtering for separating botnet behavior from normal behavior in a given traffic log file. To
be able to generalize our research to encrypted traffic as well, we do not have any packet payload (application level) based
information in our study. Thus, we explore the possibility of detecting botnets by only using the features extracted from a flow.

To achieve our aim, we benchmark the effect of five different well known flow exporters using two widely used protocols
filters and five popular learning classifiers. We evaluated the performances of different combinations of these tools using eight
different botnet traffic log files.

A. Traffic Employed

In this work, we utilize traffic files from botnets, which employ HTTP protocol as their communication protocol or HTTP-
based P2P topologies which looks like normal HTTP traffic. There are several botnet traffic captures available at NETRESEC
[13] and Snort [14] websites that we employed in this research. These traffic captures that represent the real-world botnets
are related to Citadel, Cutwail (Pushdo), Kelihos and Zeus botnets. Snort web site provides three sample traffic log files of
the Zeus botnet [14]. They also provide a report describing these samples. Unfortunately, two of these samples are very small
(only 110 and 1105 number of packets) and therefore could not be used in our experiments. Hence, “Sample 1” is the only
Zeus traffic file that we utilized from Snort archive in this research. On the other hand, NETRESEC provides Citadel, Cutwail,
Kelihos and Zeus botnet traffic log files (one for each) but does not provide any information regarding these files. So, we
investigated the employed protocols, domain names and the communication patterns in these files and matched them with the
published characteristics of these botnets and verified that the data is correct. Therefore, we use all of these botnet traffic files
in this research.
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However, since there were not many traffic captures publicly available (aforementioned ones are the only ones we are aware
of), we had to generate additional representative traffic (as most of the works in the literature did) to be able to generalize our
analysis. In this case though, rather than running botnet binaries in sandbox environments to generate representative botnet
traffic, we employed publicly available (from legitimate resources) lists of C&C domain names to generate the representative
botnet traffic. Moreover, to generate the representative normal traffic, we employed the Alexa domain name list. This ensures
that attack and normal traffic were generated using the most recent and publicly available domain name lists and avoids the
possibility of representing old botnet behavior when old binaries are used. The generated data employed in this work, is
analyzed and confirmed to be similar to the real-world botnet data provided by snort and NETRESEC [6][15].

In this case, the data is generated by a program we developed to establish HTTP connections with the domain names (both
C&C servers and legitimate web servers) from the aforementioned lists to generate the traffic. First, the program sends DNS
queries for the domain names in the lists. Then, if it receives a proper DNS response indicating that the domain name is
registered and is associated with a valid IP address, it attempts to establish an HTTP connection with that IP address. More
information on the botnets and the domain name lists that we employed are given bellow:

1) Alexa: Alexa Internet Inc. [16] ranks the websites based on their page views and unique site users. Then this ranking is
published as the list of the most popular websites.

2) Zeus: Zeus is a well-known botnet that made a big came back (after a takedown in 2012) with a new variant in 2013
[17]. This botnet has been collecting banking data by using man-in-the-browser keystroke logging and form grabbing but can
be configured for any type of identity theft attack. There are the ZeusTracker site [18] and the DNS-BH site [19] actively
monitoring the Zeus botnet. These are the sites from where we downloaded the C&C domain name lists that employed to
generate the representative traffic for Zeus botnet. Moreover, Snort and NETRESEC have traffic files of this botnet that we
also utilized in this work.

3) Citadel: Citadel botnet is the improved version of Zeus where the Zeus bugs are fixed and it is adapted to the newest
security platforms [20]. It is believed that Citadel stole more than $500 million and infected more than 5 million PCs in
different countries. In June 2013, Microsoft and FBI took down almost 90% of the Citadel botnet based on a court order in an
operation. Yet, there are news of Citadel making a bold comeback [21]. We obtained the Citadel C&C domain name lists from
the Citadel botnet section of the ZeusTracker and DNS-BH web sites. In addition, a captured traffic files from NETRESEC is
also employed in this work.

