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Abstract—Self-awareness or the ability to be informed about
system internal state is an important attribute for any system to
have before it is capable of self-management. This is irrespective
of which of the self-* properties of self-management in autonomic
systems we choose to achieve. A system needs to have a continuous
stream of real-time data to analyze to allow it be aware of its
internal state. To this end, previous approaches have utilized
system performance metrics and system log data as a means of
characterizing system behaviour and internal state.

In this work, we propose a scheme which utilizes the entropy-
based information content to group spatio-temporal partitions
of system log data into conceptual clusters. We evaluate our
method using cluster cohesion, cluster separation and cluster
conceptual purity as metrics on High Performance Cluster (HPC)
system log data. The results show that our proposed method
not only produces well-formed clusters but also clusters that can
mapped to different kinds of alert behavior with a high degree of
confidence. These results provide evidence that clusters produced
by the proposed method characterize the different behaviors of
the system and hence capture information about internal state.
Hence they have value for the enhancement of self-awareness.

The ability to differentiate among types of behavior (both
normal and abnormal) is also valuable for self-monitoring and
fault detection as deviations from types of normal behavior could
be indicative of a fault.

Index Terms—Algorithms; Autonomic Computing; Networked
Systems; System Management; Modeling and Assessment

I. INTRODUCTION

An autonomic computer system is one, which is capable
of self-management to a certain degree. The need for auto-
nomic computer systems has become more apparent recently,
due to the ever growing size and complexity of modern
computer systems [1]. As most of today’s systems such as
cloud computing infrastructure require high availability, this
need becomes even more apparent when fault resolution is
required. System administrators need to be able to resolve
system problems quickly despite the complexity of the systems
they manage. Having systems that can provide pointers or aid
the understanding of the problem or possible solutions are
therefore desirable [2], [3].

For a computer system to be capable of self-management,
it needs to possess four attributes [4]. These are self-
awareness, self-situation, self-monitoring and self-adjustment.
Self-awareness refers to the system’s ability to be informed

about its internal state, while self-situation implies the ability
to be informed about its external operating conditions. Self-
monitoring is the ability to detect changes while the ability
to adapt to these changes is self-adjustment. To achieve self-
awareness, the system needs to be able to differentiate between
its different internal states or system behavior.

Previous work has leveraged on either the collection of
system performance metrics [2] or system logs [5], [3], [6] as
sources of data, which could be analyzed by a system to make
it aware of its internal state. Event logs collect information
about the various pieces of software running on a system,
whereas system logs collect this information at the operating
system level. System logs are usually good indicators of
system state as they consist of information written by the
several interrelated components of complex systems [3]. We
therefore explore the use of system logs for the purpose of
characterizing system behavior in our work.

In this work, we explore the use of entropy-based infor-
mation content clustering of spatio-temporal partitions (node-
hours) of system logs as a means of characterizing system
behavior. Leveraging on previous work in the entropy-based
approach to alert detection in system logs [5], [7], [8], we
extend the approach to characterization of the behavior of
a system. We utilize the information content scores derived
from the entropy values of the message types that occur
within spatio-temporal partitions of system logs as attribute
values to propose a clustering technique, which groups the
partitions into conceptual clusters. Conceptual clusters are
clusters where objects in a cluster can be described by a
concept, not just based on their distance from each other,
as is done in conventional clustering [9]. Moreover, message
types are textual templates, which abstract the natural language
messages in system logs. The clusters formed by this method
are then assumed to describe different internal states of the
system.

We evaluate our method using three measures, namely,
cluster cohesion, cluster separation and cluster conceptual
purity, on datasets derived from the system logs of four High
Performance Cluster (HPC) systems. The results show that
not only are the clusters formed by our proposed information
content based clustering method well formed but they can also



be described conceptually with a high level of confidence with
regards to the different alert types in the log data. While it
is possible to generalize our method to other types of event
logs, our work using HPCs is significant since it is well known
that the rate of failure on HPC systems is significantly higher
than on uniprocessor machines [10]. Enhancing self-awareness
through system behaviour characterization could help reduce
the rate of failure and failure resolution times on these systems
i.e. improving their availability and dependability.

In the following, we discuss concepts important to under-
standing our work and previous work in Section 2, while
Section 3 discusses entropy-based analysis of system logs
in-depth. Section 4 discusses the methodology of proposed
method and the experiments we carried out to evaluate the
method, whereas the results of those experiments and discus-
sions on the generalization of the proposed method and results
are discussed in Section 5 and Section 6, respectively. Finally,
conclusions are drawn and the future work is discussed in
Section 7.

II. BACKGROUND AND PREVIOUS WORK

A. Definitions

A system log can be defined as a collection of lines of
text reporting occurrences on a computer system setup in
temporal order. Each event can be further decomposed into
several fields, the exact nature and order of which would differ
from system log to system log, but will generally consist of a
timestamp, reporting computer or node, severity information
and a free form message. A nodehour is thus one hour of log
information from a single node.

The free form message, which we refer to here as message,
is a natural language description of the event and is therefore
unstructured. Each message in an event can be sub-divided
into tokens, using a delimiter, which is usually whitespace.
This unstructured nature of messages makes it difficult for
the message field of events to be used in building models.
Message type extraction or message type clustering is a way
of building structured context into the unstructured message
fields of events. Its goal is to find a set of textual templates,
defined by constant tokens and variable tokens (wildcards) that
abstract all the messages in a system log. Each message can
be produced by one and only one template. These templates
are referred to as message types.

