
 1

Differential Caches for Web Services in Mobile Environments
P. Bodorik, M.S. Qaiser

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, Canada

{bodorik, qaiser}@cs.dal.ca

D.N. Jutla
Sobey School of Business, Saint Mary’s University

Halifax, Nova Scotia, Canada
Dawn.Jutla@smu.ca

Abstract — Although web services have been espoused due to their
many benefits, it is known that overhead delay associated with
invocation and execution of web services is high. Consequently,
much research has been expended on minimizing those delays. In
many situations an application invokes a web service repeatedly such
that some or most of the data returned by the web service does not
change. For instance, many web services that return schedules, such
as bus or train schedules, exhibit this property. We use caches to
avoid repeated transfer of data sent by a web service to an
application, if that data does not change between invocations of the
web service. We present Differential Caches with the accompanying
Differential Updates method and the Mobile SOAP (mSOAP)
protocol. We present two cache designs: one based on the server
supporting a cache for each application, while in the other one the
server supports a shared cache for all applications. The protocol is
flexible in that other optimization techniques, such as encoding, can
also be applied with the Differential Updates method. We created a
research prototype and performed experiments to evaluate the
method’s potential benefits and also its overhead. The results of
experiments show clearly that potential benefits outweigh the
overhead. The mSOAP protocol with Differential Caches obtained a
speedup of up to 800%, in delivery of the web services’ replies in
comparison to the SOAP communication. Further improvements in
delays were gained when encoding was used in conjunction with
Differential Caches.

I. INTRODUCTION
Although web services, which generally use SOAP (Simple

Object Access Protocol) for communication with clients,
provide high interoperability for different platforms, they also
increase delays due to the large size of messages exchanged in
the loosely-coupled XML-based communication. The large
size of SOAP messages causes difficulties particularly to the
developers of mobile client platforms and applications
because of the constraints on memory, processing speed,
communication bandwidth, and associated power
consumption. In mobile communication, the size of
transferred data has been recognized to be the most important
parameter for most applications (Varshney, 2002)). It is
therefore no surprise that much research focused on reducing
the overhead due to XML messaging in SOAP. Most of the
research focuses on either compression techniques or
converting a text based message into the binary encoding
format to reduce the messages size and thus reduce the
network delays. Examples include TDXML, WBXML,
WSOAP, Millau, Gzip and Jzlib ((Apte, 2005), (Ng, 2006a,
2006b)). The concept of encoding is simple in that a binary
encoding table is created for the verbose XML tags. As long
as both the client and the server have the encoding table, the
tags in the transferred messages are replaced by their codes.

This works well for applications and web services that have a
static and predictable vocabulary of tags – otherwise
complexities arise due to potential inconsistencies.

We propose another approach, to minimize overhead due to
the verbose XML communication – by performing
optimization for mobile applications that exhibit certain
characteristics. Frequently, an application invokes a web
service repeatedly and, in addition, frequently the data
returned by the web service is such that some or most of it
does not change from one invocation of the web service to
another. Many web services that are invoked to provide a
schedule of some activity are of this type. For instance,
transportation schedules for trains, buses, and airlines and
training courses schedules fall into this category (Ion, 2007).
An application invokes a web service for a schedule, e.g., a
bus or a train schedule, and most of the time there are not too
many changes in the schedule from one invocation of the web
service to another (if the user is interested for a schedule for a
particular bus/train). Another example includes services that
provide ratings, such as ratings of stocks. A user application
may repeatedly invoke a web service to find ratings of
stocks/bonds of interests to see if there are any changes in the
ratings. It is web services with this type of characteristics that
we are targeting in this paper. We avoid repeated transfer of
data, sent by the web service to an application, if that data
does not change between invocations and hence we reduce the
size of XML messages.

A. Differential Caches for Reducing Communication Delay
We introduce the notion of a Differential Cache consisting

of a pair of software caches: one on the server, which executes
the web-service, and one on the client, which invokes the web
service. The pair of caches is used to store the data sent by
the web service to the invoking application. On the server, the
cache is used to remove from the web service’s reply data that
has already been sent in the previous message. On the client,
the cache is used to reconstruct the message sent by the web
service. When a web service is executed, we ensure that the
reply sent to the invoking application contains only data that
has changed since its previous invocation by that application.
By not including the data that has not changed from the
previous invocations of the web service, we reduce the size of
data transferred over the network and hence reduce
communications delays.