4) Conficker: Speculations about Conficker’s purpose ranges from DDoS attacks or using distributed computing resources
to stealing banking credentials. In 2009 and 2010, Conficker botnet was listed in Damballa top 10 botnets of the year. As
of 2013, it is reported [22] that Conficker botnet has infected many medical devices. The Conficker C&C domain name lists
published by Bonn university [23] and DNS-BH [19] websites are employed in this work.

5) Cutwail: Pushdo trojan is originally used to distribute other malwares such as Zeus. It comes with its own spam module,
known as Cutwail which is responsible for a large portion of the world’s daily spam traffic. In 2013, this botnet evolved using
domain generation algorithms (DGA) and become more resilient to takedown attempts [24]. Some variants of Pushdo utilize
HTTP on top of SSL/TLS protocol for C&C communication [25]. Captured traffic available at NETRESEC is used in this
work.

6) Kelihos: Kelihos is mainly involved in DDoS attacks and email Spam attacks. Capabilities of stealing Bitcoin wallets
and spreading malicious links over social network sites such as Facebook were added to its latest versions. This botnet is first
discovered in December 2010 and sent billions of spam messages in one day. Since then, three versions of Kelihos has been
detected. The first two versions use well-formed HTTP while the latest version employs a HTTP-based P2P topology along
with the Fast-Flux method [26]. NETRESEC provides a Kelihos botnet captured traffic file which is utilized in this work.

B. Flow Generation

Flow generation tools summarize traffic utilizing the network packet headers. These tools collect packet information with
common characteristics such as IP addresses and port numbers, aggregate them into flows and then calculate some statistics
such as the number of packets per flow etc. In RFC 2722, a traffic flow is defined as a logical equivalent for a call or a
connection in association with a user specified group of elements [27]. The most common way to identify a traffic flow is
to use a combination of five properties from the packet header including the Network and the Transport layer headers of the
TCP/IP network protocol stack. These are: Source IP address, Destination IP address, Source Port Number, Destination Port
Number and Protocol. Hereafter, we will refer to this as 5-tuple information.

Companies producing and managing network equipments such as routers and switches provide different types of flow
exporters to summarize the network traffic in terms of flows using the 5-tuple information. Moreover, they provide flow
analysis tools to analyze the flow streams. Some examples of COTS (commercial off the shelf) flow exporter and analysis
techniques are: Cisco systems NetFlow [28], Juniper systems J-Flow [29] and InMon systems S-Flow [30]. On the other hand,
there are some open source publicly available exporters such as Maji [31] by WAND research group from Waikato University
or YAF [32] by Cert NetSA research group.

However, over time different versions of NetFlow were developed and the very recent version is now the IETF standard for
flow exporters as IPFIX (RFC 5101). To collect and analyze traffic flow data, three network elements should work together, Fig.
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Fig. 1: Flow exporting mechanism

1: (i) Flow exporter which generates the flow data, (ii) Flow collector which collects (stores) the flow data from the exporter, and
finally (iii) Flow analyzer which analyzes the collected data. A variety of network devices (e.g. routers and switches) support
different versions of flow data. Therefore, in this research we employ different open source flow exporters and collectors on
the aforementioned pre-captured data sets. Then, we employ the five machine learning classifiers to analyze the exported and
collected flows. Here our objective is to see the effect of the flow exporter and collector tools on the performance of the
analyzers.