B. Self-Monitoring for Self-Management in Computer Systems

The goals of any automatic system monitoring application
in regard to the goal of self-healing in autonomic systems can
usually be summarized into one of three inter-related goals.

1) System Characterization : The goal here is to model
or describe the characteristic of the system under normal
operation. These models, once formulated can then be
used to monitor the state(s) and state transitions of the
system. Essentially this improves self-awareness in a
deployed system.

2) Error/Failure Identification : We differentiate here be-
tween errors as symptoms of a fault and failures that are

actual faults. Faults usually leave signatures on systems
before and after they occur, these signatures manifest
themselves in the form of errors (alerts) in the system.
The goal here is the automatic identification of these
error conditions that ultimately link to the actual fault
conditions or failures, thereby reducing troubleshooting
time.

3) Failure Prediction : Failure prevention can sometimes
be more desirable than recovery from a failure. The error
signatures associated with faults sometimes occur before
the actual fault. In cases where such errors are non-fatal
and always ultimately lead to a fault condition, they can
be used as failure predictors, thus allowing pre-emptive
action to be carried out before failure occurs.

To be able to create applications that will be capable of
automatically monitoring systems with the above goals in
mind, we must have access to continuous stream of real-time
data from the systems. Such data must explicitly or implicitly
contain information about the state of the system and its
components.

A literature review shows significant effort has been carried
out by various researchers in automatic system monitoring and
most have followed the approach of analyzing data from the
system. Two important sources of data include system metrics
[2], [17] and system logs [10], [12], [13], [14], [3], [5], [15],
[6]. While these sources seem to be more prevalent in the
literature, other sources have been explored too. For example,
Chen et al. model system behavior by collecting and modeling
statistics of the paths that system requests follow as they move
through a system [16]. They demonstrate how this knowledge
can be used in failure and change management.

Metrics of system activity can be used in the automatic
analysis of such systems. These metrics could be either low
level system metrics or application level metrics. System
metrics include measurements such as resource utilization
(memory and CPU), length of system queues and latency of
disk I/O operations, while application level metrics include
transaction response time and request throughput [2].

In [2], Cohen et al., successfully demonstrate a method of
using system metrics to define system states. Such observed
states are clustered and indexed for similarity based retrieval.
Their assumption was that if an indexed system state can be
used to identify a prior system problem, then future system
states, which are sufficiently similar can also be associated
with the problem. This in turn can lead to quick diagnosis
and repair. In [17], Jiang et al. propose the utilization of
entropy based analysis of management metrics for the problem
of fault detection. Their work suggests that systems can be
monitored by observing the changes in the in-cluster entropy
of clusters identified using the normalized mutual information
of metric pairs. In [11], the authors apply a dependency-aware
framework based on the Tanimoto coefficient to the problem
of fault diagnosis in enterprise software systems, using metric-
correlation models built form collected application level met-
rics such as resource utilization and response time.



In summary, previous work in the analysis of system logs
typically follow, encompass or require one or more of the
following steps.
• Unstructured Message Analysis : Events in system

logs are typically not homogenous entities. They contain
structured and unstructured information. The unstructured
information, namely free-form messages, typically pose
a stumbling block to the automatically analysis of event
data. Therefore, analysis of unstructured messages is
required for further understanding of system logs. The
methods proposed in [14], [18], [6], [15] show different
approaches to carrying out unstructured message analysis.

• Indexing/Feature Creation : This involves the creation
of indexable features from the unstructured data in the
form of message type IDs and message variables. This is
referred to as message type transformation (MTT) in [7],
[19].

• Event Correlation : In most cases, it is unlikely that a
single event in a system log could characterize system
behavior. As such, it is important to find message types
that are correlated in the system logs. Correlated mes-
sages are usually better indicators of system state. In [6],
the authors track the variables reported in message types
as a means of identifying correlated messages. They argue
that messages which report the same variable(s) are likely
to be correlated.

In the following, we summarize some previous work done
with log data in system monitoring.

Loghound is a log data mining tool, which is an implemen-
tation of a frequent itemset mining algorithm for mining both
lines (message types) and event types (correlated messages)
from an event log [20]. In [14], a case study of Loghound
is presented to analyze Cisco Netflow logs for patterns that
describe the behavior of network traffic. In [10], Liang et al.
propose a 3-step filtering algorithm for filtering failure logs
from a high performance cluster (a BlueGene/L prototype),
which compresses and categorizes the events in the log to
better understand failure behavior.

In [12], the authors propose a modified Naive Bayes algo-
rithm for the categorization of messages in system logs. Unlike
other approaches where such message categories are based on
the textual representation of the messages, the categorization
done here is based on previously defined categories associated
with the IBM CBE (Common Base Event) format [21]. The
authors then discover temporal relationships between these
message categories. These relationships are then visualized to
monitor system behavior.

In [13], the authors assume the existence of known event
types (message types) and use the process they refer to as
event summarization to mine and rank temporal dependen-
cies between event types. Temporal dependencies are mined
using time series analysis and are ranked using a forward
entropy technique [22]. These dependencies are then visual-
ized using an Event Relationship Network (ERN) [23], [24],
which is used to interpret system behavior and derive rules
for system management. In [3], Lim et al. utilize message

de-parameterization to create message types from enterprise
telephony system logs. Messages in the logs are then replaced
by these message types, which they refer to as message codes.
The logs are then further analyzed using frequent itemset
mining to discover correlated messages, which were useful
in determining failure states in the system.

