
HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 1

Touchscreen Interfaces for Visual Languages
Michael M. Hackett Philip T. Cox

mhackett@cs.dal.ca pcox@cs.dal.ca

Faculty of Computer Science
Dalhousie University

Halifax, Nova Scotia, Canada B3H 1W5

Abstract—Touchscreen tablets are all the rage at the moment; they are inexpensive, highly portable, and frequently house more
processing power than the laptops of even a year or two past. They are proving to be wonderful devices for digesting content, but can
they be used for “real work”? The lack of a physical keyboard may make them poorly suited for working with text, but the touchscreen
removes a layer of indirection introduced by the mouse and allows for a more direct relationship—literally “hands on”—with the objects
on the screen. Through the construction of a simple mock visual programming language (VPL) editor, this study compares two different
styles of touchscreen interface and demonstrates the natural fit between touch input and visual programming. The addition of “multi-
touch” also opens up intriguing possibilities for two-handed, immersive interfaces, with the potential for greater efficiencies than possible
with the mouse’s single point of interaction.

Index Terms—Computer interfaces, programming environments, user interfaces

F

1 INTRODUCTION

One advantage often cited by proponents of visual pro-
gramming environments is the greater sense of direct
manipulation of program code and data that these en-
vironments provide, through the immediate feedback
received while working with some graphical represen-
tation of the code. However, when the manipulation is
performed with a mouse or a trackpad, as is typical in
existing systems, an unnatural barrier is placed between
the user and the software environment. Additionally,
having to frequently switch hand positions and “oper-
ating modes” between mouse and keyboard slows users
down and breaks their sense of flow. This cuts into their
productivity and may drive them back to their textual
languages, where they can code and navigate without
leaving their trusty keyboards.

In the last couple of years, large touchscreen devices
have become inexpensive and readily available, and
new user interface designs have been developed that
are tailored to finger-based input. Through these touch-
screen devices, users can interact more directly with their
data, manipulating visual representations with the touch
of a finger, and using gestures on the display surface
to invoke operations on objects and the environment.
However, there has so far been little public research or
development of programming tools that actually run on
and take advantage of these new platforms.1 While the
lack of a physical keyboard would seem to make these
devices poorly suited for traditional text-based program-
ming, the more direct control of on-screen objects that
the touchscreen affords might make them ideal for visual

1. Since starting this project, the author has learned of one other
touch-tablet VPL project, Catroid, which is an implementation of the
Scratch VPL (http://scratch.mit.edu/) for Android tablets.

programming languages (VPLs).
Additionally, there has recently been a good deal of

very interesting research into bimanual (two-handed)
interfaces, and a touchscreen capable of recognizing
multiple simultaneous touches would seem to be an
ideal platform on which to explore some of the ways bi-
manual input can be applied to visual programming. As
programming is a very productivity-oriented task, users
will not tolerate novelty for its own sake, especially if it
slows them down. Any interface changes must have a
positive effect on productivity in order for programmers
to accept them over traditional methods.

This paper describes the design and implementation
of a simple VPL code editor—codenamed “Flow”—for a
touchscreen tablet device (an Apple iPad). The prototype
was built in order to experiment with various user-
interface options and to get feedback on these from
potential users. To minimize the influence of language
syntax on overall usability, the VPL is closely mod-
eled on Prograph [1], [2], an existing and well known
dataflow programming language. Also, due to time con-
straints, the program is only a facade of a true visual
programming environment—you can edit the code (in a
limited way), but not execute it. Videos demonstrating
the Flow interface are available at http://web.cs.dal.ca/
∼pcox/visual/Multitouch/.

The prototype was shown to a small group of users
for their feedback. These users were a mix of those with
a great deal of previous experience with Prograph (in its
desktop GUI form) and those with little or no previous
VPL experience. Their feedback will be used to guide
further development and experimentation, leading to
more formal user studies in the future.

To provide a focus for the study, the following primary
research questions were posed, with respect to the Flow



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 2

prototype:
1) Is this type of environment appealing to use?
2) Is the sense of direct manipulation greater than

with a mouse as input?
3) Is programming in this manner more efficient than

using a mouse and physical keyboard?
Initial feedback from experienced Prograph users has

been largely enthusiastic. In particular, all users found
the system very intuitive and responsive, and the expert
users felt they would be able to work faster in such an
environment than with the earlier mouse-and-keyboard-
based tools (though, of course, this cannot be tested until
the entire programming environment is complete).

A secondary question as to whether this sort of
environment could raise the profile and attractiveness
of visual programming cannot be answered with this
small sample of users, but when the full environment
is ready for testing, more extensive user studies will be
undertaken.