The exporters that we employ in this work are as follows: (i) Maji [31] is an open source implementation of IPFIX supported
by WAND research group at Waikato University. This tool exports uni-directional flows from live PCAP interfaces as well as
the most common trace file formats. Maji is designed to support custom template definition and can relay the IPFIX information
to TCP, UDP and SCTP collectors. Additionally, it has a simple exporting method that outputs the flow information in the
standard output. Therefore, we did not use any IPFIX collector for this tool. (ii) YAF (Yet Another Flow Sensor) [32] is
a bi-directional flow exporter designed by Network Situational Awareness (NetSA) group at CERT. This tools collects and
exports IPFIX-based flows. Similar to Maji, YAF can process packet data from pre-captured traffic files or live captures from
an interface to export flows. Although YAF package comes with a YAFAscii that outputs NetFlow packet information in an
ASCII format (which is employed in this work), any other NetFlow collector can be used for this purpose, too. (iii) Softflowd
[33] is a light weight uni-directional flow exporter that supports different versions of NetFlow. This tool exports NetFlow data
using the traffic on a simple device interface or a pre-captured traffic (pcap format) file. In this work, once we export the
network packets into flows using Softflowd, we employed NfDump as the flow collector. NfDump is an open source flow
collector tool which is fast and easy to use. NfDump supports different versions of NetFlow, too [34]. (iv) Tranalyzer [35]
is a light weight uni-directional flow exporter and analyzer that employs an extended version of NetFlow feature set. This
tool exports both the binary and ASCII formats and therefore, does not require any collector (such as NfDump). This makes
it very easy to use. (v) Netmate (Network Measurement and Accounting System) [36] is a bi-directional flow exporter and
analyzer. This exporter can process live captures and pre-captured traffic and use different rule sets to control the exported
flow format. One of our former NIMS lab members has developed “Netmate-flowcalc” which is a bundle including Netmate
v.0.9.5 packaged with NetAI modules from v0.1 [37]. Not only this open source program ease the installation process but also
the NetAI module has been extended for additional output features. We have employed this latest version in this research.

Table I summarizes the properties of the flow exporters employed in this research. The third column indicates if the exporter
requires a collector (if so, does the tool provide it in the package) or it directly exports the flow information in a human readable
format. In this column of the table, “included” means a collector is included in the package, however can be replaced with
another one if wanted. On the other hand, “embedded” means a collector is embedded in the exporter and no external collector
can be used. The seventh column shows if the tool supports specific categories of features. These categories are defined based
on the features that are frequently used in the literature [12][5][15][38]. Time category refers to the features indicating start-
time, end-time and duration of the flow. Time-based category is important when flow aggregation or window-based analysis
is employed. Inter-arrival category refers to the statistics calculated over a flow such as the average inter-arrival time which
represents the average number of milliseconds between consecutive packets of a flow. Packets&Bytes category refers to the
features computed based on the number of packets which form the flow and their size (in byte) such as the average number
of bytes per packet. Flags category refers to any feature related to the packet header flags such as the TCP SYN flag.

C. Flow Analysis: Classifying the Flows

In this work, five well-known machine learning algorithms that are widely used in the literature ([3], [7], [5], [38], [6] and
[39]) are employed: C4.5, SVM, ANN, Bayesian Networks and Naive Bayes.

1) C4.5: C4.5 is a decision tree algorithm. A decision tree is a tree-structured graph (model) where internal nodes represent
conditions applied to attributes (features), the leaf nodes represent the class labels and the paths from root to leaves represent
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TABLE I: Properties of flow exporters employed

Exporter Standard Flow Input Collector # of features Feature categories
Time Inter-arrival Packets&Bytes Flags

Maji IPFIX uni-direction live/pre-captured included 59 3 7 3 3
YAF IPFIX bi-direction live/pre-captured included 46 3 3 3 3
Softflowd NetFlow uni-direction live/pre-captured NfDump 42 3 7 3 3

(V.5, 7 and 9)

Tranalyzer - uni-direction live/pre-captured embedded 93 3 3 3 3
Netmate - bi-direction live/pre-captured embedded 44 duration 3 3 3

only

the classification rules. C4.5 algorithm is an extension to ID3 algorithm which aims to find the small decision trees (using
pruning) and then convert the trained tree into an if-then rule set. This algorithm constructs decision trees based on a training
data set, where each exemplar is a set of already classified (labeled) attributes by applying the Information Entropy concept.
The algorithm employs a normalized Information Gain criterion to select attributes from a given set of attributes to determine
the splitting point for the decision tree. The attribute with the highest Information Gain value is chosen as the splitting point.
A more detailed information on C4.5 learning algorithm can be found in [40].