In [15], Aharon et al. propose the PARIS (Principal Atom
Recognition in Sets) algorithm. This algorithm is able to
detect atoms, i.e. sets of correlated message types, which are
produced as part of a normal process or failure activity. In
this case, the message types have been previously mined. The
authors then propose the monitoring of these atoms through
visualization as a means of detecting failure in system logs. Xu
et. al proposed a Principal Component Analysis (PCA) based
framework for the detection of system problems through the
analysis of console logs [6]. In their case message types were
extracted from source code.

On the other hand, Nodeinfo is an alert detection method
based on the entropy-based information content analysis of
system logs [25], [5]. Based on the assumption that “Sim-
ilar computers correctly executing similar code should pro-
duce similar logs”, Nodeinfo introduces the more complex
log.entropy term weighting scheme to the work of Liao []
and Reuning [26]. Nodeinfo has been shown to achieve an
operationally acceptable false positive rate of 0.05% at a
Recall rate of 50% in the detection of system logs from
High Performance Clusters (HPC). Nodeinfo does not fully
capture message context as it does not use message types.
Instead, it utilizes the concept of encoding token and token
position pairs for dealing with unstructured messages. In [7],
[8], [19], Makanju et al. incorporate the Iterative Partition
Log Mining (IPLoM1) [18] message type extraction algorithm
into Nodeinfo, to allow it to fully capture message context.
The authors show that with their modifications, Nodeinfo was
much faster and was able to achieve a false positive rate of
0% at a Recall (detection) rate of 100% under the best case
scenario.

Our work builds on this entropy-based information content
approach to system monitoring. Previous applications are
focused on the use of an entropy based approach to alert
detection or error identification. In this work, we demonstrate
how an entropy based approach can be extended to the
characterization of system behavior. To achieve this, we build
conceptual clusters using the portions of the system log that
have similar information content. In the following, we present
this approach in more detail.

III. ENTROPY BASED ANALYSIS OF SYSTEM LOGS

Entropy based analysis of system logs proceeds from the
work of Oliner et al. [25], [5] and has so far been limited
to the task of unsupervised alert detection. We refer to
alerts as events (or group of events) in a system log that
are symptomatic of failure or require the attention of an

1An open source implementation of the IPLoM algorithm is available for
download from http://web.cs.dal.ca/∼makanju/iplom/



administrator.Unsupervised alert detection is the task of auto-
matically identifying such events without human intervention.
An entropy based approach to alert detection has so far been
shown to scale to large datasets [7] and achieve an F-Measure
detection accuracy of up to 100% leading to an effective FPR
of 0% in the best case [19], [8].

Since entropy based approaches are based on a “Similar
Computers, Similar Code, Similar Logs” assumption, a logical
pre-processing step is to partition the contents of the system
log based on the similarity of their source. In [5], [7], [8],
similarity was based on the functionality of the nodes in the
HPC files used in the evaluations.

After partitioning, the rest of the alert detection is carried
out following a three step process:
• Step-1: Calculate an entropy based information content

score for each term that appears in the system log.
• Step-2: Calculate the information content score for

spatio-temporal partitions of the system log based on the
information content of the terms that occur in it.

• Step-3: Create a ranking of the nodehours based on their
information content score to facilitate alert detection.

In the first step, entropy based information content scores
are calculated for each individual term that appears in the
free form message fields of the events in the log. A term
could either refer to a concatenation of the individual tokens
in the free form message with a number corresponding to its
ordinal position in the free form message (thereby capturing
the token’s context in the message) [5] or the tokens produced
through the use of Message Type Transformation (MTT) [19]
to convert the free-form messages in the system log based
on their message types. Three message transformations are
proposed in [19], these are: (i) Phrasal MTT, (ii) MTT with
variables, and (iii) Full MTT. It is shown that Full MTT can
provide up to a 99% reduction in the number of unique terms
found in a system log without reducing the detection accuracy
of the framework [7]. Thus, in this work, we take terms to
mean tokens formed by Full MTT, too.

In our work, we do not assume that these message types
are known, but we instead extract them automatically using
the Iterative Partitioning Log Mining (IPLoM) message type
extraction algorithm [18]. We utilize IPLoM for message type
extraction because we do not assume access to source code
as in the work of Xu et. al. [6]. IPLoM had been shown to
produce message types, which matched manually produced
messages types closely. In addition, it is also capable of finding
not only frequent patterns in the data but also infrequent ones.
The use of IPLoM to extract message types ensures that we
have a framework that can be made fully automatic.

Once the set of unique terms W in an system log is
identified, we can calculate the entropy based information
content of each term using Eqs. 1 and 2. If we let C be the set
of nodes on the network, then matrix X represents a |W |×|C|
matrix where xw,c is the count of the number of times term w
appears in messages having node c as source. The output of
this stage is vector G with cardinality |W |, where each element
gw of G represents that entropy based information content of

term w. Its values are in the range [0, 1], with 0 signifying low
information content and 1 signifying the highest information
content possible.

gw = 1 +
1

log2(C)

CX
c=1

pw,c log2(pw,c) (1)

pw,c =
xw,cPC

c=1 xw,c

(2)

Entropy based alert detection in system logs does not
attempt to identify alerts on an event by event basis. It instead
attempts to identify spatio-temporal partitions of the log, which
are more likely to contain alerts than others. The spatio-
temporal partitions used in previous work and in this work
are referred to as nodehours [5]. A nodehour is basically one
hour of log information produced by a single node on the
network. Given any system log E, a Nodehour can be defined
as any grouping of lines produced by a single node (c) within
a one hour interval in tune with wall clock time [5].