2 BACKGROUND AND RELATED WORK
Although there is little to draw upon with respect to
visual programming on a touchscreen tablet, there is
a good deal of touch-input and general user-interface
work that informed the design of the Flow software de-
scribed herein. Of particular interest and inspiration was
research into bimanual interfaces, kinesthetic feedback,
and touchscreen gesture design.

2.1 Two-Handed Input
Bimanual interfaces require or take advantage of both
of the user’s hands together, usually in an asymmet-
ric fashion where the non-dominant (NP) hand defines
the context for the work that the dominant (P) hand
performs. Away from computers, we work like this all
the time, when writing on paper, hammering a nail,
chopping food, stirring a pot, and so on. In fact, it
emerges as a very strong pattern within human tool use.
Yet it is very much a rarity in computer interfaces.

This type of arrangement seems particularly well
suited to multi-touch input devices, and it was decided
early on to experiment with interface designs that made
simultaneous use of both hands, and to compare the
usability and efficiency of such an interface with one
that followed a more traditional design, such as drag-
and-drop, or persistent (a.k.a. sticky or latching) modes.

Yee [3] and Wu et al. [4] both suggest using the
NP hand to establish and maintain modes while the P
hand does work within that context (as suggested in
Guiard’s Kinematic Chain model of bimanual action [5]).
The Flow prototype was developed with two different
interfaces and in one of these, modes are selected by
pressing and holding buttons on a toolbar on one side
of the display (typically the side of the user’s NP hand)
while manipulating the target objects or tapping a target
location with another finger, essentially requiring the
use of both hands in most cases (at least for ease and
efficiency).

2.2 Kinesthetic Feedback
Sellen et al. [6] give five dimensions along which feed-
back can be characterized—sensory modality of deliv-
ery; reactive vs. proactive; transient vs. sustained; de-
manding vs. avoidable; and user-maintained vs. system-
maintained—and they provide details on two exper-
iments that compared kinesthetic feedback with vi-
sual feedback and user-maintained feedback vs. system-
maintained. Using a foot pedal as their kinesthetic feed-
back device, their experiments indicate that actively main-
tained kinesthetic feedback significantly reduces mode
errors (that is, instances in which a user performs an
action appropriate for a mode that the application is not
currently in).

Translating these findings to the touchscreen, one of
Flow’s two interface designs features buttons that must
be “held down” in order to engage the command, while
the other depends on a continuous gesture that both
establishes the mode and performs some action within
its context. In both cases, the command mode is exited
automatically when the user’s fingers leave the screen.
Both are examples of “kinesthetically held modes” [4],
where the user must actively maintain some physical
action in order to keep the mode active. Using this
technique, users are much less likely to forget that a
particular mode is engaged, and they can always count
on the application having been reset to the default
editing mode whenever their fingers have left the screen.
“Latching” modes, where one tap sets a mode which
stays in effect until cancelled or changed, have been
avoided entirely. Not only do these tend to lead to more
mode errors [6], [7], but users often struggle to figure
out how to cancel the mode selection if they change their
minds or realize they have made an error.

2.3 Touchscreen Gesture Design
Nielsen et al. [8] have defined a number of principles
and guidelines for designing gestures with usability and
ergonomics in mind. They also presented a procedure for
first building a “gesture vocabulary” (the set of gestures
in an interface) through user studies, then refining and
testing the resulting gesture set. They stress the impor-
tance of keeping ergonomics in mind and warn against
basing gesture design on the recognition capabilities of
the hardware, as this may result in gestures that are
illogical and “stressing or impossible to perform to some
people”.

Wobbrock et al. [9] performed a user study (using
the methodology of Nielsen et al. [8]), using a tabletop
surface, in which participants were asked to come up
with touchscreen gestures for various operations, having
been shown an animation of the intended effect. Users
acted on a static display and so received no active
feedback, although their gesture activity was recorded
by the system. As above, the intent was to produce a
gesture set that was not constrained by system designers’
concerns about reliable recognition.



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 3

Frisch et al. [10] performed a similar study, specifically
looking at diagram and graph editing on multi-touch
tabletops. (Their study also looked at the use of a stylus
and the combination of touch and stylus input, but the
focus of the current study is solely on touch gestures.
There are, however, special styli available for use with
the iPad’s capacitive touchscreen which, although not
commonly used, could be employed in a future itera-
tion.)

In both studies, there was a tendency for participants
to stick to single-finger gestures that approximated ac-
tions from the desktop GUI paradigm (with which they
were more familiar), such as tapping to select and then
holding down to select from a context menu. When
multiple fingers were employed, most users did not
consider the number of fingers significant, often choos-
ing based only on the size of the object to be touched.
These results suggest that long-time computer users may
actually have to “unlearn” some mousing habits in order
to make better use of touch-based interfaces, although
there is the possibility that, in some domains, users may
actually prefer single-finger gestures. Nevertheless, there
is plenty of empirical evidence to suggest that advanced
users will over time become quite comfortable with
multi-finger gestures and will appreciate the operational
efficiencies these afford.

