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Abstract. Several network models have been proposed to explain the link structure observed
in online social networks. Such models are usually justified by showing that they can repli-

cate certain observed features of real networks, such as a power law degree distribution, a

high degree of clustering, and the small world property. This paper addresses the problem of
choosing the model that best fits a given real world network. We implement a model selec-

tion method based on un-supervised learning. An alternating decision tree is trained using
synthetic graphs generated according to each of the models under consideration. Graphs are

represented as feature vectors incorporating the frequency counts of all connected subgraphs

on 3 and 4 vertices as well as features describing the degree distribution and small world prop-
erty. We show that the subgraph counts alone are sufficient in separating the training data.

For the test data, we take four Facebook graphs from various American Universities. Our

results show that models incorporating some form of the preferential attachment mechanism
tend to perform the best.

1. Introduction

Over the last couple of decades, the study of social networks has revealed many distinguishing
features of social networks such as a power law degree distribution, high clustering coefficients
and small hop distances between individuals [13]. A number of models have been developed
that can replicate these features. The ability of these models to replicate some of the observed
features has been historically the sole justification to conclude that the model is an appropriate
one for social networks. However, two graphs with similar global features can have drastically
different local structure. Whether or not models can effectively generate similar local structure
has been widely ignored when proposing models for real networks. Recent work in validating
models for biological networks [11], [12], has focused on the distribution of small subgraphs in
the network, called the graphlets, thus pushing the local structure of the network to the forefront
of the validation process. Work in graph similarity methods [16],[17], have also begun focusing
on comparing networks using graphlets.

The goal of this work is to find which of six selected models is the most capable of replicating
a real online social network. Finding the network model most appropriate for online social
networks provides insight into the growth mechanism that is the most dominant in determining
the structure of online social networks. We consider models based on preferential attachment,
copying and embedding the nodes in a geometric space. A specific question addressed is whether
a geometric model is appropriate. In a geometric model, nodes are assumed to be embedded
in a metric space, and formation of edges is influenced by the metric distance between vertices.
(For a recent overview of geometric models, see [8]). The advantage of a geometric model is that
the metric space can be seen as the social space representing the interests, hobbies and other
attributes of the individuals corresponding to the nodes of the social network. Thus, assuming
a geometric model gives the possibility for inference of the social space from the network, thus
providing a basis for identifying communities or individuals with similar interests.

Our approach to model validation is largely adopted from work by Middendorf et al. [11]
for validating models for protein-protein interaction networks via discriminative classification
techniques from machine learning. In our work we modify their approach and extend it to online
social networks. Our work is different in two ways: (i) we build our decision tree using a different
algorithm, and (ii) we extend their approach to much larger and denser graphs.
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We build an alternating decision tree classifier using the LADTree algorithm [22]. We use
graphs generated from our proposed models as training data and snapshots of the online social
network Facebook as our test data. Our Facebook data comes from the Mason Porter Facebook
100 dataset and was downloaded from [15]. We represent the Facebook graphs as feature vectors.
Features included describe both the local and global structure of the graphs. To represent the
local structure, we include the counts of various small connected subgraphs called graphlets as
features. To represent global structure, we include features which describe the degree distribution
and the small world property. Specifically, we include percentiles of the degree distribution, the
assortativity coefficient [18] and the average path length as features.

We verify the conclusion of [11] that graphlets can effectively separate different models and we
show that including information about global features does not greatly improve the classification
accuracy on the training models.

In the next section we describe our method in detail. We present, descriptions of the models
used, the testing data used (Facebook), the features selected to represent the graphs and the
classification algorithm selected. In Section 3 we discuss the results of our experiment. We
first study the performance of our classifier using a test set containing graphs generated from
our training models. We conclude, that graphlet counts work extremely well for separating the
different models. We also observe that including features corresponding to the global structure
of the graph does not increases the classification accuracy. We also test how robust the classifier
is by artificially creating noise in the data by changing some of the edges. Finally, we evaluate
how well our models perform when we use our Facebook data as test data. Though we only
test four different Facebook graphs, we observe that models which incorporate some level of
preferential attachment tend to perform the best.

2. Experimental Procedure and Implementation

Our model selection method follows three steps. First, we obtain the training data, by gen-
erating 1000 graphs according to each of the six models we have selected: the Preferential
Attachment Model, the Copy Model, the Random Geometric Model (2D and 3D), and the Spa-
tial Preferred Attachment Model (2D and 3D). The details of the models are given in Section
2.1 below. The parameters of the models are randomly sampled from a range such that the
graphs generated are similar in size and density to the test data. The restriction of the sample
range of the parameters is necessitated by the fact that the graphlet counts depend heavily on
the size and density of a graph, even for graphs generated by the same model. For this reason
it is necessary to generate a new training set for each test graph which greatly increases the
amount of time to test different Facebook graphs. It is currently unclear whether there exists
an adequate normalization method, which would make it possible to compare graphlets counts
for graphs of different densities.

Next, we use the training data to build a multi-class alternating decision tree (ADT). The
details of the construction of the ADT are given in Section 2.3 below. We represent the graphs
using features that capture both the local structure of the graph, through the graphlets, and the
global structure. A description of the features is given in Section 2.2 below.

Finally, we compute the feature vectors corresponding to on-line social network data, in this
case snapshots of Facebook. Running this feature vector through the classifier gives a score for
each model corresponding to how well the model fits the test data. Our experimental procedure
is repeated for four different Facebook networks taking from the following American universities
: Princeton, American University, MIT and Brown. We obtained this data from Mason Porter’s
et al. Facebook100 data set which is introduced in[27]. We discuss the results of these four
experiments in Section 3.

2.1. Models. We have implemented six different graph models. Our choice of models was moti-
vated by the desire to test a wide range of models commonly proposed for social networks, based
on a number of different attachment principles. Special attention was given to spatial models, a
class of models that is gaining support because of the ability to model node attributes through
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spatial representation. Wherever more than one variation of the model has been proposed in
the literature, we have opted for the simpler versions. This choice was motivated by the wish to
avoid ambiguity in the classification.

All model generation algorithms are written in Python using the graph-tool module [14]. Our
training set includes only undirected graphs without multiple edges. In the case where a model
generates a directed graph, we ignore the direction of the edges after generation and remove any
multiple edges.

Preferential Attachment Model (PA). The Preferential Attachment model was first in-
troduced by Barabási and Albert in [3] as a model for the World Wide Web. The model incor-
porates the mechanism that a new user is more likely to attach to a user that is “well known”
(has many incident edges). The model has two parameters, d ∈ N and α ∈ [0, d]. It generates
a sequence of graphs {Gt : t ∈ N ∪ {0}} where G0 = H is a small random seed graph. We will
take H to be the Erdös-Rényi random graph G(100, ed), where ed is the edge density of the test
graph. At each time step t > 0, Gt is formed by adding a new vertex vt and adding d edges
(vt, wi) where wi is chosen with probability proportional to its degree. Precisely, the probability
that wi is chosen is given by:

P (w = wi) =
degGt−1(w) + α

2d(t− 1) + |E(H)|+ α(t− 1)
,

where degGt−1(w) is the degree of w in Gt−1. Thus, vertices of high degree are more likely to
accumulate more edges.