The second step proceeds to assign an information content
score to each nodehour. This information content score then
acts as an indicator of the interestingness of the nodehour.
Let’s define Hc

j as the jth Nodehour for node c, we can
assign an information content (Nodeinfo) score using either
of Eqs. 3, 4, 5. A comparison of these approaches can be
found in [8]. In this work, we utilize NodeinfoPlus Uniq, a
modified nodeinfo score defined by Eq. 4. In this approach, we
define a matrix Z, where zc

w,j effectively only records unique
occurrences of terms in the event data. This is different from
the matrix Y used in Eq. 3, where yc

w,j is the count of the
number of times term w appears in Nodehour Hc

j . Therefore
NodeinfoPlus Uniq assigns an information content score to a
nodehour based on the magnitude of the vector of information
content values of the terms contained in Nodehour Hc

j .
Results highlighted in [19], [8] have shown that Nodein-

foPlus Uniq results in improved alert detection accuracy and
reduced computation of the alert detection process.

NodeInfo(Hc
j ) =

vuut |W |X
w=1

(gw log2(y
c
w,j))

2 (3)

NodeInfoP lus Uniq(Hc
j ) =

vuut |W |X
w=1

(gw ∗ zc
w,j)

2 (4)

NodeInfoP lus Max(Hc
j ) = maxw(gw ∗ zw,c,j) (5)

In the third step, a ranking of nodehours based on their
information content scores is established. Nodehours with high
information content scores are then considered more likely to
contain alerts than those that come up lower in the ranking.

A. Entropy-Based Information Content System Characteriza-
tion

In this section, we describe the intuition behind our method
of extending an entropy-based approach to system behavior
characterization and the datasets used in our work. In our



TABLE I
SYSTEM LOG DATA STATISTICS

System # Days Size(GB) # Events
Blue-Gene/L (BGL) 215 1.21 4,747,963
Liberty 315 22.82 265,569,231
Spirit 558 30.29 272,298,969
Thunderbird(Tbird) 244 27.37 211,212,192

evaluation of entropy-based alert detection, we tested the
approach(es) on four HPC logs. These system logs are Blue-
Gene/L (BGL), Liberty, Spirit and Thunderbird(Tbird), which
are part of a set of HPC system logs, publicly available in
the USENIX Computer Failure Data Repository [27]. These
datasets were collected on HPC systems with varied configu-
rations and usage patterns; hence results generated using this
data should be generalizable. Some statistics for these system
logs can be found in Table I. The events in these system
log datasets have been previously labelled as alerts and non-
alerts by domain experts, giving us ground truth when eval-
uating our results. More details of the hardware architecture,
configuration, characteristics, log collection methods and alert
identification policies of these datasets and the systems that
produced them can be found in [10], [28].

Entropy based alert detection relies on the assumption that
“Similar computers correctly executing similar work should
produce similar logs” [25]. For this reason, log events from
similar nodes need to be analyzed together for the framework
to work effectively. To this end, we separated the messages
in the datasets based on the functional roles of the nodes
that produced them, leading to fourteen categories. These
categories are listed in the first column of Table II. The *-
Other categories are not functional groupings of messages but
consist of all messages that could either not be placed in any
of the other categories or have ambiguous source information.
The data statistics of the resultant datasets based on functional
groupings is detailed in Table II.

In our evaluations a strong clustering of nodehours around
single information content score values was observed Fig. 1.
This was particularly pronounced when NodeinfoPlus Uniq
i.e. Eq. 4 was used. Such clustering of values could be con-
sidered odd, since information content scores are real numbers
that theoretically can take any value in the range [0,∞). The
graphs in Fig. 1 shows select scatter plots for nodehours from
four of the datasets shown in Table II. In each graph, the y-axis
represents the information content score for a nodehour using
Eq. 4 while the x-axis represents each individual nodehour
sorted according to their information content score. We can
see the clustering manifest itself in all the graphs, while being
most pronounced with the BGL-Link category.

In the following, we try to explain what could be responsible
for this observation. Consider a set of distinct objects X ,
which you wish to sample (with replacement) and distribute
into a number of bins (each bin acting as a bag, which can
contain several instances of the same object from X), with the
following constraints:

1) If the number of bins is n, then |X| should be << n.

2) If Yi is the set of unique objects in bin i, then |Yi| should
be << |X| for most i.

If the sampling from X described above is carried out even
with a random sampling method, it is easy to see how we
could end up with several bins containing the same set of
distinct objects. Constraint 2 effectively reduces the number
of possible distinct object combinations that can exist in
any bin, while constraint 1 ensures that the chance for a
combination to repeat itself is high. If the number of possible
of combinations of objects from X given constraint 2 is less
than n, a combination repetition is guaranteed.

If we take X to be set of message types that exist in a system
log and the bins as the nodehours in the system log, then we
can reduce the process described to the system log analysis
domain with one major difference; the sampling from X will
follow a Pareto distribution rather than a random distribution.
Previous work [29], [20] has shown that the distribution of
messages in system logs by nature typically follow a Pareto
distribution. This means that the sampling of objects from X
will biased in such a way that a small subset of the objects
would be sampled more frequently than others. This biased
sampling should accentuate the result of having several bins
containing the same set of distinct objects.

We conjecture that the process described above is respon-
sible for the strong clustering of nodehours around a single
information content score as in Fig. 1. The information content
score value derived from the use of Eq. 4, is in a way a hash
value for the set of unique message types in a nodehour, so
we can link a distinct information content score to a (some)
set(s) of unique message type combinations. This would also
explain why this observation is more pronounced when Eq. 4
is used to calculate information content scores for nodehours.
Eq. 3 weights its results with frequency of occurrence of each
message type, thus two nodehours can only have the same
information content score, if they have the same message type
combination appearing at the same frequency. On the other
hand, Eq. 5 does not take all the message types in a nodehour
into consideration. This highlights another advantage of using
Eq. 4 over the other methods evaluated in [8]. Previous work
suggests that temporal filtering of system log messages could
be beneficial for system log analysis [10] and Eq. 4, represents
a form of implicit temporal filtering of system log messages.