B. Objectives
Our objective is to create a novel cache-based design and a

protocol that support the Differential Caching method to

 2

reduce the SOAP payload data. There are a number of issues
that need to be addressed:
1. Transparency: Considering that most web services are

relatively simple, the cost of software development of
creating and using the caches may be relatively high in
relation to the software development cost of creating the
web service and invoking the web service by an
application. As a consequence, the architecture and the
protocol must be transparent to the software-developers of
the web services and also to the software-developers of the
applications that invoke the web service. The design and
the protocol should not assume any knowledge about the
web services or applications invoking them. That is, the
cache system should be transparent to the developers of
web services and applications that invoke them.

2. Efficient implementation: Clearly, the caches and their
management have to be efficient as they constitute
overhead. Furthermore, the Update Managers modify
XML messages exchanged between the client and the web
service – the modified content should be minimal in size.

3. The protocol should be such that, in addition to
Differential Caching, it can support other optimization
techniques used to reduce the size of transferred data.

4. Evaluation: Introduction of caches is overhead and it is
justified only if the benefits, due to the decrease in the size
of exchanged messages, outweigh the overhead costs – this
trade-off must be evaluated.

C. Outline
The second section presents the system architecture and the
message exchange protocol. It also discusses issues arising
when utilizing the server and client-side caches to capture data
that does not need to be transferred over the network. The
system design of the caches and encoding are presented in
Section III. A shared cache is described in Section IV.
Section V discusses the issues of complexity, scalability, and
fault tolerance. We implemented the differential cache as a
proof of concept and use it to explore overhead delays and
potential benefits under various scenarios. Experimentation is
described in the sections VI and VII. The last two sections
respectively provide related literature, and a summary and
conclusions.

II. ARCHITECTURE AND MOBILE SOAP (MSOAP) PROTOCOL

A. Assumptions
Recall that we are targeting environments in which a client
repeatedly invokes a web-service that returns, to the invoking
application, a collection of data such that some or most of it
does not change (Gudgin, 2007).

Our architecture is for the very desirable case in which the
Differential Updates method and the Differential Caches are
transparent to the software developers of the web service and
to the developers of applications that invoke the web service.
On the server-side, the Differential Updates method is
incorporated within the platform used for provisioning of web
services; in particular, for the purposes of the description we
assume that web services are provided using the Apache

Axis2 Framework (Axis-dev, 2010) platform and that handlers
can be added to the processing chain of web service requests
or replies. On the client-side, our Differential Updates
software is an extension of the framework used to facilitate
communication by applications with web services. We
assume zero knowledge about the web service and any
application invoking the web service. Furthermore, the web
service and the applications are not touched/modified by
inclusion of the Differential Updates and Caches.

B. Architecture
We introduce a pair of caches, one on the server and one on
the client, as shown in Figure 1.

Update
Manager

Server Client

2nd Phase:
mSOAP Reply

<Header>
...
</Header>
<Body>
<Key><Element List>
<Key><Element List>
<Key><Element List>
…………
………….
</Body>

Hash Table

<Key><Element List>
<Key><Element List>
<Key><Element List>
…………
………….

Cache

<Header>
...
</Header>
<Body>
<Key><Element List>
<Key><Element List>
<Key><Element List>
…………
………….
</Body>

2nd Phase:
Recreate Original
SOAP Message

Hash Table

<Key><Element List>
<Key><Element List>
<Key><Element List>
…………
………….

Cache

Update
Manager

1st Phase:
Create Cache

<Header>
...
</Header>
<Body>
<Element Tag>
<Sub Tag><Value>
<Sub Tag><Value>
...
</Element Tag>
</Body>

SOAP
Response

mSOAP
Response

1st Phase:
Create Cache

<Header>
...
</Header>
<Body>
<Element Tag>
<Sub Tag><Value>
<Sub Tag><Value>
...
</Element Tag>
</Body>

SOAP
Response

mSOAP
Response

Figure 1 – Client and Server-side Caches

The caches store the latest reply by the web-service and are
managed by the client and server-side Update Managers.
When the web service is executed for the first time, before the
reply is sent to the client, the server-side Update Manager
creates a cache for the web service and stores in it the reply.
When the client receives the first reply from the web service,
before the reply is forwarded to the client application, the
client-side Update Manager creates a cache for the web
service and stores the content of the reply in it. At this point,
the caches are prepared and subsequent invocation of the web
service by the application will be performed using the
Differential Updates method. When the web service is
invoked again, the reply message, produced by the web
service, is examined by the server-side Update Manager to
compare the reply message with the previous one. The
Manager modifies the reply message to include only those list
elements - tags and values - which have changed since the
previous execution of the web service.