Finally, Mauney et al. [11] performed a user study
with participants from 8 different countries to look at
how cultural difference might affect users’ intuition with
respect to gestures. They found that there was strong
agreement across cultures for gestures with a physical
or metaphorical correspondence to the objects being
manipulated (“direct manipulation gestures”), but fairly
low agreement on gestures that were symbolic in nature.
This suggests that symbolic gestures should be avoided
(a point also made by Frisch et al. [12]), except perhaps
as expert-level shortcuts.

2.4 Prograph

Prograph is an object-oriented visual programming lan-
guage based largely on a dataflow execution paradigm,
extended with some control-flow elements (e.g. condi-
tionals and loops). The language has classes and meth-
ods, supports dynamic typing and execution, is inher-
ently concurrent, and its IDE allows code and data to be
inspected and changed “on the fly”. For the purposes
of this discussion, however, one need only know that
Prograph methods consist of one more cases, and it is
within these cases that all of the executable code in a
Prograph program resides.

A case consists of operations of various types, iden-
tified by their unique shapes (see Fig. 1). Operations
(commonly called opers for short, and for disambiguation
from the more general sense of the word) have inputs
and outputs, represented by terminals and roots, respec-
tively; collectively, these are referred to as nodes. Termi-
nals appear along the top edge of operation icons, roots

Operation Sample Call Action

Input Copy value from terminal of call-
ing operation

Output Copy value to root of calling op-
eration

Simple Call user method Quicksort

Constant Output constant 256 on root

Match Next case if value on terminal is
not NULL

Persistent Output value of persistent Re-
views in root

Instance Output new Index instance on
root

Get
Attribute

Output value of attribute key of
input instance on right root

Set
Attribute

For left input instance, set value
of attribute review to right input,
and output instance

Local Call local user method check

Fig. 1. Prograph operation types. (Adapted from [1], p.
152.)

Fig. 2. Prograph code example. Opers are connected by
datalinks over which data passes from roots (along the
bottom edges of opers) to terminals (along the top edges).
Cases are usually laid out such that data flows from top
to bottom.

along the bottom edge. Datalinks connect roots (outputs)
to terminals (inputs) to indicate the flow of data from one
operation to another. The resulting directed acyclic graph
forms the executable code for a case. Fig. 2 presents an
example of a Prograph case.

The current Flow prototype implements only a simple
case editor, and provides only a subset of the oper-
ation types, sufficient for demonstration purposes. In
Prograph, opers can also have various annotations, such
as those for specifying looping or conditional behaviour,
but these have not been included in the prototype.



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 4

3 DESIGN PRINCIPLES

3.1 Discoverability
Norman and Nielsen [13] have criticized today’s com-
mercial touch tablet interfaces, citing numerous exam-
ples of gestures that are not easily discoverable or guess-
able, and are learned only by reading about them “out-
of-band”—in a forum, a blog, or even (gasp!) a manual.
Discoverability was considered a high priority for Flow;
this is reflected in the choice to present a toolbar with
buttons for all available commands, rather than relying
on a series of hidden (and likely arbitrary) gestures that
need to be learned. For example, what gesture should
be used to create a simple operation? How would it
differ from one to create an instance operation? Each of
the opers has a different shape, so perhaps the gesture
could be based on that. But tracing the shape, even just
enough to distinguish it from the other types, would be
tedious and error prone. “Shortcut” gestures, intended
for experienced users who might find them more effi-
cient, could be added later as an alternative means of
input, but should not be the sole means of executing a
command.

On the other hand, moving operations by dragging
them with a finger is intuitive and easily discoverable.
It is not necessary to create a special button to enable
this, and in any case, one would still have to know to
drag the operation symbol while in this mode.

3.2 Minimizing Modes
Modes result in mode errors (see above); therefore one
hopes that reducing (or eliminating) modes will result in
fewer mode errors. Despite some claims of having “mod-
eless” interfaces, this is rarely actually achievable or even
desirable, since it would require a good deal of context
to be repeatedly and tediously reestablished. Sellen et al.
write, “what is actually meant by a modeless interface
often refers to design in which contextual information is
provided to minimize mode errors and in which modes
can be easily entered and exited.” [6, p. 143]

As mentioned earlier, it has been shown that user-
maintained modes, using kinesthetic feedback, typically
result in much lower rates of mode errors, and faster
resumption of activity after an interruption. What Wu et
al. [4] refer to as “kinesthetically held modes” (actively
user-maintained, with kinesthetic feedback), Raskin calls
“quasimodes” [7, p. 55]—a kind of mode still, but
less problematic, perhaps. To illustrate the difference,
compare how often you accidentally type upper case
letters as a result of forgetting that you are holding
down the Shift key on your keyboard (probably not very
often) with how often this happens with your cell phone
(which likely has a latching Shift key soft button) or as
a result of accidentally hitting the Caps Lock key. Caps
Lock creates a mode; the Shift key creates a quasimode.