2) SVM: The Support Vector Machine is a binary learning algorithm that can be used for classification and rule regression.
The goal of this classification algorithm is to build an N-dimensional hyperplane that optimally separates the samples of data
into two classes with maximal margin. The classifier can easily be extended to K-class classification by constructing k two-class
(binary) classifiers. In order to use an SVM to solve a classification problem on a non-linearly separable data, a non-linear
mapping of the input data into a high dimensional feature space is required. Then, an optimal hyperplane for separating the
high dimensional features of input data can be constructed, which maximizes the separation margin. Finally, a linear mapping
from the feature space to the output space is required. Detailed information on SVM algorithm can be found in [40].

3) Artificial Neural Networks: The ANN algorithm is inspired by the structure of the biological neural network. It is
composed of neurons and the connections between them. Backpropagation network is the most frequently used version of this
algorithm which consists of an input layer, an output layer and at least one hidden layer. All the neurons of each layer (except
the output layer) are connected to all the neurons of the next layer by an axon associated with a weight factor. Each training
iteration modifies the neurons’ weight factors in order to minimize the error rate. The training process stops after reaching the
maximum epoch (time step) or meeting a specific stopping criteria (e.g. error rate increases). Detailed information on ANN
can be found in [40].

4) Naive Bayes: A Naive-Bayes classifier is a simple probabilistic classifier based on the Bayes theorem. Bayes theorem
assumes that the presence of an attribute in a given class is independent of other attributes. The classifier uses the method of
maximum likelihood (probability) for parameter estimation. Given a training set, the classifier predicts the training set samples
that belong to the class C, having the highest posteriori. A more detailed explanation of the algorithm can be found in [40].

5) Bayesian Networks: Given a set X of discrete attributes, Bayesian Networks are graphical representations for probabilistic
relationships among the variables of the set. In other words, a Bayesian network is a directed acyclic graph that represent the
probability distribution over X. The graph nodes that are associated with the attributes, are connected through the links that
correspond to the direct influence from one attribute to the other. Given the Bayesian networks structure (with nodes and direct
influence links), the conditional probability distribution of the graph is then computed. The learning process aims to find a
Bayesian Network structure that describes the training data in the best possible way. To this end, two categories of approaches
are proposed: score-and search-based and greedy-based approach. A more detailed explanation of the algorithm can be found
in [40].

IV. EVALUATIONS

As discussed earlier, in this research our goal is to evaluate the effect (if any) of flow exporters for the representation of
network traffic in botnet detection. To achieve this, we benchmark five open source flow exporters on eight different botnet traces
using five different machine learning algorithms. In this case, we have benchmarked the effect of flow exporters: Maji, YAF,
Softflowd, Netmate and Tranalyzer. We have employed eight different traffic traces for the botnets: Citadel, Zeus, Conficker,
Kelihos and Cutwail. Last but not the least, we have employed the machine learning algorithms: C4.5, SVM, ANN, Bayesian
Networks, and Naive Bayes as the classifiers for the botnet traffic identification.

A. Data sets

Data sets employed in this research can be grouped into two different categories: (i) Traffic log files captured in the wild
and made publicly available; (ii) Traffic log files captured by the authors (these are also made publicly available [15]). In the
first group, a Zeus data set was obtained from Snort website and another one from NETRESEC repository. Moreover, one
Citadel, one Kelihos and one Cutwail traffic data sets also obtained from NETRESEC repository.
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TABLE II: NIMS data specifications

data set No. of Domain names
Alexa (NIMS) 500

Citadel (NIMS) 42
Zeus (NIMS) 684

Conficker (NIMS) 1537546

Fig. 2: Number of Extracted Flows

In the second group, as discussed in section III, we have captured traffic data sets as a result of the communications with
Alexa, Zeus, Citadel and Conficker servers where the domain names of these servers were published in the publicly available
lists. Given that even Alexa lists (representing normal traffic) might have malicious domain names [41], we manually extracted
500 benign domain names from Alexa lists to generate the normal traffic data sets employed in this work2. As discussed in
section III.A, for Zeus botnet, we employed the domain name list provided by ZeusTracker and DNS-BH blocklists [18][19].
The domain names from the ZeusTracker Citadel list forms the basis for Citadel botnet. These are the domain names that
were still active (after Microsoft’s Citadel botnet takedown operation in June 2013). Finally, Conficker domain names were
obtained from the Bonn university and DNS-BH published Conficker domain name lists [23][19]. Collecting the domain name
lists, we attempted to establish an HTTP-based communication with the domain names (they represent the potential C&C
servers) and capture the traffic in the process. Table II shows the number of domain names that we attempted to communicate.
It should be noted here that we did not use any sampling while capturing the traffic. In other words, we captured all of the
transmitted/received packets. Hereafter, we will refer to our generated data sets as NIMS data sets.