Copy Model (COPY). The Copy Model was originally proposed in [4] as a model for the
World Wide Web and further studied in other works such as [5],[6]. The idea behind this model
is that a person tends to meet friends through a currently existing friend. The model has two
parameters p ∈ (0, 1) and d ∈ N+. It generates a sequence of directed graphs {Gt : t ∈ N∪{0}}.
Again, G0 = H is a small random seed graph. We take H to be the directed version of the
Erdös-Rényi random graph with 100 vertices and p equal to the edge density of the test graph.
At each time step t > 0, we add a new vertex vt. We then uniformly at random choose a vertex
w from Gt−1 and add an edge from vt to each out-neighbour of w with probability p. We then
chose d more vertices u uniformly at random and add directed edges (vt, u). Since we are only
interested in undirected graphs, we ignore edge orientation after we generate the graph.

Random Geometric Model (GEO). The Random Geometric Model is a model where the
vertices are embedded in a geometric space and edges are determined by a threshold on the metric
distance between two vertices. A theoretical analysis of a variety of the model corresponding to
the case p = 1 in our description, can be found in [9]. The model was used to model protein-
protein interaction networks in [12]. The model has three parameters, r ∈ (0, 1), p ∈ (0, 1) and
d ∈ N+. In a geometric model, the vertices of the graph are uniformly at random embedded into
a metric space S. If the distance between vertices in this space is less than a specified threshold
r, then an edge is added with probability p. For small values of r, the GEO model has a large
average path length value since short cuts between vertices that are far away are not possible.
In other words, this model does not exhibit the small-world property. To this end we add a
small number of random edges d so that some edges between distant vertices are possible. We
consider a two dimensional (GEO2D) and a three dimensional (GEO3D) version of this model
where the metric space S is [0, 1]2 and [0, 1]3 respectively, equipped with the torus metric.

Spatial Preferential Attachment Model (SPA). The Spatial Preferential Attachment
model introduced in [7] combines a geometric model with a preferential attachment model. The
vertices are placed in the same metric spaces as the two GEO models above giving us a two
dimensional (SPA2D) and three dimensional (SPA3D) version of the SPA model. The model
has three parameters A1 ∈ (0, 1), A2 ≥ 0, and p ∈ (0, 1]. We form a sequence of directed graphs
{Gt}, t ∈ N ∪ {0} with G0 as the empty graph. We define a region of influence around a vertex
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v at time t ≥ 1, written R(v, t), with area

|R(v, t)| = A1deg
−(v, t) +A2

t

or R(v, t) = S if the above is greater than 1. In the above, deg−(v, t) is the in-degree of v at
time t. At each time step t ≥ 1, a point in S is uniformly at randomly chosen to be the new
vertex vt. For each vertex u ∈ VGt−1 such that v ∈ R(u, t − 1), we independently add an edge
from vt−1 to u with probability p. In this model, the influence regions are proportional to the
in-degree of the vertex but decrease over time. Again, after model generation, we ignore the
direction of the edges.

2.2. Features. We represent our graphs by 17 features in a vector representation. These features
include information about the global properties of the graphs, specifically the degree distribution,
the assortativity coefficient and the average path length between vertices. In addition, we capture
the local structure through the raw graphlets counts for the connected subgraphs of size 3 and
size 4. Below is a description of each of the features.

Degree Distribution Percentiles. The degree distribution is a favourite property studied
for most real world networks. A distribution with a power law tail is a distinguishing property
of many such networks, including online social networks. The most logical feature to use here
would be the coefficient of the power law degree distribution. Unfortunately, not all the models
generate graphs with a power law degree distribution (e.g. random geometric models). Also,
even if a model does generate a power law degree distribution it can be difficult to determine its
power law coefficient. Instead, to measure the spread of the degree distribution, we consider the
percentiles of the distribution formed by breaking it evenly into 8 different pieces. This give us
7 features, called deg1, deg2, deg3, deg4, deg5, deg6, and deg7.

Assortativity Coefficient. The assortativity coefficient r ∈ [−1, 1] is a measurement of how
well vertices of similar degree link to one another in the network. An assortativity coefficient
close to −1 indicates that vertices tend to link to vertices of different degrees and a value close to
1 indicates that vertices tend to link to vertices of similar degrees. It is shown in [13] that online
social networks have positive assortativity coefficients while the World Wide Web and biological
networks have negative assortativity coefficients. We compute the assortativity coefficient in
graph-tool using the following equation from [18],

r =
∑

i eii −
∑

i aibi
1−

∑
i aibi

where eij is the fraction of edges from a vertex of degree i to a vertex of degree j and
ai =

∑
j eij and bj =

∑
i eij .

Average Path Length. The small world property, implying a small average distance be-
tween nodes, is another distinguishing aspect of social networks. It is shown in [13] that online
social networks have small average path length. Here we will compute the average path length
between nodes by selecting 100 random pairs of nodes and calculate the length of the shortest
path between them using a breadth-first-search which is implemented in graph-tool.

Graphlets. To characterize local structure, we include as features all the counts of connected
subgraphs of size 3 (two nonisomorphic graphs) and 4 (six nonisomorphic graphs), as shown in
Figure 1 below. Unfortunately, no algorithm is known which computes the full counts for these
subgraphs efficiently. As a compromise, we use the sampling algorithm of Wernicke [19] to
sample the number of these graphlets. As input, Wernicke’s algorithm takes in a labeled graph
and an integer k, the size of subgraphs to be counted. The algorithm generates a tree of depth
k by looping through each vertex and performing a depth first search on the k-neighbourhoods
of each vertex. When the algorithm terminates, a tree of depth k has been formed where the
leaves of the tree correspond to all the size k connected subgraphs of G. Building the entire
tree is extremely time consuming for the size of graphs we are considering. Wernicke proposes
a sampling procedure using his algorithm. A specified proportion p of the subgraphs can be
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g1 g2 g3 g4 g5 g6 g7 g8

Figure 1. The graphlet features

found by skipping steps in the algorithm with a probability which depends on the depth of the
tree. Experiments performed by Wernicke in [19] show that the sampling algorithm samples the
correct proportion.

For our experiments, we sample 1% of the size 3 graphlets and 0.01% of the size 4 graphlets.
The computation of the graphlets is by far the most time consuming of all the features. For
the size and density of graphs we are considering it was not feasible to include subgraphs of size
greater than 4. In [11], the authors consider subgraphs up to size 7 but this is only possible
because the graphs are much smaller and sparser then those considered here. Inclusion of
graphlets of larger size will only be possible for graphs of the size and density we consider here
if new methods are developed to compute or estimate graphlets counts which show a dramatic
increase in efficiency.

2.3. Classification. To classify our data we use the multi-class alternating decision tree (ADT)
algorithm LADTree of Holmes et al. [22]. ADTs are a class of boosted decision trees which
were introduced by Freund and Mason in [20]. Boosting [21] is a well established classification
technique which combines so called “weak classifiers” to form a single powerful classifier. In
successive steps called boosting steps, weighted combinations of the weak classifiers are applied
to the training data, and the weights are adjusted in each step to improve the classification.

The first ADTs were built using the AdaBoost boosting algorithm [21]. The ADT used
here, LADTree, is built on the lesser known LogitBoost boosting algorithm of Friedman, Hastie
and Tibshirani [23]. Friedman et al. show in their work that both boosting algorithms are
fitting an additive logistic regression model. They argue that LogitBoost is the more appropri-
ate algorithm, because it fits the regression model using the more typical maximum likelihood
minimization criteria, whereas AdaBoost uses an exponential minimization criteria.