The closest equivalent for a strictly touchscreen device
is to require at least one touch be maintained for the
entire duration of the quasimode. This provides the

requisite kinesthetic feedback that a mode is active. In
the prototype, two different means of achieving this have
been attempted: In one, the user holds one finger (or
thumb) down on a toolbar button that engages the mode,
while one or more other fingers perform some manipu-
lation in the main editor pane within the context of the
quasimode. In the second, a single continuous gesture
engages the mode and performs the manipulation, the
mode ending when the touch(es) are lifted from the
screen, signalling the end of the gesture. Dragging and
dropping an object from a “parts bin” into the editor
pane to create a new instance of that object type is an
example of the latter, as is the act of moving an existing
object within the editor.

3.3 Responsiveness
Although this is only an early prototype, it was believed
that the experience had to be smooth and responsive in
order for any user feedback to be meaningful. To give the
user a real sense of direct manipulation, objects would
have to react without any hesitation or sluggishness.
(That this intuition was correct was borne out in the
comments from users who were all very impressed and
pleased with the responsiveness of the application.)

4 PROTOTYPE APPLICATION

4.1 Design
For the initial prototype of Flow, two separate interfaces
were created, each employing a different user interaction
style, for comparison. The visual layout for the two
versions is essentially identical, featuring a toolbar along
one side of the display and a large area for displaying
the code being edited. (See Fig. 3.) The toolbar contains
buttons for creating each of the language elements (for
now, this includes operations, nodes, and datalinks) as
well as various commands (only Delete at the moment).
The toolbar can be placed along either the left or right
edge of the screen (for right- or left-handed users, re-
spectively), as selected through a user preference.

Fig. 3. Prototype interface: Quasimodal (left); Drag-and-
drop (right).



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 5

In one version, the buttons control the current operat-
ing mode of the editor—adding an operation, adding a
node, adding a datalink, or deleting any of the above—
and a button must be “held down” (the touch must
be maintained on the button) to engage the mode,
providing continuous, user-maintained kinetic feedback.
(Fig. 4.) Although this can be done (somewhat awk-
wardly) with one hand, the intent is for this interface to
be used with two hands, the NP hand selecting the mode
and the P hand tapping or dragging in the code pane.
This will be referred to as the “quasimodal” version,
using Raskin’s term.

In the second version, all of the buttons for creating
new objects (except for datalink creation, which was
not completed in time for this report) are operated by
dragging a finger from the button onto the code pane,
which creates an object for the user to drag into place.
(Fig. 5.) The delete command is still operated using
the two-handed method, but that could be replaced or
supplemented with a gesture (such as making a stroke
through an object, or dragging it to a trash area along
another edge of the screen). Unfortunately, this was not
included in the version the users were given, so any
conclusions must be tempered by the knowledge that
the second interface was not as consistent as it should
have been in order to make a fair comparison. (The
visual separation of the toolbar buttons in this interface
was done solely to provide a clue that the two sets of
buttons were operated differently, but the placement of
the buttons may not have been ideal.) This interface,
despite the mixing of styles, will be referred to as the
“drag-and-drop” (or DnD) version.

As one user put it, a fundamental difference between
the two interfaces is the use of one hand versus two,
although that is not the only point of differentiation, nor
are these the only possible approaches in either of those
two categories.

The drag-and-drop style should be familiar to most
users from desktop GUIs, but the other mode may
require a bit of explanation. It will initially be unfamiliar
to most, but it was hoped that, once the operation is
explained, it would be easy to understand and offer a
viable alternative to the more customary designs.

In both versions, the editor operates in a default mode
when no buttons are pressed. In this mode, objects can be
moved simply by dragging them (Fig. 6)—in fact, several
can be moved independently all at once, each with a
different finger. In a full-fledged editor, there would
probably be support for other actions that can be easily
and naturally controlled through unique gestures. In
the quasimodal version, objects cannot be moved while
any of the buttons are engaged, as that action might be
confused with a gesture related to the active quasimode.
Take, for example, creating a datalink, which involves
dragging one’s finger across the screen from one node
to another (while the Datalink quasimode is engaged).
Since the point of contact would be on or near the edge of
an oper icon, it would be hard to reliably distinguish this

Fig. 4. Quasimodal operation: Creating a new instance
operation involves actively maintaining a touch on the
Instance operation button (top-left photo) and tapping
with another finger to place the oper in the code pane
(top-right). To create a new datalink between nodes, the
Datalink button is held (bottom-left) while another finger
draws a line from the start node to the end node (bottom-
right).