Once we captured the traffic data sets, the aforementioned five flow exporters are applied on the traffic captures. Figure
2 presents the number of extracted flows by each of the tools on all of the data sets. However, Conficker (NIMS) data
(approximately 15 million packets) is actually much bigger than the other data sets, so we only presented a 0.5% of it (i.e.
about 10000 number of flows for Softflowd) to be able to have a readable Fig. 2. As shown in Fig. 2, Tranalyzer, Maji and
Softflowd tools export almost the same number of flows for all of the data sets. They also provide the highest number of flows
for a given traffic data set. This is not surprising since all three of these tools are uni-directional flow exporters. On the other
hand, YAF and Netmate did not show any consistent behavior over the data sets. This might be caused by the rules defined by
the tools. For example, Netmate did not export any flow for Kelihos (NETRESEC) because in that data set, the number of out
of order packets was higher than the acceptable threshold defined in Netmate. A comparison between the number of exported
flows by uni-directional and bi-directional exporters shows that the number of exported flows by uni-directional exporters is
almost two times higher than the number of flows by bi-directional exporters for all of the data sets except for Citadel (NIMS)
and Zeus (NIMS). This shows that Citadel (NIMS) and Zeus (NIMS) have more one-way communications than the other data
sets which can be caused by the number of unsuccessful connection requests or long (un-closed) connections that are split into
multiple flows by the exporters according to the maximum lifetime threshold.

Table I shows the number of features supported by each of the exporters. Because of the page limitations, we cannot give
the full list of these attributes in this paper, but interested readers can visit the website for each tool and see the full list of
these attributes. We employed all of features provided by the exporters/collectors as inputs to our machine learning classifiers
except the IP addresses, port numbers and any non-numeric features. The reasons behind these are as follows: IP addresses
can be anonymized whereas port numbers can be assigned dynamically. Thus, employing such features may decrease the
generalization abilities of the detection systems for unseen behaviors. Moreover, the presentation of non-numeric features may
introduce other biases to the classifiers [42] so it is left to future work to introduce such features.

2http://web.cs.dal.ca/∼haddadi/Alexa-list.pdf
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B. Performance criteria for botnet classification

In traffic classification, two metrics are typically used in order to quantify the performance of the classifier: Detection Rate
(DR) and False Positive Rate (FPR).

1) Detection Rate: In this case, DR reflects the number of the correctly classified specific botnet flows in a given traffic
file. It is calculated using Eq.1:

DR =
TP

TP + FN
(1)

where TP (True Positive) is the number of botnet flows that are classified correctly, and FN (False Negative) is the number
of botnet flows that are classified incorrectly (as normal flows).

2) False Positive: In this case, FPR shows the number of normal traffic flows that are classified incorrectly as the botnet
flows, Eq.2.

TPR =
FP

FP + TN
(2)

where TN (True Negative) is the number of normal traffic flows that are classified correctly.
3) Time Complexity: Complexity can be measured on different criteria such as memory consumption, time or solution. In

this case, we employ computation time as the time complexity, which is an important metric for machine learning classifiers
to measure their computational cost during the training phase.

Naturally, a high DR, a low FPR and a low time complexity are the desirable outcomes.