From Table II, we can see that the constraints we described
earlier hold true for our datasets. The “# Msg-Types” column
represents |X|, the “# Nodehours” column represents the num-
ber of bins while the “Msg-Types/Nodehour (Max)” and “Msg-
Types/Nodehour (Avg.)” columns represent the maximum and
average number of message types that can be found in each
nodehour respectively. Based on these observations, we arrived
at the following hypotheses:

• Nodehours with the same information content score
(based on Eq. 4), contain the same unique set of message
types.

• Information content scores, which occur frequently, rep-
resent nodehours, which contain strongly correlated mes-



TABLE II
SYSTEM LOG DATA FUNCTIONAL GROUPING STATISTICS

# Events # Nodes # Nodehours # Msg-Types Msg-Types/Nodehour (Max) Msg-Types/Nodehour (Avg)
BGL-Compute 4,153,009 65,554 1,581,845 399 117 1.37
BGL-IO 400,923 1,024 219,722 49 5 1.11
BGL-Link 2,935 517 1,395 13 4 1.23
BGL-Other 191,096 2,167 13,666 97 16 2.71
Liberty-Compute 200,940,735 236 1,748,865 481 214 1.87
Liberty-Admin 52,211,676 2 27,162 601 195 5.9
Liberty-Other 12,416,820 6 44,447 510 166 11.89
Spirit-Compute 218,697,851 512 6,648,719 854 349 2.29
Spirit-Admin 41,847,257 2 26,216 443 151 6.79
Spirit-Other 11,753,861 7 57,532 707 228 10.93
Tbird-Compute 155,403,254 4,514 14.520,204 1,262 325 3.62
Tbird-Admin 15,306,749 20 100,740 627 179 4.69
Tbird-SM 19,109,810 1,319 8,859 597 254 12.54
Tbird-Other 21,392,379 2 626,030 1,387 356 2.13

sage types and represent some system behavior or char-
acteristic.

Our work in this paper was carried out to validate these
hypotheses.

IV. METHODOLOGY

In this section, we describe the conceptual clustering tech-
nique we developed based on the hypotheses above. We also
discuss the methods to evaluate the quality of the clusters
formed using our proposed technique.

A. Information Content Based Clustering

The pseudo-code in Algorithm 1 describes our method
for the clustering of the nodehours based on their in-
formation content. Essentially the algorithm creates each
cluster as a bin, which can be described using the tuple
(ICS, “MaxEntropyMsgType′′), where ICS is an infor-
mation content score value and “MaxEntropyMsgType′′ is
the ID of the message type with the maximum entropy value
among all the message types that have instances in the node-
hour. Intuitively, it would be sufficient to use only the ICS as
description for each bin. However, for the first hypothesis in
Sec. III-A to be true, two nodehours with the same information
content score should at the minimum have the same message
type with maximum entropy, given that this message type
would probably be the highest contributor to the information
content score. Hence, the addition of MaxEntropyMsgType
to the description. All nodehours with the same values for the
tuple will end up in the same cluster.

Below we list some of the properties of our proposed
method that differentiates it from previous approaches:

1) Spatial Decomposition : Previous work has shown that
one of the major mitigations against finding correlated
messages in system logs is the fact that correlated mes-
sages may not always follow each other in sequence
in the system logs [20]. The entropy based information
content approach of our method requires that the system
log be decomposed spatio-temporally both at the point
when entropy values are calculated for terms and the
point where information content scores are assigned to
nodehours. We note that nodehours are spatio-temporal

Algorithm 1 This pseudo-code describes our method for
clustering a set of nodehours.
Input: Set S of nodehours with associated information content (Nodeinfo) scores.

Array mmax which contains the message type with maximum entropy for each
nodehour in S.

Output: Collection S1 . . . Sn of clusters of S.
1: for each nodehour s in S do
2: Determine the cluster Si that s belongs to as combination of its information

content score and its maximum entropy message type.
3: if Si exists then
4: s ∈ Si {Add s to Si}
5: else
6: Define a cluster Si of S, such that |Si| = ∅
7: s ∈ Si {Add s to Si}
8: end if
9: end for
{Each cluster produced will represent the set of nodehours which have the same
information content score and the same maximum entropy message type.}

partitions of the log data. This fact increases the chance
that messages that follow each other temporally are likely
to be correlated.

2) Complexity : The complexity of this approach is O(n),
where n is the number of spatio-temporal partitions, in
our case nodehours.

3) Interestingness : Since each pattern belongs to a cluster
that is partially defined by an information content score,
we automatically have a means to evaluate the interest-
ingness of the pattern that has been found without further
analysis. By interestingness, we refer to likely hood that
the pattern represents an occurrence which would require
the attention of an administrator.

4) Pattern Length : The patterns will for the most part not
contain sub-patterns of a larger pattern, thereby reducing
the number of patterns found. This results because of
the fact that the proposed method deals only with the
entire message type combination found in a nodehour.
Patterns mined from system log data could sometimes be
just as large and complex as the log data itself, hence the
production of only a small set of interpretable patterns is
desirable[13].