Fig. 5. Drag-and-drop operation: New operations are
dragged from the toolbar onto the editor pane and placed
wherever desired. (Sequence shown left-to-right.)

action from an attempt to move the oper, if it were not for
the quasimode to provide context. Because a finger touch
is not nearly as precise as a mouse or stylus, and some
of the targets are necessarily small, the software must
be forgiving and allow a good deal of leeway in hitting



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 6

Fig. 6. Moving opers: In the default editing mode (and
at any time in the drag-and-drop interface), opers can be
moved simply by dragging them.

targets. If active targets overlap or are too close together,
the recognizer might misjudge the intention, likely re-
sulting in a frustrating user experience. By limiting the
set of potential targets within a mode or quasimode,
recognition accuracy can be much higher, which makes
the interface seem more intelligent.

In drag-and-drop mode, creating new code objects by
dragging them from the toolbar invokes a kind of quasi-
mode as well, in as much as the creation mode is active
only as long as the user maintains screen contact with
the finger that started the drag gesture. However, unlike
in the full quasimode interface, where engaging a toolbar
button locks the entire interface into the corresponding
quasimode, here the quasimode applies only to that
one finger. Other fingers can continue to move existing
objects in the editor, or begin additional creation actions.
This feature is not inherent in the design; it was more
an accident of some implementation choices. However,
it seems more in the spirit of an immersive multi-touch
interface to allow this, so it will probably remain. If some
users find this confusing, it would be easy enough to
add a preference to limit the interface to one mode or
quasimode at a time.

Persistent modes, apart from the default mode that
automatically becomes active when all fingers have been
removed from the screen, have so far been completely
avoided. There are still many features to be added to
make the prototype into a usable code editor, but it is
hoped that this design path can be maintained as more
functionality is added.

4.2 Development Platform
The target hardware for the prototype is a first-genera-
tion Apple iPad. The iPad has a 9.75′′ (247 mm diagonal)
screen with a capacitive touchscreen overlay, which can
simultaneously detect independent touches from all ten
fingers.

The original plan was to develop the program for
the WebKit [14] HTML 5 platform (with Apple’s exten-
sions), to allow it to be easily ported to other platforms

that have the same environment available (including
Android-based tablets and most desktop OSes). How-
ever, the available API frameworks were, at the time
(January 2011), found to be too immature to use with-
out significant further development, and the example
programs built with these frameworks felt somewhat
sluggish in operation. As a result, the initial prototype
was developed as a “native app”, using Objective-C
and Apple’s iOS SDK [15]. Apple has since reportedly
doubled the speed of their WebKit JavaScript engine, and
the frameworks will no doubt get better in time, so it
may be possible to revisit the WebKit platform at a later
date.

5 USER EVALUATION

While there were no plans for formal user testing within
the scope of this phase of the project, a small sampling of
users known to the author were given the software to try
and were interviewed while using the software and af-
terwards. Some were expert Prograph users and so fully
understood the model of the visual editor and the sym-
bols used, while some others were non-programmers or
novice Prograph users who, nonetheless, were able to
give feedback on the responsiveness and naturalness of
the interface options.

5.1 Interview (Semi-)Structure
Although these were to be informal interviews, a set of
questions was prepared as a guide, to help ensure that all
the key questions were asked of each interviewee. There
was also a set procedure regarding how the software
was presented to the user and what instruction was to
be provided to each:

1) Configure the software into quasimodal mode, with
the toolbar on the appropriate side for the user,
then give the tablet to the user, initially with no
instruction.

2) Ask the user to think out loud; tell the user that he
or she is free to ask questions. Allow the user a few
minutes to try the program; if he or she becomes
stuck, offer advice or demonstrate the use of the
buttons or other feature.

3) Give a full tutorial on two-handed use, if necessary,
demonstrating and explaining that mode or context
selection is done with the NP hand, manipulation
with the P hand. Allow the user to try again.

4) Take the tablet, switch the interface mode to drag-
and-drop mode, and pass it back to the user.

5) As before, allow the user to experiment without
providing any instruction, but answer any ques-
tions.

After allowing the user sufficient time to play with the
software, the following questions were asked:
1a) Did the interface feel natural to you? Was it easy

to guess how things worked? Were there elements
that required explanation?