In Figure 2, we show a partial LADTree which was constructed during our experiment. An
ADT has two types of nodes, decision nodes (rectangles in Figure 2) and prediction nodes (ellipses
in Figure 2). Decision nodes contain a boolean predicate which corresponds to a threshold on
one of the features in the feature vectors for the training data. The prediction nodes contain
real-valued scores, one for each of the classes in the training set. In our case, we have six different
classes or models so each prediction node contains six scores.

The LADTree begins with a prediction node which has a score of zero for each of the models.
In each boosting iteration, a decision node is added to the tree along with two prediction nodes
as its children in the tree. The new decision node can be added as a child to any existing
prediction node in the tree. The placement of the decision node and its Boolean predicate is the
one that gives the best separation of the training data. The exact criteria for this is provided
by the LogitBoost algorithm [23].

Once the LADTree has been formed, new instances, typically called the test data, can be
classified by the tree. For us, the test data is the feature vector for the Facebook graph we
wish to classify. The feature vector for the Facebook graph will determine its flow through the
tree. The test instance travels through all possible paths it can reach in the tree resulting in a
classification score which is the sum of all prediction nodes reached along the way. This results
in six different scores, one for each of the six different models, Fj , j = 1, 2, 3, 4, 5, 6. A positive
score is a good fit, a negative score is a bad fit. The model which obtains the highest score is
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PA: 0
GEO2D: 0
COPY: 0
SPA2D 0
GEO3D: 0
SPA3D: 0

S1 : assort < 0.02

Y

PA: 0.481
COPY: 0.481

GEO2D: -0.963
SPA2D 0.481

GEO3D: -0.963
SPA3D: 0.481

N

PA: -0.867
COPY: -0.867
GEO2D: 1.733
SPA2D -0.867
GEO3D: 1.733
SPA3D: -0.867

S5 : g6 < 4117.5

Y

PA: 0.019
COPY: 0.094
GEO2D: 0.01
SPA2D -0.244
GEO3D: -0.003
SPA3D: 0.125

N

PA: -0.602
COPY: 1.101

GEO2D: -0.903
SPA2D: 1.227
GEO3D: -0.424
SPA3D: -0.398

S12 : g8 < 21.5

Y N

PA: -0.739
COPY: 0.034
GEO2D: 1.272
SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

PA: -0.472
COPY: -0.585
GEO2D: 0.017
SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

S2 : assort < 0.006

Y N

PA: -0.739
COPY: 0.034
GEO2D: 1.272
SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

PA: -0.472
COPY: -0.585
GEO2D: 0.017
SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

Figure 2. Partial LADTree using the full feature vector with 200 boosting iterations.

deemed to be the model that best describes the test data. The absolute values of the scores
provide the level of confidence in the prediction. Thus, a large positive Fj indicates that model
j is a good model for the test instance and a large negative Fj indicates that model j is a bad
model for the test instance. The scores Fj can be readily interpreted as class probabilities pj by
the equation pj = eFjP6

j=1 eFj
which results in inverting the additive logistic model which is fitted

by the LADTree algorithm [22].
The advantage of using ADTs is that they require no specific assumption about the geometry

of the input space for the features. Thus we are free to incorporate any range of features such
as degree distribution percentiles, average path length and subgraph counts without considering
any potential dependence amongst them. The importance of each feature is based on how well
it separates the 6 different models. We use the Weka software package for Java [25] to train all
the LADTrees used in our experiments.

3. Results

We tested our approach on four different social network graphs taking from Mason Porter’s
et al. Facebook100 data set downloaded from [15]. Each graph in the data set corresponds to
users at different universities. For our test data we take: Princeton University which has 6596
vertices and 293329 edges, American University which has 6386 vertices and 217661 edges, MIT
which has 6440 vertices and 251252 edges and Brown University which has 8600 vertices and
384525 edges. In these graphs, each vertex corresponds to a Facebook user, and two vertices are
connected if they are Facebook “friends”.

For each of these graphs, the process is as follows. First, we generate a training set of 6000
graphs which are the of same size as the Facebook graph, and have edge density which differs
by at most 5% from that of the Facebook graph. In order to test the effect of different features
and a different number of boosting iterations, we build 9 LADTree classifiers. The classifiers
are built using 3 different types of feature vectors; the full feature vector which incorporates
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all 17 features described in Section 2.2, the graph feature vector which uses only the graphlet
features and the other feature vector which uses only the non-graphlet based features. For each
of the feature vectors under consideration we build a classifier using 50, 100 and 200 boosting
iterations, giving 9 classifiers in total for each experiment. To build the classifiers we use the well
known machine learning software package Weka [25]. Finally, we use the classifiers to classify the
Facebook graph. The model which produces the graphs which get the best score is considered
to be the best model for the data.

3.1. Testing the Classifier. Before performing our experiments on the actual Facebook data,
it is important to test the classifier to find out how we should interpret the results. To this end,
we generate an additional 100 graphs for each of the models, and apply the classifier to this
known data set. Since we know exactly which class these synthetic graphs belong to, this should
establish an important baseline for the maximum and minimum possible scores achievable by
each model.

We also test the robustness of the classifier. To do this, we take the 600 synthetic graphs and
change a percentage of the edges by removing an edge from the graph and replacing it with a
new edge chosen uniformly at random. The goal is to see how fast the classification accuracy
deteriorates if an ever greater number of edges are changed. Overall, we have 6 test data sets
of 600 graphs each, with 0%, 5%, 10%, 15% , 20% and 25% of the edges randomly changed.
We generate the initial 600 graphs with the same density as the Princeton network and classify
them using the LADTree classifiers we have generated for the Princeton data. To determine the
importance of the graphlet features, we consider the classifiers built using both the full feature
vector and the graph feature vector.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 8.96 ± 1.18 -3.91 ± 2.39 -4.16 ± 1.18 0.17 ± 1.69 -2.38 ± 1.25 1.32 ± 0.82

COPY -2.3 ± 0.34 7.02 ± 0.24 -2.19 ± 0.27 -0.19 ± 0.23 -3.2 ± 0.28 0.85 ± 0.27
GEO2D -6.78 ± 1.59 -7.82 ± 3.55 9.13 ± 2.89 2.65 ±2.42 3.57 ± 1.47 -0.76 ± 1.55
SPA2D -5.51 ± 2.5 -11 ± 3.86 2.89 ± 2.27 10.16 ± 3.05 -2.36 ± 2.04 5.81 ± 1.76
GEO3D -6.14 ± 1.31 -8.42 ± 3.18 3.58 ± 1.61 -0.73 ± 1.05 9.04 ± 2.94 2.67 ± 2.32
SPA3D -4.09 ± 2.48 -9.97 ± 4.54 0.03 ± 2.2 5.22 ± 2.06 -0.26 ± 2.79 9.07 ± 2.84

Table 1. Full Feature 50 Boosting iterations Average value with standard deviation

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 11.92 ± 0.89 -4.61 ± 1.25 -4.61 ± 1.93 2.39 ± 1.65 -5.11 ± 1.46 0.03 ± 1.03

COPY -5.5 ± 1.67 11.73 ± 0.80 -0.34 ± 1.11 1.37 ± 1.02 -8.25 ± 1.93 0.99 ± 1.4
GEO2D -10.83 ± 1.96 -10.64 ± 4.54 12.59 ± 3.19 4.07 ± 2.42 6.02 ± 1.91 -1.2 ± 1.84
SPA2D -8.08 ± 3.57 -13.61 ± 4.57 3.04 ± 2.88 13.79 ± 3.72 -2.38 ± 3.45 7.25 ± 1.99
GEO3D -10.72 ± 2.21 -12.55 ± 5.11 5.81 ± 2.30 1.56 ± 2.07 13.25 ± 3.79 2.66 ± 2.4
SPA3D -6.62 ± 3.79 -13.04 ± 5.68 -0.09 ± 2.97 6.94 ± 2.17 -0.45 ± 4.13 13.26 ± 4.05