C. Results

The aforementioned classification algorithms were selected in this research, because of their high performance reported in
the literature regarding the network traffic classification specifically in botnet detection [3][7][5][38][6][39]. We employed these
classification techniques via Weka, a well-known open source tool in this field [43]. In general, a machine learning classifier
requires a number of steps. First, a matrix of instances (in this research, instances are flows) versus features (attributes) is
needed to describe the data set. A vector of features describes each instance (flow) in a given traffic file. The features are
used as values to quantify different characteristic of a flow such as the average packet size or the minimum inter-arrival time.
Second, a label (ground truth) is provided for each flow, which is the class description. In this research, the label for a flow in
the Alexa traffic file is ”normal”, whereas in a Zeus traffic file is ”Zeus botnet”. Finally, a classifier needs to be trained using
a data set. This is called the training phase. This phase produces a solution as the output. This solution can then be verified
on a test data set (unseen instances). So, to evaluate these classifiers on our traffic flows, first a balanced training data set is
formed by selecting randomly (uniform random selection) from the non-malicious flow data set as well as from each of the
malicious data sets. Classifiers were then run on each balanced training data set using 10-fold cross-validation to further avoid
any data set biases that might affect the results.

After analyzing the NIMS generated traffic, we observed that successful DNS responses were received from 95% of Alexa,
75% of Zeus, 25% of Citadel and 1% of Conficker domain names. In a real-life botnet communication, a bot queries the C&C
domain names provided by the DGA (or the botmaster) and only one of them is resolved as the alive C&C server at the time of
the communication. We have confirmed the data generated using such an approach in our previous research [6][15]. Therefore,
the combination of these resolved and unresolved domain names of the list we employed in this work can be considered as
the representation of a real botnet behavior.

Figure 3 shows the classification results of the five classifiers on the traffic flows generated by the five flow exporters. These
the results demonstrate that the performance of a classifier does indeed change depending on which flow exporter is used. For
example, on these data sets, it seems that each classifier works better if the flow exporter is Tranalyzer or Maji. In particular, the
performance of C4.5 and ANN on Maji and Tranalyzer indicates that ANN did perform better (but not statistically significantly
better) than C4.5. However, the C4.5 decision tree-based classifier performs not only competitively but also with a considerable
low time complexity, Table III. Therefore, if the time criteria is an important factor in an environment, C4.5 classifier has an
advantage over ANN. Moreover, C4.5 classifier has the ability of choosing the most appropriate features from all the features
given to it. Such an ability enriches any analysis that can be done post classification. This enables the human expert (security
analyst/ system administrator) employing this system for a better understanding of the solution and the botnet behavior. These
properties of the decision tree classifier along with the results imply that the C4.5 classifier seems to be is a better choice for
our purposes in terms of performance metrics used and the data sets employed in this research.

While detection systems with low DR are important in understanding and identifying the behavior of interest, in this case
the specific botnet, the effect of FPR can be very important, too. In the case of botnet classification (detection), any normal
behavior that is mistakenly identified as botnet not only increases the false positive (alarm) rate but also decreases the trust
to the detection system. Therefore, we analyzed the FPR of the five classifiers, and the effect (if any) of the flow exporters
on this performance metric. Figure 4 shows the FPR of C4.5 and ANN. Because of space limitations, we only present the
results for the best two classifiers. However, the trend is the same for all classifiers. These two classifiers were also the best
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((a)) C4.5 ((b)) SVM

((c)) Naive-Bayes ((d)) Bayesian Networks

((e)) ANN

Fig. 3: DR of the five classifiers on five flow exporters on all data sets

((a)) C4.5 ((b)) ANN

Fig. 4: FPR of the C4.5 and ANN classifiers on the five flow exporters on all data sets

performers in terms of minimizing the FPR among all the classifiers employed in this research on all the exporters and data
sets. These results demonstrate that the flow exporter used also has an effect on the FPR rate obtained for all classifiers. On
these data sets, the lowest FPRs are provided by the ANN using Maji as the exporter (2% lower FPRs in average, compared to
C4.5). However, still some of the FPR obtained even using Maji feature set is high to accept in practice. So, in the following
we study this phenomena in more detail.