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 7

b) How do you think it could be made more natural
or intuitive?

2a) Did you find that the touchscreen felt more or less
direct than using a mouse, or about the same?

b) How was the responsiveness to touches?
3a) How did you find the operation of the held-down

buttons for setting the current mode or context?
Once it was explained (if necessary), did it begin
to feel natural?

b) Was it at all awkward or fatiguing?
c) Did you have any trouble finding or holding the

buttons with your thumb or finger?
4a) Using both hands in this way, with the off-hand

leading the dominant one, did it feel more efficient?
Strange? Comfortable?

b) Did it bring to mind any other two-handed tasks?
5) Overall, did you find this environment appealing

to use?
6) Do you have any other comments or suggestions?
Due to the informality and semi-structured nature

of the interviews, the questions were often answered
out of order, sometimes as a result of the direction of
the conversation during the test or the interview, and
sometimes incidentally through comments made while
using the program. Also, the interviewer observed the
user while he or she used the program and made note
of any apparent difficulties or lack thereof.

5.2 Summary of Results
Overall, there was a strong consensus that the design
was intuitive and very responsive. All but one user
(and all of the expert users) felt that the sense of direct
manipulation was greater than with a mouse, and that
the responsiveness of the interface to touches was an
important part of that.

The expert users all initially assumed that drag-and-
drop would be the way to operate the toolbar buttons,
while some novice users first tried to tap on the buttons
to latch them on. When asked, they generally attributed
this to their previous computer experience and expected
the tablet to be the same. However, after an explanation
was given (often as little as suggesting that he or she
try using two hands), all but one quickly mastered the
quasimodal operation, and the majority said that they
preferred this version to the DnD version (even when
stating that he or she found it less “natural”). Most
found it faster to create new objects with the two-handed
interface than by dragging items from the toolbar. And
the expert users found adding nodes by dragging them
from the toolbar to be somewhat awkward (it “felt odd”,
one said, perhaps because there was no analogue to it
in the desktop version). No one had a problem adding
nodes by tapping using the quasimode version.

(It should be noted that node dragging was an imma-
ture feature, added only the day before the user sessions,
and it lacked even the limited visual feedback and snap-
to assistance that datalink creation has. It is not really
surprising that it was the least liked feature.)

Two users expressed a preference for the drag-and-
drop interface, primarily because they preferred to oper-
ate the program with one hand. This seemed to be partly
because the form factor of the tablet invites one to sit
back and hold it in one hand, rather than placing it on a
table so that both hands are free. One user suggested
moving the quasimodal buttons up towards the top
edge of the screen so that the unit could be gripped up
higher (better balancing the tablet in the hand) while
still leaving the thumb free to press buttons. It was also
suggested that a landscape orientation for the editor (it is
currently portrait-orientation only) would accommodate
holding the tablet with both hands while operating the
interface with the thumbs.

The size of the interface elements was generally con-
sidered very good. One user suggested adding borders
around the toolbar buttons and adjusting the spacing
between icon and text label to make the pairings more
clear. However, no one asked for larger buttons or
more space between, although some button misses were
observed.

The snap-to-node feature of datalinks worked pretty
well, but some users expected or expressed a preference
for being able to see the point of connection above the tip
of the dragging finger. This was actually tried for node
placement, but the offset used was based on the author’s
finger size and angle, and it turns out that there is a
wide variance, even within this small sample, in how
people hold their finger on the screen. Some keep the
angle low, others practically vertical. Some expected the
connection point to be at the point of finger contact, some
wanted it above the end of the fingertip, some below
it. This was generally not a problem for opers, whose
shapes are larger than a finger tip, but it’s clear that
more and/or different types of feedback are required for
smaller shapes.

6 ANALYSIS OF FEEDBACK

Going back to the original set of study questions, the
feedback obtained so far seems to point to affirmative
answers to at least the first two of these: Users do find
the environment appealing to use, and the sense of direct
manipulation is enhanced by the touchscreen interface.
It is a bit early to begin judging coding efficiency, but
the experienced Prograph users were very excited and
are looking forward to putting that question to the test
with a future, more fully realized version.

Given the slight novelty of the quasimodal interface,
as compared with what is common in most desktop
and mobile GUIs, it appears that users do need at
least a small amount of instruction to figure out how
to operate the program. Because mobile applications
rarely come with any instruction manuals, users will
expect to be able to use the program without reading
any external documentation. Therefore, some sort of in-
program assistance should be added to quickly show
the user how to operate the controls. Testing so far does



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 8

suggest, however, that once users learn the “trick”, many
do prefer the quasimodal interface, so it does seem worth
asking them to put in a small amount of effort to learn
the unfamiliar system.