Table 2. Full Feature 100 Boosting iterations Average value with standard deviation

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 16.69 ± 1.5 -5.9 ± 1.55 -6.62 ± 2.75 2.42 ± 2.21 -8.90 ± 2.15 2.31 ± 1.66

COPY -8.2 ± 4.9 18.31 ± 0.8 -6.31 ± 1.61 1.95 ± 2.03 -9 ± 2.46 3.24 ± 2.05
GEO2D -16.79 ± 4.09 -18.23 ± 7.03 19.27 ± 3.01 5.48 ± 3.05 9.41 ± 3.44 0.86 ± 3.18
SPA2D -10.75 ± 5.6 -20.41 ± 6.61 5.46 ± 4.24 19.53 ± 4.40 -3.71 ± 5.34 9.88 ± 2.56
GEO3D -17.57 ± 4.34 -21.78 ± 8.46 8.92 ± 3.44 2.32 ± 2.96 20.5 ± 4.98 7.6 ± 4.12
SPA3D -8.73 ± 5.76 -20.74 ± 7.99 0.82 ± 4.55 9.59 ± 2.7 0.07 ± 5.94 18.99 ± 4.06

Table 3. Full Feature 200 Boosting iterations Average value with standard deviation

First, consider the scores generated by the classifier for the unchanged synthetic graphs,
shown in Tables 1, 2, 3, and 4. As expected, the graphs are overwhelmingly assigned to the class
corresponding to the model that generated them. The scores range roughly between -10 and 10
for 50 boosting iterations, -15 and 15 for 100 boosting iterations and -25 and 25 for 200 boosting
iterations for both the full and graph features. The performance of the classifier is consistent
over the different number of boosting iterations.
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Table 4 shows the performance on the synthetic graph when only the graph feature vector
is used. Again, almost all graphs are classified correctly. Also, the synthetic graphs receive a
similar or higher score for the correct class by using the graph feature vector, than by using the
full feature vector. Thus we can conclude that graphlets alone are sufficient to recognize the
graph structure of the models under consideration.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 10.36 ± 0.51 0.45 ± 0.44 -5.26 ± 0.72 -0.6 ± 1.02 -6.19 ± 0.78 1.24 ± 0.98

COPY 0.07 ± 0.95 9.71 ± 0.85 -5.27 ± 0.36 0.35 ± 1.16 -5.95 ± 0.64 1.1 ± 0.36
GEO2D -12.18 ± 3.11 -14.9 ± 4.77 13.86 ± 3.98 5.97 ± 3.11 6.53 ± 2.49 0.72 ± 1.85
SPA2D -11.71 ± 2.89 -13.74 ± 4.32 2.35 ± 2.55 15.41 ± 3.44 -0.78 ± 3.31 8.47 ± 2.27
GEO3D -13.21 ± 3.28 -15.36 ± 4.39 7.45 ± 1.86 3.27 ± 2.02 13.39 ± 2.84 4.46 ± 2.67
SPA3D -11.41 ± 3.34 -14.22 ± 4.61 -0.03 ± 2.32 9.06 ± 2.17 1.62 ± 3.56 14.99 ± 3.03

Table 4. Graph Feature 100 Boosting iterations Average value with standard deviation

Next, we apply the classifiers to the modified graphs, to test the robustness of our classification
method. Tables 5 and 6 give the classification accuracy for each of the 6 test data sets using
the full feature vector and graph feature vector respectively. The classification accuracy on
the original unchanged test data is very high for both the full and graph feature vectors. The
classification accuracy is slightly but not significantly higher when only the graph feature is
used. When 5% of the edges are changed the classification accuracy for the full feature drops
to just below 75% while for the graph feature vector the accuracy is just below 80%. In this
case, the graph feature vector alone performs significantly better than the full feature vector.
For all other percentages of edge changes, the difference between the two is not significant. The
conclusion of this experiment is that the graph features alone provide just as much information
as the full feature set. In fact, as is the case when 5% of the edge were changed, including
additional non-graph information can decrease the accuracy of the classifier. When 10% of the
edges are changed both feature vectors give classification accuracies around 65% which is still
a fair performance. When 15% of the edges are changed, the accuracy for both feature vectors
drops to around 55%. At 20% and 25%, the accuracy dips below 50%. The accuracy at this
level is not good but it is still much better than random guessing which would give the correct
classification about 16.67% of the time.

Edge Changes Boosting Iterations
% 50 100 200
0 94.67 95.67 97.17
5 73.83 71.5 74.33
10 64 63.33 65.17
15 57.33 56.17 56.33
20 51.17 48.67 48.83
25 44.17 43 41.17

Table 5. Full Feature Classi-
fication Accuracy

Edge Changes Boosting Iterations
% 50 100 200
0 94.83 96.67 97.83
5 78.67 79.83 79.67
10 64 63.5 63.67
15 56.17 55.67 54.8
20 49.33 48 48.17
25 44 40.5 40.67

Table 6. Graph Feature
Classification Accuracy

By observing Tables 7 and 8 (and Tables 26, 27 28 and 29 in Appendix B), we can see that the
3D (GEO3D and SPA3D) models are very robust against the changing of edges while their 2D
(GEO2D and SPA2D) counterparts are not. Even after 5% of the edges are switched, roughly
half of the 2D models are classified as their 3D counterparts. When 25% of the edges have
been changed, only around 5% of the 2D models are classified correctly, with most of the graphs
being classified as the 3D counterpart. Meanwhile, the 3D models maintain a good classification
accuracy even when 25% of the edges are changed. Another interesting observation is that the
COPY model is also somewhat robust against the changing of edges. Even with 5% of the edges
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switched, all the COPY graphs are classified correctly. The accuracy dips to around 95% occurs
when 10% of the edges are switched. Even when 25% of the graph is changed, the classification
accuracy stays within 50%–70%. The PA model on the other hand is not robust against the
changing of edges. The classification is perfect when no changes are made but quickly decreases
as edge changes start to accumulate. The accuracy is still around 80% when 10% of the edges
are changed but drops to 50% accuracy when 15% of the edges are changed. After 25% of the
edges have been changed the classification accuracy is an abysmal 1%− 2%.

Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 93 0 7 0 GEO2D
0 0 0 95 0 5 SPA2D
0 0 9 0 91 0 GEO3D
0 0 0 5 0 95 SPA3D

5%

89 7 0 1 0 3 PA
0 100 0 0 0 0 COPY
0 0 9 0 91 0 GEO2D
0 0 0 36 0 64 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D

10%

80 12 0 0 0 8 PA
0 95 4 1 0 0 COPY
0 0 6 0 94 0 GEO2D
0 0 0 6 0 94 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 3 0 97 SPA3D

15%

51 47 0 0 0 2 PA
0 86 6 8 0 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 3 0 97 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 2 0 98 SPA3D

20%

21 79 0 0 0 0 PA
0 77 2 20 1 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 2 0 98 SPA2D
0 0 8 0 92 0 GEO3D
0 0 0 4 0 96 SPA3D

25%

1 98 0 0 0 1 PA
0 62 1 36 1 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 2 0 98 SPA2D
0 0 9 0 91 0 GEO3D
0 0 0 2 0 98 SPA3D

Table 7. Full Feature Vector
with 100 Boosting Iterations

Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 92 2 6 0 GEO2D
0 1 0 97 0 2 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 4 0 96 SPA3D

5%

88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
0 0 49 2 49 0 GEO2D
0 0 0 47 0 53 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D

10%

78 14 0 0 0 8 PA
0 94 0 6 0 0 COPY
0 0 11 1 88 0 GEO2D
0 0 0 3 1 96 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 1 98 SPA3D

15%

51 45 0 0 0 4 PA
0 82 0 18 0 0 COPY
0 0 7 2 91 0 GEO2D
0 0 0 2 6 92 SPA2D
0 0 2 0 98 0 GEO3D
0 0 0 1 5 94 SPA3D

20%

24 76 0 0 0 0 PA
0 69 0 31 0 0 COPY
0 0 8 2 90 0 GEO2D
0 0 0 2 12 86 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 10 89 SPA3D

25%

2 98 0 0 0 0 PA
0 53 0 46 1 0 COPY
0 0 6 2 92 0 GEO2D
0 0 1 4 18 77 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 17 82 SPA3D

Table 8. Graph Feature Vec-
tor with 100 Boosting Itera-
tions

Another interesting observation is that the overall classification accuracy does not necessarily
increase with the number of boosting iterations. It is the case that increasing the number of
boosting iterations improves the classification accuracy on the unchanged data but this is not
necessarily the case for the changed data. For most of the test data sets the difference is not
significant but when 25% of the edges are changed, the classification accuracy is about 3% better
when only 50 boosting iterations are performed as compared to 200 boosting iterations.

Another purpose to testing the robustness of the classifier is to attempt to simulate the
behaviour of the classifier on unknown data. One conclusion we have, is that even if a little
bit of noise is introduced into the data, the 2D models are more likely to get classified as a 3D
model. The conclusion is that if unknown data is classified as a 3D model, it is possible that
the correct model should be the 2D model. We also can conclude that using the graph feature
vector may be more reliable than using the full feature vector.

3.2. Classification of the Facebook networks. Classification algorithms are built under the
assumption that the test data actually belongs to one of the classes the classifier is trained to
distinguish. This assumption is often not met in realistic applications, as is the case here though
it is common practice to evaluate unknown data using a classification algorithm. With this in
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mind, it is important for us to exercise caution when interpreting our results from the Facebook
data. To interpret our results, we consider how each feature contributes to the score for each
model. Specifically, we are interested in the features which appear in the first layer of nodes (of
depth 1) in the ADT as they are the most influential in separating the data. Furthermore, we
consider how often each feature is visited when the Facebook data is put through the ADT. We
also compare how well the models can generate the features exhibited by the Facebook data. In
this section we give a general discussion of our results; a precise analysis of the performance of
the classifier on each of the data sets can be found in Appendix A.

Our first observation is that the most significant feature in separating the classes is the
assortativity coefficient. In fact, the first node in every ADT built using the full feature vector
corresponds to the assortativity coefficient. This is because the assortativity coefficient of the
GEO models is significantly higher than all the other models. This is due to the fact that the
nodes in a GEO model have degrees which are binomially distributed, so many vertices have
similar degrees. It is interesting to note that the assortativity coefficient is not included in the
graph feature vector, while we just showed that the graph feature vector is equally successful in
separating the models. Thus the information conveyed by the assortativity coefficient should be
implicitly contained in the graphlet counts.

An important graphlet feature is g6, which corresponds to the 4-cycle. The 4-cycle feature
tends to be the most important feature overall. That is, it tends to appear frequently in the first
layer of nodes in the ADT and it is usually the feature which is most visited by the Facebook
data when it is put through the classifier. In some cases, the outcome of the experiment can be
deduced by only considering the feature g6.

An important difference between the models is that the PA and COPY models tend not
to generate highly connected subgraphs whereas the GEO models do tend to generate highly
connected subgraphs. Conversely, the PA and COPY models generate many sparse subgraphs
whereas the GEO models do not. By highly connected subgraph we mean those that contain a
triangle, namely: g2, g5, g7. Sparse subgraphs are those without a triangle: g1, g3, g4. The SPA
models tend to generate a mixture of dense subgraphs and sparse subgraphs.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
full Princeton -0.303 -14.551 4.599 11.287 -5.451 4.42
full American -0.414 -12.164 -0.183 8.307 -5.578 10.025
full MIT 2.956 -12.512 2.715 13.528 -8.561 1.873
full Brown 4.998 -15.163 -0.305 1.733 -6.161 14.897
graphs Princeton 6.699 -2.227 -3.914 3.085 -3.676 0.033
graphs American 0.779 -10.639 0.381 5.834 -7.693 11.332
graphs MIT 4.097 -9.49 3.061 5.304 -2.91 -0.063
graphs Brown 6.283 -0.085 -3.774 1.827 -3.771 -0.479
other Princeton -0.858 -3.622 -7.447 8.022 -5.029 8.941
other American -4.612 -2.442 -3.627 6.517 -3.348 7.512
other MIT 1.956 -7.305 -2.458 2.518 -2.901 8.192
other Brown -0.197 -3.58 -2.61 4.549 -1.606 3.44

Table 9. Scores for each Experiment for each of the classifiers with 100 boost-
ing iterations

The overall conclusion from the performance of the classifiers on the Facebook data is that
models which incorporate some preferential attachment mechanism perform best. The scores for
each classifier for 100 boosting iterations can be found in Table 9. When the full feature vector
is used, both SPA models appear in the top 3 in classification scores. For the Princeton and
MIT experiments, SPA2D finishes first and for the American and Brown experiments, SPA3D
finishes first. In all 4 experiments with the full feature vector the GEO3D and COPY models
have the lowest scores. For the graph feature vector, a model with the preferential attachment
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mechanism always finishes first. The MIT network is the only data set where a non PA-based
model (GEO2D) is in the top 3 highest scores. The ranking of the models when the other feature
vector is used is consistent across all the experiments with the two SPA models are ranked 1st
and 2nd and PA ranked 3rd.

Perhaps the most interesting observation comes from comparing the experiments for the
Princeton and Brown networks. Though the Princeton network has 6596 vertices and the Brown
network has 8600 vertices, they both have almost the same edge density. The conclusions of
the two experiments are similar and for the graph feature vector in particular they are almost
identical. Another observation is that the ADT’s produced for each of the networks are very
similar. They have the exact same first layer of nodes for both the full and graph feature vector.
This suggests that training sets with graphs of the same density generate similar ADT’s, and that
the same classifier could be used for observed networks of comparable density. This also implies
that, if the appropriate normalization factor could be found for comparing subgraph counts for
the graphs of different size but similar density then the building of the classifier would only
have to be done once. The same classifier could then be applied to suitably normalized feature
vectors of the data. Since the generation of the samples of each model, and the computation of
the graphlet counts for these samples takes a lot of computation time, this would improve our
method significantly.

4. Conclusions and Further Work

The main goal of this work was to determine which of our 6 models is the most appropriate
for a social network such as Facebook. The results of our experiments showed that a model
incorporating a preferential attachment mechanism had the best performance. However, based
on our work, it is difficult to determine whether the PA or the SPA model is better. This is
because we have not performed enough experiments to develop a statistically significant sample
size. However, the fact that in all four experiment, for almost every classifier generated, the
PA and SPA models generally received positive scores indicate that the models do fit the test
data to some degree. On the other hand, the COPY model generally gave high negative scores
for almost all the classifiers generated, indicating that the model is a poor fit for the Facebook
graphs considered.