B. Evaluations

In this section, we describe the methods we used in eval-
uating the quality of the clusters formed by our proposed
technique. It should be noted that since the information content
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Fig. 1. Scatter Plot of Nodehours (x-axis) vs. information content scores (y-axis) for select node functionality categories. The plot differentiates between
alert nodehours and normal nodehours, the Tbird-SM category has no alert nodehours. Nodehours are sorted based on information content score in the plot.

score associated with each nodehour is a real number, we
set a precision level of 10 decimal places when testing the
equality of the information content scores in our evaluations.
This is important for the reproducibility of our results. We also
considered only clusters, which had > 9 nodehours in them,
arguing that clusters with fewer nodehours might only have
resulted by mere coincidence. Our experiments were carried
out using all the fourteen datasets listed in Table II.

We evaluated the clusters formed at the end of our experi-
ments using three measurements, namely i.e. cluster cohesion,
cluster separation and cluster conceptual purity. Before we
describe how we measured these concepts, we describe two
important meta-concepts i.e. the distance between clusters and
the cluster centroid.

The cluster centroid for each cluster is an n-tuple, which
represents the message type combination that appears most
frequently among the nodehours in the cluster. For exam-
ple, in Cluster A in Fig. 2, the message type combination
(MT1,MT2) appears most frequently and therefore, is the
centroid for this cluster. Similarly the message type combina-
tion (MT2,MT3,MT4) is the centroid for Cluster B.

The distance between two nodehours is defined using the

standard function for finding the distance between objects
defined by nominal variables [9], Eq. 6, where p represents the
number of variables common to the objects and m represents
the number of variables for which both objects match. For
example, in Cluster A in Fig. 2, the message types common
to NH1 and NH4 would be (MT1,MT2,MT3), hence in
this case p = 3 and the message types that match between
them are (MT1,MT2), and therefore, in this case m = 2.
Thus, the distance between NH1 and NH4 would be 0.33.
This way, distances between pairs of nodehours and cluster
centroids can be calculated by:

d(i, j) =
p−m
p

(6)

• Cluster cohesion : This measures the degree of similarity
of the members of a cluster. We would want the members
of a cluster to be very similar. This is measured using
the Fwithin statistic as defined in Eq. 7. It represents the
standard deviation within a cluster, using the centroid as
mean. In Eq. 7, µx represents the centroid of cluster X,
while xi represents the ith nodehour in cluster X.

• Cluster separation : This measures the degree of similar-
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Fig. 2. The figure above shows two example nodehour clusters formed using Algorithm 1. The boxes enclosed represent nodehours that belong to the cluster and the bulleted
lists represent the set of unique message types that appear in the nodehour. In each bulleted list the message type highlighted in red represents the message type with maximum
entropy which will be common to all nodehours in a cluster according to Algorithm 1.

ity between different clusters. We would expect clusters to
be very dissimilar. This is measured using the Distance
statistic as defined in Eq. 8. It represents the distance
between two clusters X and Y using Eq. 6.

• Conceptual Purity : We assume that the proposed
method produces conceptual clusters, it would therefore
be interesting to see if the clusters formed could be linked
to concepts and if so, with what level of confidence.
We attempt to measure the degree to which the clusters
formed meet this criterion using the Conceptual Purity
measure. The datasets used in our experiments provide us
with ground truth with respect to the alert concepts that
exist in these datasets, in the form of the alert categories
assigned to each event in the log [28]. To this end, we
measure the conceptual purity of the alert clusters, i.e.
clusters that contain a majority of alert nodehours. The
process defined in Algorithm 2 determines the ratio of
nodehours in an alert cluster, which contains the signature
for an alert category. It measures the degree to which
the alert nodehours in a cluster can be linked to an alert
category. A value of 1 for this ratio implies that all the
alert nodehours in a cluster can be linked to the same
alert category. Therefore the cluster can conceptually be
linked to the alert category with 100% confidence. For
example, suppose that alert category β can be linked to
MT2 i.e. MT2 is a signature for the error represented
by β. In Cluster A in Fig. 2, MT2 appears in 3 out of 4
nodehours, hence the alert category to alert cluster ratio
for Cluster A with respect to alert category β is 3

4 . We
can therefore repeat this process for all alert categories
whose signatures appear in the nodehours of Cluster A
and do the same for all the clusters. The average of these
values represents the conceptual purity with respect to the
alert categories defined in the system log.

Fwithin(X) =

√√√√ 1
N

N∑
i=1

d(µx, xi) (7)

Distance(X,Y ) = d(µx, µy) (8)

Algorithm 2 This pseudo-code describes our method for
determining the degree to which the signature of an alert
category can be linked to an alert cluster.
Input: Set Malert of messages types that can be linked to alert category

Cluster Salert whose conceptual purity with respect to the alert category we want
to determine.

Output: Alert Category to Alert Cluster Ratio. [Range [0,1]]
1: ratio sum = 0
2: count = 0
3: Determine the number n of nodehours in Salert

4: for each message type m in Malert do
5: Determine the number x of nodehours in Salert that contain m
6: if x > 0 then
7: temp ratio = x

n
8: ratio sum = ratio sum + temp ratio
9: count + +

10: end if
11: end for
12: cluster ratio = ratio sum

count
13: Return(cluster ratio)

V. RESULTS

The results generally show that by using our proposed
information content based clustering method; we were able
to produce well formed and conceptually meaningful clusters.
The statistics of the clusters formed are presented in Table III.
We only considered clusters of size >= 10, the number of
clusters formed with this restriction is given in the “# Clus-
ters (>= 10)” column, the total number of clusters formed
irrespective of size is given in column “Total Clusters”. The
“% Nodehours” column gives the percentage, which belong
to clusters if only clusters of size >= 10 are considered. The
results show that on average, we are able to cluster ∼92% of
nodehours using this approach.