Mobile games may offer some useful examples to
follow, as it is common for games to have specialized
rules and control systems that must be learned before
or during play. Perhaps even something as simple as
displaying a comics-style speech bubble, attached to the
side bar, the first few times the editor is opened, and
having it disappear as soon as the user successfully
uses the buttons once or twice. Later, if the program
detects actions that suggest the user is trying to operate
the controls in a different manner (such as trying to
drag from the buttons or tapping the button, instead of
pressing and holding, to engage the mode), the program
might pop the bubble back up as a reminder. Or, in the
case that this is a new user who happens to be using
someone else’s tablet and who isn’t familiar with the
interface, providing the initial instruction again. (Many
desktop applications have a “don’t show this message
again” box for instructional or warning messages, but
these impose the preferences of the primary user of the
system on any others who may also sometimes share
the computer and who may not be at the same level of
experience with the software.)

Another alternative would be to support multiple
interaction styles simultaneously, as much as possible.
For example, the gesture recognition system would likely
have little difficulty distinguishing between a stationary
“press-and-hold” touch on a toolbar button and a drag-
ging action from the same button. Provided there is very
little chance of the system behaving in an unexpected
manner, this is a reasonable option. There is a danger,
however, that most users will first try what they are
familiar with—that is, drag-and-drop—and as a result
may never discover that there is another interaction style
available, one which they might actually prefer.

Node dragging as currently implemented needs work.
It lacks sufficient visual feedback such as highlighting
the destination oper when the node is placed on or
near it, snapping the node to the edge of the oper,
and perhaps animating the other nodes to their new
positions. Feedback when connecting datalinks could
also be improved; the action of snapping to a node when
in range is effective, but it might also be helpful to
draw a circle around the target node, wide enough to
be seen around a fingertip, to provide confirmation that
the obscured connection is being made. Alternatively,
the end of the datalink could float at some distance
from the touch, allowing the connection to be made with
the fingertip covering the node. Some users find this
awkward, however, and others would have to adjust the
way they hold their fingers in order for this to be of any
help.

The sessions also produced several excellent sugges-
tions for additional editing features, including being able
to grab datalinks along their lengths to reposition them,

thereby reducing the cost of a placement error, which
will help minimize user frustration.

7 CONCLUSIONS AND FUTURE WORK
The goal for this project was to try some novel user
interface designs for an existing visual programming
language and get feedback on what seems to work and
what doesn’t. Although there is still much work to be
done before the current prototype is ready for real use,
the initial feedback, particularly from the experienced
VPL users, is very encouraging. The sense of direct
manipulation, a key feature of visual programming, is
more effectively realized with a touchscreen than with
a mouse. And the ability to use multiple fingers and
both hands instead of just a single cursor opens up
many possibilities for more immersive and more efficient
programming interfaces. It may be, however, that not
everyone is ready for such a paradigm shift, and as
development progresses, it may be necessary to keep
some more traditional alternative options in mind so
as not to alienate these users. It may be wise to make
use of progressive enhancement techniques to gradually
introduce novel interface features, wherever it is possible
for the two styles to co-exist.

Proper user testing needs to be done before declaring
the use of kinesthetically-held modes (quasimodes) a
success, but in our limited sample all found it easy to
learn how to use the buttons (many require no further
prompting than to “use two hands”), and despite the
unfamiliarity, many of the testers quickly grew to like the
interface and expressed a preference (if tentative, given
the limited amount of exposure) for the quasimodal
interface over the drag-and-drop style with which they
were more familiar. The ones that did not prefer this
style expressed a preference for being able to operate
the tablet with one hand, in a more casual manner. At
this early stage in its adoption, it may be that the tablet is
not seen as a tool for serious work, but more something
to sit back and browse with. It will be interesting to see
if this attitude changes over time, as more productivity
applications appear for tablet computers. It would also
be interesting to bring the programming environment
to a large table-top touch surface system, in order to
experiment with how the additional screen real estate
could be used, and to see if the change of context changes
users view towards the “seriousness” of the system.

Future work will largely be focused on experiment-
ing with designs for navigating higher-level constructs,
such as cases, methods, classes, and libraries. There are
a number of general approaches to consider, such as
zooming, overview+detail, focus+context (all described
in [16]), and/or a more traditional hierarchical system.
And within those approaches, there are several ways to
map them to a small screen and to take advantage of
touch input. Again, particular attention will be paid to
the option of bimanual input, with the hope that this
can spur further investigation into the effectiveness of
this mode of interaction.