Our work has shown conclusively that our classification procedure works well at separating
graphs produced by each of our models even when the models generate graphs with similar
degree distributions and average path lengths. This gives evidence to our claim that local
structure is important in developing models for real world networks. Furthermore, we saw that
the classification accuracy using all of the features and using only the graphlet features were
not significantly different. We can conclude from this that considering graphlets is sufficient to
separating to models.

Our results, discussed in detail in Appendix A, show that graphlets corresponding to paths,
cycles and highly connected subgraphs are the most influential in distinguishing between different
models. This is not a surprising conclusion because a high count of paths and a low count of
complete subgraphs are characteristic of sparse models such as PA and COPY while a low count
of paths and a high count of complete graphs is characteristic of denser models such as GEO2D
and GEO3D. The ability of the SPA models to generate a higher number of 4-cycles then the
other models results in C4 being a distinguishing feature. The fact that the Facebook graphs
tended to generate a high number of C4’s resulted in the SPA model obtaining the best score in
many of the experiments.

Currently, it is necessary to generate a new training set and classifier for each test network
of a given size and density. This is because graphlet counts are highly dependent on the size
and density of the graph. We are interested in determining a method to normalize the graphlet
counts so that graphlet counts for graphs of varying sizes and densities can be compared. Such
a normalization would make it possible to build a single classifier which can test networks for a
range of sizes and densities. In this work, the amount of time to perform one experiment took
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about two weeks so the existence of a universal classifier through the normalization of graphlet
counts would make testing various real world networks a more tractable.
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Appendix A: Discussions for each Facebook Experiment

In this appendix, we discuss the experiments for each of the four social network data sets in
detail.

4.1. Princeton. The Princeton network has 6596 vertices and 293329 edges. To interpret our
results we consider the information in Tables ,10, 11, 12, 13 as well as the box plots in Figure
A1. From the scores in Table 13, for the full feature vector the SPA models have the best
performance. This result can be understood to a large extent by considering the feature g6.
Table 11 indicates that this is the most frequently visited feature. This feature also occurs
frequently in the first layer of nodes so that it is a descriptive feature in separating the models.
Comparing the number of 4-cycles in the Princeton network against range of 4-cycle counts for
each of the models in Table 3, we can see that the count for the Princeton network only falls in
the range of SPA2D and is very close to falling into the SPA3D range. This is the main reason
that SPA2D receives the highest score. In fact, if the classification was done only from observing
which models come closest to generating the number of 4-cycles in the Princeton network the
ranking would be SPA2D, SPA3D, GEO2D, PA, GEO3D and COPY which is precisely the
ranking that the classifier gives on the full feature vector.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 1 1 0 0 0 0 1 1 3 0 2 1 2 4 9 1 3
100 full 1 1 0 0 0 0 1 1 3 1 3 1 2 5 12 3 3
200 full 3 1 0 0 0 0 2 1 3 1 6 1 5 6 21 4 5

Table 10. Features visited for full feature vector for the Princeton network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 1 0 1 2 1 1 1 0
100 graph 2 1 1 2 1 5 1 0
200 graph 2 1 3 4 4 8 4 0

Table 11. Features visited for graph feature for Princeton network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 other 0 0 0 1 0 1 1 5 6
100 other 1 1 0 2 0 1 3 12 8
200 other 1 1 1 2 2 2 3 18 12

Table 12. Features visited for other feature for Princeton network

Since a graph feature was the most influential for the full feature vector, we might expect that
the SPA models should also be ranked the highest when the graph feature vector is used. From
Table 13 we see that this is not the case: the PA model receives the best score with the two SPA
models coming in second and third. To understand this we need to consider which feature is
most influential in determining the scores for the graph feature vector. For 100 and 200 boosting
iterations, Table 11 indicates that g6 is the most frequently visited feature. But to determine
which feature is the most influential we must also consider which features appear in the first
layer of nodes in the ADT. In this case, for 50, 100 and 200 boosting iterations only 3 nodes
appear in the first layer of nodes and 2 of these correspond to g4 (the 4-path). By observing the
box plot in Figure 3, you can see that the g4 count for the Princeton network corresponds almost
exactly to the mean count for g4’s in the PA model. Furthermore, in the ADT, the first node
corresponds to g4, which immediately leads to a score of 3.611 for the PA model and -0.722 for
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the other models. This gives an advantage of 4.333 for the PA model from the first node which is
close to the overall difference between PA model and SPA models in the final classification score.
Additionally, we can see from Figure A1 that the GEO models do not match with the number
of g4’s generated by the Princeton network, which explains their poor performance. In this case,
the g4 feature turned out to be the most influential feature in determining the classification.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
50 full 0.232 -12.365 2.626 8.359 -3.958 5.106
100 full -0.303 -14.551 4.599 11.287 -5.451 4.42
200 full 1.681 -21.364 5.148 15.812 -10.426 9.152
50 graphs 6.321 -0.891 -3.471 -0.025 -3.026 1.093
100 graphs 6.699 -2.227 -3.914 3.085 -3.676 0.033
200 graphs 9.377 -2.667 -3.255 3.805 -7.904 0.644
50 other -0.728 -0.524 -3.379 2.549 -1.396 3.48
100 other -0.858 -3.622 -7.447 8.022 -5.029 8.941
200 other -2.97 -4.107 -12.995 9.87 -6.503 16.708

Table 13. The scores for each model, for each classifier on the Princeton network

The performance of the classifier built on the other feature vector can be easily understood
by observing from Table 12, that the assortativity and the average path length are the most
important features. By observing their box-plots in Figure 3, you can see that the SPA models
match the average path length the best with COPY the next best and the assortativity is
matched almost equally by the SPA models and the COPY model. The PA model is also close
to the assortativity coefficient of the Princeton network by noticing that it is only one of the
6 which is (almost) below the assortativity of the Princeton network. In this case, the ADT is
using this feature to distinguish PA from the rest of the models so many visits to assort in the
tree would give a negative score to PA and a positive score for the other models. This explains
why the score of PA is decreasing as the number of boosting iterations increase. The results
for the other feature vector is consistent amongst all the experiments so I will not explain the
results in detail for the other experiments.

4.2. American University. The American network has 6386 vertices and 217661 edges. The
conclusions for the American University remain consistent with the conclusion from the Princeton
experiment though there are some differences. It remains the case that PA and the SPA models
have the best performance but the ranking of the three models differ in some areas. Let’s discuss
why this occurs.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
50 full -0.702 -11.768 1.091 8.505 -4.532 7.398
100 full -0.414 -12.164 -0.183 8.307 -5.578 10.025
200 full -0.728 -18.426 -1.191 9.955 -7.246 17.625
50 graphs 0.172 -7.908 2.271 3.269 -5.6 7.792
100 graphs 0.779 -10.639 0.381 5.834 -7.693 11.332
200 graphs 4.516 -16.02 -4.241 7.002 -8.925 17.656
50 other 0.172 -7.908 2.271 3.269 -5.6 7.792
100 other -4.612 -2.442 -3.627 6.517 -3.348 7.512
200 other -7.279 -2.071 -5.395 8.249 -5.439 11.936

Table 14. The scores for each model, for each classifier on the American Uni-
versity network