In the following sections, we discuss our results on the
goodness of the clusters formed using (i) internal measures
(cohesion and separation) and (ii) ground truth (alert cat-
egories). Finally, we discuss how the results validate our
hypotheses.

A. Internal Measures

The results also demonstrate that on average the clusters
formed show an average Fwithin measure of ∼0.01 indicating
tightly formed clusters and an average Distance measure of
∼0.82 indicating that the clusters are well separated. Details



TABLE III
CLUSTER STATISTICS

# Clusters (>= 10) % Nodehours Total Clusters
BGL-Compute 135 99.96 446
BGL-IO 62 99.91 113
BGL-Link 6 97.71 17
BGL-Other 37 97.64 177
Liberty-Compute 412 99.74 3061
Liberty-Admin 202 87.82 2,069
Liberty-Other 345 88.86 5,326
Spirit-Compute 615 99.82 9,247
Spirit-Admin 259 86.53 2,118
Spirit-Other 495 78.46 8,641
Tbird-Compute 5,389 99.01 110,201
Tbird-Admin 557 94.01 3,492
Tbird-SM 78 68.62 2,000
Tbird-Other 556 97.65 8,653

TABLE IV
AVERAGE FWITHIN AND Distance FOR NODEHOUR CLUSTERS

Avg. FWithin Avg. Distance
BGL-Compute 0.000 0.963
BGL-IO 0.000 0.965
BGL-Link 0.000 0.914
BGL-Other 0.027 0.927
Liberty-Compute 0.000 0.748
Liberty-Admin 0.034 0.741
Liberty-Other 0.001 0.576
Spirit-Compute 0.003 0.784
Spirit-Admin 0.059 0.786
Spirit-Other 0.000 0.672
Tbird-Compute 0.000 0.896
Tbird-Admin 0.001 0.783
Tbird-SM 0.001 0.774
Tbird-Other 0.003 0.903

of the Fwithin and Distance results for each of the datasets
can be found in Table IV.

B. Ground Truth

If the clusters formed have some sort of conceptual meaning
then they should for the most part be able to separate alert
behavior from normal behavior. This means that if at least
one nodehour in a cluster is indicative of alert behavior then
most of the other nodehours in the cluster should also be
indicative of alert behavior. We present results, which highlight
this for the BGL-Compute, Liberty-Compute, Spirit-Compute
and Tbird-Compute categories in Fig. 3. The results of this
graph indicate that our clustering method was able to separate
normal nodehours from alert nodehours to a good degree. Note
that there are other clusters not shown in the graphs in Fig 3,
which consist entirely of normal nodehours.

The ground truth provided does not just give us the ability
to differentiate alert messages from normal messages. It also
provides alert categories that allow us to differentiate different
kinds of alerts. The conceptual purity ratio attempts to measure
the degree to which the clusters are able to differentiate these
alert categories, i.e. if one of the nodehours in a cluster
contains the signature for a specific alert category to what
degree do the other nodehours also show the signature for the
alert category. The results show an average conceptual purity
ratio of ∼0.96 with regard to the alert categories. Details are
provided in Table V. The first two columns of this table present

TABLE V
ALERT NODEHOUR CLUSTER CONCEPTUAL PURITY

# Categories # Alert Clusters Conceptual Purity Ratio
BGL-Compute 15 95 1.00
BGL-IO 15 41 1.00
BGL-Link 5 3 0.90
BGL-Other 6 6 0.90
Liberty-Compute 19 57 1.00
Liberty-Admin 3 0 N/A
Liberty-Other 9 1 1.0
Spirit-Compute 29 114 1.00
Spirit-Admin 3 9 0.86
Spirit-Other 6 2 1.00
Tbird-Compute 31 273 1.00
Tbird-Admin 7 0 N/A
Tbird-SM 0 0 N/A
Tbird-Other 10 0 N/A

the number of alert categories (this is for the entire dataset and
not just those found in the alert clusters) and the number of
alert clusters respectively.

Since we only considered clusters of size >= 10, some of
our datasets did not have any alert clusters of size >= 10,
hence we had no results for these datasets for conceptual
purity. The results also show that the relationship between
alert categories and alert clusters did not follow a one to
one correspondence in some instances. The signature of an
alert category could be linked to several alert clusters, while
an alert cluster could be linked with more than one alert
category. Cases where more than one alert category is linked
to a cluster probably indicate the existence of correlated alert
categories that sometimes occur together and an alert category
being linked to different alert clusters could indicate different
background activity at the point when the error occurs. This
background activity could indicate different causes for the
same error. Overall, this highlights the complex interactions
that go on in the system with events showing different corre-
lated behavior at different times. It is therefore an advantage
that our approach can potentially differentiate these different
temporally dependent behaviors.

We are only able to measure the degree to which the clusters
formed mirror alert behavior, due to the fact that we only had
ground truth for alert behavior. It is however likely that results
for alert behavior could be extended to normal behavior.

C. Hypotheses

These results overall help to validate the hypotheses stated
in Sec. III-A.

• Nodehours with the same information content score
(based on Eq. 4), could contain the same unique set
of message types : The Fwithin results i.e. Eq. 7 validate
this hypothesis.

• Information content scores, which occur frequently
represent nodehours, which contain strongly corre-
lated message types and could represent some system
behavior or characteristic : The Distance i.e. Eq. 7 and
concept purity results validate this hypothesis.



!" #" $" %" &" '" ("

!"#$%&'$()*"+,$-."