HACKETT, COX: TOUCHSCREEN INTERFACES FOR VISUAL LANGUAGES 9

Additionally, there was a third system originally in-
tended to be included in this first prototype, one based
on the Toolglass widgets system [17]. However, devel-
opment of the first two interfaces took longer than an-
ticipated and there was not enough time to complete the
third for inclusion in this report. Toolglass was originally
designed for a mouse-and-pen two-handed system, but
it sounds like a perfect fit for a two-handed touchscreen
system. The author is not aware of any attempts to
implement Toolglass in this context (either in a VPL or
in a touchscreen environment); it would be interesting to
see what a touch-tablet implementation might look like
and how users would react to it, as it is quite different
from what most are familiar with.

ACKNOWLEDGMENT

The authors would like to thank the members of the Dal-
housie University Visual Languages and Design Group
for their valuable input during the development of the
Flow prototype, and their former Pictorius colleagues
who took the time to provide expert-user feedback on
the prototype.

REFERENCES
[1] P. T. Cox, F. R. Giles, and T. Pietrzykowski, “Prograph: a step

towards liberating programming from textual conditioning,” in
Proc. 1989 IEEE Workshop on Visual Languages, 1989, pp. 150–156.

[2] Pictorius, Prograph User Guide, version 1.1 ed. Halifax, NS,
Canada: Pictorius, Inc., 1997.

[3] K. Yee, “Two-handed interaction on a tablet display,” in CHI ’04
extended abstracts on Human factors in computing systems. New
York, NY, USA: ACM, 2004, pp. 1493–1496.

[4] M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan,
“Gesture registration, relaxation, and reuse for multi-point direct-
touch surfaces,” in Proc. 1st IEEE Int. Workshop on Horizontal
Interactive Human-Computer Systems (TableTop 2006), 2006, pp. 185–
192.

[5] Y. Guiard, “Asymmetric division of labor in human skilled
bimanual action: The kinematic chain as a model,” Journal of
Motor Behavior, vol. 19, pp. 486–517, 1987.

[6] A. J. Sellen, G. P. Kurtenbach, and W. A. S. Buxton, “The
prevention of mode errors through sensory feedback,” Human-
Computer Interaction, vol. 7, pp. 141–164, Jun. 1992.

[7] J. Raskin, The Humane Interface: New directions for designing inter-
active systems. Reading, MA, USA: Addison-Wesley, 2000.

[8] M. Nielsen, M. Störring, T. B. Moeslund, and E. Granum,
“A procedure for developing intuitive and ergonomic gesture
interfaces for HCI,” in Gesture-Based Communication in Human-
Computer Interaction, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, vol. 2915, pp. 105–106.

[9] J. O. Wobbrock, M. R. Morris, and A. D. Wilson, “User-defined
gestures for surface computing,” in Proc. 27th Int. Conf. Human
Factors in Computing Systems (CHI ’09). New York, NY, USA:
ACM, 2009, pp. 1083–1092.

[10] M. Frisch, J. Heydekorn, and R. Dachselt, “Investigating multi-
touch and pen gestures for diagram editing on interactive sur-
faces,” in Proc. ACM Int. Conf. Interactive Tabletops and Surfaces
(ITS ’09). New York, NY, USA: ACM, 2009, pp. 149–156.

[11] D. Mauney, J. Howarth, A. Wirtanen, and M. Capra, “Cultural
similarities and differences in user-defined gestures for touch-
screen user interfaces,” in Proc. 28th Int. Conf. Human Factors in
Computing Systems (extended abstracts) (CHI EA ’10). New York,
NY, USA: ACM, 2010, pp. 4015–4020.

[12] M. Frisch, J. Heydekorn, and R. Dachselt, “Diagram editing
on interactive displays using multi-touch and pen gestures,” in
Diagrammatic Representation and Inference, ser. Lecture Notes in
Computer Science, A. Goel, M. Jamnik, and N. Narayanan, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6170, pp. 182–196.

[13] D. A. Norman and J. Nielsen, “Gestural interfaces: a step back-
ward in usability,” interactions, vol. 17, pp. 46–49, Sep. 2010.

[14] WebKit Open Source Project, “WebKit,” http://webkit.org/,
2011.

[15] Apple Computer, “iOS Reference Library,”
http://developer.apple.com/library/ios/navigation/, 2011.

[16] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of
overview+detail, zooming, and focus+context interfaces,” ACM
Computing Surveys (CSUR), vol. 41, p. 2:1–2:31, Jan. 2009.

[17] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose,
“Toolglass and magic lenses: the see-through interface,” in Proc
20th Ann. Conf. on Computer Graphics and Interactive Techniques
(SIGGRAPH ’93). New York, NY, USA: ACM, 1993, p. 73–80.

[18] D. Saffer, Designing Gestural Interfaces: Touchscreens and Interactive
Devices. O’Reilly Media, Inc., 2008.