The main difference that occurs at the Full feature vector in the American experiment is that
SPA3D is the best and SPA2D is second. As well, the GEO model slips from 3rd place to 4th
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at 200 boosting iterations. Part of the explanation for why SPA3D performs better at this level
is that the 4-cycle (g6) count of the American network falls within the range of SPA3D as well
as SPA2D but in Princeton it only fell within the range of SPA2D. In fact, in the Princeton
network, the 4-cycle feature contributed a score of −5.3 to SPA3D while it contributes a score of
1.895 for SPA3D in the American network. This difference almost completely accounts for the
discrepancies in the scores between the two experiments. The explanation for why GEO2D slips
to 4th place at 200 boosting iterations can be understood by considering the feature g7. The
feature g7 corresponds to the complete graph minus an edge and is matched well by GEO2D.
This feature is visited 4 times in the Princeton classifier at 200 boosting iterations and is not
visited at all in the American classifier at 200 boosting iterations. This should account for the
slip in score that puts it in 4th place.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 0 1 0 0 1 0 1 2 0 1 1 4 5 8 0 4
100 full 0 0 1 1 0 1 0 1 3 0 1 1 5 7 10 0 4
200 full 0 0 1 1 0 1 0 1 3 2 5 1 8 9 16 0 4

Table 15. Features visited for full feature vector for the American network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 1 0 0 3 4 5 1 4
100 graph 1 1 2 5 5 8 1 4
200 graph 3 1 3 8 6 12 2 5

Table 16. Features visited for graph feature for American network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 other 1 0 2 1 0 0 1 8 9
100 other 1 0 3 1 0 0 1 12 12
200 other 1 0 3 2 0 2 2 17 13

Table 17. Features visited for other feature for American network

The ranking of the models when only the graph feature vector is used is different. Instead
of the ranking being PA, SPA2D, SPA3D as it was in the Princeton network, it is SPA3D,
SPA2D, PA. Part of this difference can be explained because the American network visits more
decision nodes when it is put through the classifier than the Princeton network visited when it
was classified. In fact, the American network visits 40 nodes and the Princeton network visits
26 nodes at the 200 boosting iteration level (see Tables 11, 16). Of these nodes, 26 correspond
to either g6 or the dense subgraphs described above while 14 correspond to sparse subgraphs.
Recall that the SPA models appear to be best overall at matching all the graph features; in
particular they match the dense features much better than PA and COPY and they match the
sparse features much better than the GEO models. It appears that for this reason and the fact
that more features are visited than in the Princeton network, the influence of the g4 feature which
resulted in the top ranking of PA in the Princeton network is weakened. It is also important to
note that there are 5 nodes in the first level of nodes in the ADT at 200 boosting iterations. Of
these nodes, 2 correspond to g4 and 2 correspond to g6 with the remaining node corresponding
to g3. In the Princeton network, 2 out of 3 of the nodes in the first layer corresponded to g4 and
none of the nodes corresponded to g6. Therefore, for this experiment, the g6 feature is much
more influential and g4 less influential which also explains why the SPA models are ranked above
PA.
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4.3. MIT. The MIT network has 6440 vertices and 251252 edges. The results in this experiment
are not completely consistent with the other experiments. In particular, the GEO2D model
finishes second for both the full feature vector and the graph feature vector. It still the case
that COPY and GEO3D occupy the last two positions in the rankings. We can understand
the results of the experiment by studying the ADT’s and see which features are influential in
determining the scores. Let’s first look at the full feature vector.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
50 full 1.23 -7.541 3.917 9.319 -6.482 -0.441
100 full 2.956 -12.512 2.715 13.528 -8.561 1.873
200 full 2.32 -13.795 2.737 17.881 -11.679 2.534
50 graphs 5.53 -5.266 -1.368 3.719 -1.17 -1.441
100 graphs 4.097 -9.49 3.061 5.304 -2.91 -0.063
200 graphs 2.905 -12.759 3.962 10.004 -2.512 -1.603
50 other 2.53 -5.236 -2.99 1.933 -2.732 6.497
100 other 1.956 -7.305 -2.458 2.518 -2.901 8.192
200 other 1.614 -8.182 -4.085 8.28 -8.158 10.537

Table 18. The scores for each model, for each classifier on the MIT network

The most significant difference is the influence of g6. In the first layer of nodes for the tree at
200 boosting iterations there are 9 nodes and only one node corresponds to g6. Furthermore, by
observing the box plot in Figure 5, you see that the number of g6’s in the MIT network does not
fall into the range of any of the models, though it comes closest to SPA2D. This is abnormal as
in all other experiments the number of g6’s falls into the range of at least the SPA2D model. In
Table 19 we see that the g6 feature is still the most visited. The good performance of GEO2D
could be due to the fact that not many of the sparse subgraphs are visited. Of the 31 graph-based
features visited in the full feature vector, only 6 correspond to sparse subgraphs.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 1 0 0 0 0 1 1 2 0 0 1 1 1 6 3 2
100 full 1 1 0 0 0 0 1 1 2 1 2 1 1 2 9 4 3
200 full 1 1 0 0 0 0 2 2 2 1 3 1 2 4 12 5 3

Table 19. Features visited for full feature vector for the MIT network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 0 1 0 1 2 5 0 1
100 graph 1 4 0 1 2 7 0 2
200 graph 1 4 0 2 2 9 0 5

Table 20. Features visited for graph feature for MIT network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 other 2 0 0 0 0 2 2 9 8
100 other 2 0 0 0 1 2 3 12 12
200 other 3 0 1 1 2 4 5 19 14

Table 21. Features visited for other feature for MIT network

To understand the rankings for the graph feature vector we only have to consider g4 and g6.
At 50 boosting iterations, the PA model is the best model but at 200 boosting iterations it is
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ranked 3rd. This can be explained because, as explained for the Princeton network, the first
node in the ADT corresponds to g4 which gives an immediate advantage of 4.333 points for the
PA model. You can see by observing Table 20, that the g4 feature is not visited very often.
Also, not many of the sparse graphs are visited so that the influence of sparse graphs greatly
diminishes as more boosting iterations and therefore more decision nodes are added to the tree.
The g6 feature appears to be the most influential in determining the scores. Of the five nodes in
the first layer of the ADT at 200 boosting iterations, three correspond to g6, while the other two
correspond to g4 and g2. The GEO2D model performs so well because of the emphasis on the
denser subgraphs in determining the score. Of the 23 nodes visited by the American network at
200 boosting iterations only 3 correspond to the sparse subgraphs. Of these nodes, 9 of them
correspond to g2 and g8 which represent K3 and K4. You can see that GEO2D matches these
features while by observing the box plots in Figure 5. For these features, you can see that SPA2D
matches them just as well as GEO2D. The American network for these features do fall into the
range for the 3D versions of these network but the fit is not as good as for the 2D models. This
explains why the 2D models are performing better.

4.4. Brown. The Brown network has 8600 vertices and 384525 edges. The results for the Brown
network are similar to the results we have already seen. Interestingly, the results for the graph
feature are almost the same as the results for the Princeton network. This is interesting because
both networks have almost the same density though the Brown network has around 33% more
vertices. We first discuss the results when the full feature vector is used.

As we have been seeing in many of the experiments, models with a preferential attachment
mechanism are ranked in the top 3. The reasoning is as explained before. The PA model finishes
second because by observing Table 23, you can see that the sparse graph features are visited
in higher proportions than was typical in the other experiments. In particular, the g4 feature
which greatly favours PA is visited 6 times.