/
0(
*1
&
)*
"

23,"/$45(1&""

)*+,-."

/.0+1"

(a) BGL

!" !#$" %" %#$" &" &#$" '" '#$"

!"#$%&'$()*"+,$-."

/
0(
*1
&
)*
"

,23&)14"/$56(1&""

()*+,-"

.-/*0"

(b) Liberty

!" #" $" %" &" '" ("

!"#$%&'$()*"+,$-."

/
0(
*1
&
)*
"

234)41"/$53(1&""

)*+,-."

/.0+1"

(c) Spirit

!" #" $" %" &" '"

!"#$%&'$()*"+,$-."

/
0(
*1
&
)*
"

234)%"/$56(1&""

()*+,-"

.-/*0"

(d) Tbird

Fig. 3. Stacked Bar Graphs for select node functionality categories. In each graph, each line on the y-axis represents a nodehour cluster which contains at
least one alert nodehour. The colors in each line represents the distribution of alert nodehours (red) to normal nodehours (blue).

VI. DISCUSSION

In this section, we discuss the implications of our results
and our ideas about how this method can be generalized.

We discussed in Section III-A the constraints on the dis-
tribution of message types across nodehours, which allow
our method to work. These constraints have to be met for
the proposed method to work. These datasets are from four
different HPC systems that are different in configuration,
installation location and usage. Despite this, the constraints
applied to them all. This gives a strong support that these
constraints are generalizable to HPC systems and might even
be to other systems that are similar such as Data-centers.

The first constraint can be achieved by the utilization of
sufficiently large datasets i.e. a data set that gives us sufficient
bins (spatio-temporal partitions) of the system log. The second
constraint on the other hand, likely results due to the Pareto
sampling of messages and the choice of the time window for
the spatio-temporal partitions used. Since the Pareto property
is a characteristic of the log data, it is generalizable to most
system logs. Therefore, meeting the second constraint would
only require careful selection of an appropriate time window
for the spatio-temporal partitions. A one hour time window
(from a nodehour) was utilized in our evaluations and was able

to generalize for the 14 datasets used. Previous work states
that correlated messages in system logs could occur within
time windows of between 1 second to 1 day [12]. A more
generalized approach would be to vary this time window with
the inter-arrival rate of messages in the system log. However,
once patterns have been extracted from the system log, they
can be applied without recourse to the time window that is
used to extract them.

For the proposed method to work, it is necessary for the
events in a system log to be separable by source and time.
This is required for the information content calculations. This
method cannot be generalizable for a system log where source
and time information is not available.

Is this method be generalized to an system log, which
contained only messages for a single node or computer?
Our method is generalizable to fit this scenario because it is
possible to leverage other system log fields to act as sources
for the events in the log. Reporting processes or applications
could be utilized if known; there is also the possibility of
using time slices. In the use of time slices, we decompose the
events, so events produced during similar time slices (days
of the week, off-peak, on-peak, weekdays, weekends etc) can
be compared. The time slice should be chosen in a way that



TABLE VI
CLUSTER MEASUREMENTS FOR A RANDOM SINGLE NODE

Avg. Fwithin Avg. Distance Conceptual Purity
BGL-Compute 0.00 1.00 1.00
Liberty-Compute 0.00 0.741 1.00
Spirit-Compute 0.00 0.734 N/A
Tbird-Compute 0.00 0.766 N/A

ensures that the time slices where similar activity is performed.
We provide proof of concept results for this in Table VI. This
table shows the results for running the proposed method on
events produced by a randomly selected node form each of
the *.Compute datasets. In this case, we set C in Eq. 1 to
be the set of 24-hour periods in the data. The matrix X then
represents a |W | × |C| matrix where xw,c is the count of the
number of times term w was produced during a 24-hour period
c.

The proposed approach ignores the order in which messages
occur in a nodehour in determining patterns. It could be
interesting to investigate how taking this into consideration
could affect the results. However, since clocks among several
computers are usually not well synchronized to the level of
precision that is required for such analysis, the correct ordering
of the events is not guaranteed [20], [6]. Therefore checking
to see if the ordering matters maybe futile.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we demonstrate how the grouping of spatio-
temporal partitions of a system log based on the entropy-based
information content can lead to the formation of conceptual
clusters. We evaluate our method using 14 datasets derived
from the functional decomposition of system logs of four HPC
systems. The results show that the clusters are well formed
i.e. having high internal cohesion (Fwithin) and high external
separation (Distance). We also show that with a high level of
confidence we could conceptually map the clusters to different
alert categories. While our results are only tested on alert
behavior, the proposed approach could be extended to normal
behavior.

The well formed nature of the clusters produced by the
proposed method lends credence to the assertion that these
clusters potentially mirror the behavioral characteristics of the
system. We have ground truth at a low level but no ground truth
at the level of system behavior, it is therefore impossible to
fully test this assertion. However, the metrics we have used to
evaluate our results, using low level ground truth and internal
measures, provide sufficient evidence that these clusters are
useable for describing the state of a system at a point in time.
Hence our results have practical applications for enhancing the
self-awareness and self-monitoring capabilities of a system.
Characteristics, which are important for an autonomic system
[4].

Future work will entail testing of our approach on non-
HPC system logs and tests to determine an appropriate method
for choosing a time window for the spatio-temporal partitions
used in the approach. The analysis of the clusters produced

by our method would also be interesting. This would be a
bid to further validate them as indicators of system state and
the building of models of state transition. Since our method is
able to separate alert behavior from normal behavior, it will
be interesting to see how information from the clusters can be
used to improve the task of alert detection [5], [8].
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