In the evaluations presented above, we used all the network packets available in the networks traces to convert them to
flows. As the next step, we want to analyze how the performance of the aforementioned systems would change (if any) when
traffic filters are in place on a given network. In practice, almost all network operation centers run packet filters to analyze
and shape their traffic according to their organizational needs and policies. To this end, we conduct a series of experiments
applying HTTP and DNS filters on the data sets before classifying them for botnet detection.
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TABLE III: Average training time (in seconds)

Flow Exporters C4.5 ANN
Netmate 1.42 0.82

Softflowd 0.30 21.60
Tranalyzer 1.42 156.68

YAF 0.06 4.1
Maji 0.82 75.88

((a)) C4.5 ((b)) ANN

Fig. 5: DR of C4.5 and ANN classifiers on five flow exporters using HTTP traffic only on all data sets

1) HTTP filtering: Given the wide range of the HTTP usage on the Internet, most recent botnets employ HTTP protocol to
hide their malicious activities among the normal web traffic [44]. This way, they can easily bypass firewalls and avoid botnet
detection mechanisms. Thus, the botnets that we employed in this work also utilize HTTP protocol to communicate with their
bots. In short, to investigate the effect of protocol filtering on botnet detection via machine learning approaches using different
flow exporters, we filtered just the HTTP traffic flows and forwarded them to our botnet classifiers. Then, we repeated our
approach presented above to train our classifiers and evaluate them again.

Figure 5 shows the botnet classification results versus the normal traffic using the HTTP filter. Because of the page limitations,
we again choose the two best performing classifiers (in terms of DR and FPR) and present their performances here. Similar to
the traffic classification without any packet filtering, C4.5 and ANN outperformed the other classifiers. The results also support
our observations that the classifiers could differentiate botnet behavior with higher performances when a specific flow exporter
is used as opposed to the others. Almost all of the five classifiers showed performance increases in terms of average DR and
FPR when Tranalyzer and Maji were in use on all data sets except one. In this case, the classifiers showed a decrease in DR
on Zeus data sets when using Maji while an average 2% increase is observed with Tranalyzer on Zeus data set. Therefore, in
these experiments where the HTTP filter is used, we have a clear winner in terms of flow exporters used. This is Tranalyzer.
Tranalyzer performs better than Maji on these data sets. This observation might imply that HTTP traffic could be better
presented by Taranalyzer flow features rather than the other flow exporters features. A close look at the features that the C4.5
classifier employed using Tranalyzer demonstrate that inter-arrival based features are the ones that are highly employed in the
decision tree solutions while such features are not available in Maji. Hence, we speculate that these supported features by
Tranalyzer are very useful in terms of representing HTTP traffic.

As discussed earlier, DR is not the only parameter that should be analyzed to evaluate the performance of a classifier. Figure
6 shows the FPR of the two classifiers. Compared to Fig. 4, both classifiers showed at least 1% reduction in the FPR on all
data sets. Moreover, these results indicate that although the DR of the classifiers might not change significantly when traffic
filtering is in place, the FPR (mis-classification) can change significantly (lowered false alarm rates). This is an evidence on
how useful the traffic filtering can be when employed to refine the data to a very specific area which could be the center
of focus specifically for the challenging botnet detection research. To investigate the effect of protocol filtering on botnet
detection furthermore, we run a series of experiments on DNS filtering given that DNS is another essential protocol in botnet
communication.

2) DNS filtering: In addition to its many legitimate uses, DNS is also used by botnets to manage their infrastructures.
Botnets employ the DNS protocol along with fluxing techniques to solve the single point of failure problem of their C&C
servers and to achieve mobility [2]. Many botnets use the DNS legitimate infrastructure to locate their C&C servers to avoid
static configuration of C&C servers IP addresses such as Zeus, Conficker and Pushdo.