The most interesting result occurs for the graph feature vector. For this feature vector, the
ranking of the models is identical (except for an insignificant swap of the GEO models in the
final position), to what they were in the Princeton network. This is interesting because both
the Princeton and the Brown networks have the same edge density. The explanation for the
Princeton results holds here as well. In fact, if we consider the ADT’s in both experiments for
both the full and graph feature vectors, the first layer of nodes are exactly the same. This is
promising to see because it indicates that training sets with the same edge density might result
in the same ADT’s which would greatly cut down on the amount of computational time. All
that is needed is to determine an appropriate normalization for the graph features for two graphs
with a different number of vertices.
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Classifier PA COPY GEO2D SPA2D GEO3D SPA3D
50 full 3.044 -8.622 1.0 0.245 -3.191 7.522
100 full 4.998 -15.163 -0.305 1.733 -6.161 14.897
200 full 7.085 -24.459 -1.228 4.841 -9.41 23.171
50 graphs 5.114 -1.087 -2.336 1.052 -2.354 -0.388
100 graphs 6.283 -0.085 -3.774 1.827 -3.771 -0.479
200 graphs 8.672 -0.772 -6.304 3.668 -6.296 1.033
50 other 0.302 -2.357 -2.063 2.335 -0.522 2.302
100 other -0.197 -3.58 -2.61 4.549 -1.606 3.44
200 other 1.858 -2.865 -10.064 10.21 -5.457 6.313

Table 22. The scores for each model, for each classifier on the Brown Univer-
sity network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 0 0 0 0 0 1 1 2 1 0 0 3 1 6 1 4
100 full 0 0 0 0 0 0 2 3 2 1 3 0 4 3 11 2 5
200 full 0 1 0 0 0 0 4 6 4 2 4 0 6 6 17 5 7

Table 23. Features visited for full feature vector for the Brown network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 0 0 0 2 1 1 0 0
100 graph 0 0 2 2 1 1 0 0
200 graph 0 0 3 4 1 3 0 0

Table 24. Features visited for graph feature for Brown network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 other 0 1 0 0 1 2 2 11 10
100 other 0 1 0 0 2 2 3 15 11
200 other 2 2 0 2 3 4 4 23 14

Table 25. Features visited for other feature for Brown network
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Appendix B: Tables and Figures

The tables shown in this appendix give more results for the performance of the various classi-
fiers on synthetic graphs with a certain percentage of changed edges. The results are very similar
to those discussed in Section 3.1. We also include the Figures from Appendix A showing the
box-plots of the features in each of our experiments.

Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 90 0 10 0 GEO2D
0 1 0 93 0 6 SPA2D
0 0 9 0 91 0 GEO3D
0 0 0 6 0 94 SPA3D

5%

88 8 0 0 0 4 PA
0 100 0 0 0 0 COPY
0 0 5 0 95 0 GEO2D
0 0 0 57 0 43 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 3 1 96 SPA3D

10%

78 14 0 0 0 8 PA
0 99 0 1 0 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 15 2 83 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 7 1 92 SPA3D

15%

50 47 0 0 0 3 PA
0 92 0 8 0 0 COPY
0 0 3 0 97 0 GEO2D
0 0 0 8 3 89 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 6 0 94 SPA3D

20%

24 76 0 0 0 0 PA
0 82 0 18 0 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 8 1 91 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 8 0 92 SPA3D

25%

2 98 0 0 0 0 PA
0 67 0 33 0 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 10 0 90 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 15 0 85 SPA3D

Table 26. Full Feature Vec-
tor with 50 Boosting Itera-
tions

Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 85 1 13 1 GEO2D
0 1 0 94 0 5 SPA2D
0 0 2 0 98 0 GEO3D
0 0 0 8 0 92 SPA3D

5%

88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
0 0 42 2 56 0 GEO2D
0 0 1 47 0 52 SPA2D
0 0 1 0 98 1 GEO3D
0 0 0 3 0 97 SPA3D

10%

78 14 0 0 0 8 PA
0 99 0 1 0 0 COPY
0 0 5 1 94 0 GEO2D
0 0 0 7 3 90 SPA2D
0 0 0 0 99 1 GEO3D
0 0 0 2 2 96 SPA3D

15%

51 45 0 0 0 4 PA
0 92 0 8 0 0 COPY
0 0 2 2 96 0 GEO2D
0 0 0 6 3 91 SPA2D
0 0 0 0 100 0 GEO3D
0 0 0 7 7 86 SPA3D

20%

24 76 0 0 0 0 PA
0 82 0 18 0 0 COPY
0 0 2 2 96 0 GEO2D
0 0 0 7 14 79 SPA2D
0 0 0 0 100 0 GEO3D
0 0 0 12 10 78 SPA3D

25%

2 98 0 0 0 0 PA
0 67 0 32 1 0 COPY
0 0 0 2 98 0 GEO2D
0 0 0 6 20 74 SPA2D
0 0 0 0 100 0 GEO3D
0 0 0 15 14 71 SPA3D

Table 27. Graph Feature
Vector with 50 Boosting Iter-
ations
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Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 94 0 6 0 GEO2D
0 0 0 97 1 2 SPA2D
0 0 8 0 92 0 GEO3D
0 0 0 0 0 100 SPA3D

5%

97 3 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 13 0 87 0 GEO2D
0 0 0 40 0 60 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 0 99 SPA3D

10%

86 12 0 0 0 2 PA
0 96 0 3 0 1 COPY
0 0 8 0 92 0 GEO2D
0 0 0 5 0 95 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 0 99 SPA3D

15%

47 50 0 0 0 3 PA
0 84 0 14 2 0 COPY
0 0 5 0 95 0 GEO2D
0 0 0 6 0 94 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 0 99 SPA3D

20%

18 82 0 0 0 0 PA
0 66 0 23 11 0 COPY
0 0 6 0 94 0 GEO2D
0 0 0 3 0 97 SPA2D
0 0 6 0 94 0 GEO3D
0 0 0 2 1 97 SPA3D

25%

1 98 0 0 0 1 PA
0 50 13 14 23 0 COPY
0 0 7 0 93 0 GEO2D
0 0 0 1 1 98 SPA2D
0 0 8 0 92 0 GEO3D
0 0 0 1 3 96 SPA3D

Table 28. Full Feature Vec-
tor with 200 Boosting Itera-
tions

Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 93 0 7 0 GEO2D
0 1 0 99 0 0 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 0 0 100 SPA3D

5%

88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
0 0 45 0 55 0 GEO2D
0 0 0 50 0 50 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D

10%

78 14 0 0 0 8 PA
0 97 0 3 0 0 COPY
0 0 10 0 90 0 GEO2D
0 0 0 4 3 93 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 2 0 98 SPA3D

15%

51 45 0 0 0 4 PA
0 83 0 16 1 0 COPY
0 0 4 0 96 0 GEO2D
0 0 0 1 3 96 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 1 4 95 SPA3D

20%

24 76 0 0 0 0 PA
0 72 0 28 0 0 COPY
0 0 5 0 95 0 GEO2D
0 0 0 1 10 89 SPA2D
0 0 5 0 95 0 GEO3D
0 0 1 0 7 92 SPA3D

25%

2 98 0 0 0 0 PA
0 53 18 29 0 0 COPY
0 0 6 0 94 0 GEO2D
0 0 0 1 16 83 SPA2D
0 0 7 0 93 0 GEO3D
0 0 1 1 9 89 SPA3D

Table 29. Graph Feature
Vector with 200 Boosting It-
erations
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Figure 3. Box-plots representing the spread of the features for Princeton network.
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Figure 4. Box-plots representing the spread of the features for American network.
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Figure 5. Box-plots representing the spread of the features for MIT network.
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Figure 6. Box-plots representing the spread of the features for Brown network.