Thus, we also evaluate the aforementioned systems using only the DNS traffic flows via the DNS filters we set on the
captured traffic. In this case, some of the data sets (Cutwail, Kelisos and Zeus from Snort and NETRESEC) are very short
traces, so they do not have enough DNS packets to generate enough DNS flows when the filters are in process. Thus, in Fig.
6 where the results of this evaluation are presented, there are no performance indicators for these data sets. On the rest of the
data sets though, all of the classifiers showed some level of improvement in their performances when DNS filters were set,
compared to the classification performance of the traffic without filtering, fig. 3. As shown in the fig. 7 and 8, C4.5 performance
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((a)) C4.5 ((b)) ANN

Fig. 6: FPR of C4.5 and ANN classifiers on five flow exporters using HTTP traffic only on all data sets

((a)) C4.5 ((b)) ANN

Fig. 7: DR of C4.5 and ANN classifiers on five flow exporters using DNS traffic only on all data sets

(as the best performing classifier in this experiment) is improved by DNS filtering by an average of 3% in terms of DR and
4% in terms of FPR using all five exporters. However, these results suggest that again Tranalyzer seems to be the winner when
DNS filtering is in use with better DR and acceptable FPR.

D. Highlights

Overall, here are the highlights of the evaluation results we presented above: (i) Although some of the flow exporters in
this work are based on the same standard (i.e. IPFIX), the number of features they support varies, e.g. Maji has 59 whereas
YAF has 46 features. Some of these features are the ones that employed in the machine learning solutions. For example,
“MinimumIPTotalLength” is utilized by C4.5 on Maji feature set while YAF does not support such a feature. (ii) Since flow
exporters have different mechanisms to generate flows (based on the standard they follow), these tools export a different
number of flows for a given traffic file. In this case, not only the number of exported flows are different, but also sometimes,
the exporter might not generate any flows due to its pre-defined rules, e.g. Netmate on Kelihos traffic trace. (iii) Among the
five flow exporters, all of the classifiers performed better when Tranalyzer and Maji were employed, whereas the third place
belongs to Netmate. Therefore, this demonstrates that the tool employed for flow exporting analysis does have an effect on the
traffic classification performance. (iv) On the other hand, the protocol filtering experiments show that botnet classification can
be improved by getting the classifier focus on an specific portion of the traffic in more detail (i.e. HTTP connections only).
As indicated by the results in the two series of filtering experiments, Tranalyzer flow exporter and the C4.5 classifier are the

((a)) C4.5 ((b)) ANN

Fig. 8: FPR of C4.5 and ANN classifiers on five flow exporters using DNS traffic only on all data sets
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winners among the exporters and the classifiers, respectively, with almost no exception. Then, ANN comes next as the second
best performing classifier. (v) Comparing HTTP filtering versus DNS filtering shows that the FPRs and DRs did not change
significantly in terms of focusing on one filtering versus the other. However, HTTP filtering seems to increase the performance
more than the DNS filtering. This might be because all of the botnets we included in our evaluations employ HTTP as their
communication protocol whereas DNS protocol is used just to find the C&C servers by the botnets employed in this research.

V. CONCLUSION

Botnets are considered as one of the main security threads on the Internet due to their high reported infection rate, extensive
range of malicious activities with active update capability. Hence, the need for botnet detection approaches that can adapt to the
botnet evolution is very important. To this end, many automatic botnet detection approaches applying network traffic analysis
are proposed in the literature. Each of these systems utilizes particular network traffic features based on flows (packet headers)
in their analysis of the traffic. Hence, in this work, we benchmarked five different feature sets extracted by open source flow
exporters and investigated the effect of these flow (packet header based) features in botnet detection. To this end, five machine
learning classifiers that are frequently used in network traffic classification were employed. Given that botnet communication
can be divided into different parts (such as locating the C&C server and establishing a connection) and for each of these parts,
different protocols are utilized based on the type of botnets, we also investigated the effect of protocol filters with the main
focus on HTTP-based botnets. As the results show, the choice of feature set and protocol filter is very important and can
greatly affect the performance of the botnet detection system. Our results suggest that open source flow exporters Tranalyzer
and Maji enable the classifiers to identify different botnet behaviors with significantly higher performances on all the data sets
employed in our work. For the evaluations performed in this research, the combination of the Tranalyzer tool with the C4.5
classifier using the HTTP filter gives the best performance in terms of DR and FPR on all the botnet data sets employed.
Future work will explore the effect of non-numeric features as well as other protocol filters for botnet traffic analysis.
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