Figure 1 shows Update Managers as the architectural
software components that maintain the caches and use them in
manipulating the exchanged XML messages.

C. Mobile SOAP (mSOAP) Protocol
The mSOAP protocol is an extension to the SOAP protocol

to contain information relevant to the Differential Updates
method. The activities performed by the update managers are
shown in Figure 2. Obviously, Differential Caching can work
only if both the client and the server platforms have
compatible cooperating caching software and are

 3

communicating using the same protocol. Communication and
processing proceed in two phases (see Figure 2).

In the first phase of the protocol, the client and the server
need to inform each other that they are prepared to use the
Differential Caching and exchange appropriate
information/parameters, which are required to initiate the
caching and Differential Updates. Both the server and the
client cache the content of the first reply message. The second
phase proceeds on the second and subsequent invocation of
the web service.

Server Mobile ClientClient Cache

mSOAP Request()

mSOAP Reply

Differential Updates

Hash Encoded Reply

mSOAP Request()

mSOAP Response

Server Cache

SOAP Request()

mSOAP Reply

SOAP Request()

SOAP Reply

Creating Hash Table()

Items Updated()

SOAP Reply

Creating Hash Table()

P
h
a
s
e

1

P
h
a
s
e

2

Figure 2 – Activities Performed by the Client-side and
Server-side Updated Managers

The protocol begins with the web service request created by

the client application for the first time. In essence, an
application makes a request to the web-service client
framework, in which the client-side Update Manager is
incorporated, to create and send a SOAP request message.
After the SOAP request message is created, the client-side
Update Manager is invoked and it modifies the request header
to include information about which mSOAP protocol
version(s) it is willing to use and also its own version number.
Also included is information on any encoding algorithms the
Manager is able to support in an exchange of data – encoding
will be elaborated upon shortly. In short, an mSOAP request
is created and transferred to the server.

When the request is received on the server platform, a
handler invokes the Update Manager to processes the request
before it is forwarded to the web service. The Manager
recognizes the client’s request to use the mSOAP protocol and
ensures that the Differential Caching algorithm and the
mSOAP protocol version requested by the client can be
supported and decides to use Differential Caching. The web
service is invoked and passed the request. Its execution
generates the first SOAP reply. The server’s Update Manager

then inserts into the SOAP reply a confirmation, which states
that the Differential Caching and the protocol version will be
used – in essence creating an mSOAP message. Also, the
Manager creates the cache and stores the content of the reply
message in it. The reply message is then transferred to the
client.

Upon reception of the first reply message, the client
recognizes that the server has agreed to use Differential
Updates. It creates the cache and stores in it the content of the
reply message before forwarding it to the application.
Subsequent messages between the client-side and server-side
Update managers will be exchanged using the mSOAP
protocol and the Differential Updates method. It should be
noted that the usage of the mSOAP protocol and the
Differential caching are transparent to the client application
and the web service – they perceive/assume normal SOAP
protocol.

III. DIFFERENTIAL UPDATES AND ENCODING
In this section, we overview the design of the Differential

Caches and discuss the role of encoding in a message
exchange. We discuss the case when the cache is not shared,
i.e., we have a single pairing of a client-side cache with a
server-side cache for each client application that repeatedly
invoking a specific web service. An application is identified
by a unique IP address (or, to be more precise, by a unique
pair of IP address and the port number of a TCP protocol
stack). A shared cache is described in Section IV.

A. Differential Caching and Updates Mechanism
Recall that the Differential Cache consists of a pair of

caches, one on the server and one on the client. An application
request for a web service and a web service’s reply are XML
messages that contain information expressed as data elements
consisting of, at the lowest levels of the data hierarchy, of tags
and values but no further sub-elements. We consult the
WSDL for the description of the replies and identify web
services that may benefit from Differential Updates – web
services that have lists in their replies. Thus, only web
services for which WSDL indicates that a list of elements is
returned are considered for utilization of Differential Updates.
This examination of the web services’ WSDLs is done prior to
operational processing of web services replies.

1) Server-side Cache
When the web service generates a reply to the application’s

first request for the web service, we cache portions of the
XML reply message. In essence, we store in the cache a list of
elements. Together with a list we also store its XML path
identifying where in the XML message the list appears.
Figure 3 shows a portion of a reply message from a web
service that sends to the invoking application a list of elements.
Furthermore, the cache is organized as a hash table facilitating
fast storage and retrieval of lists (with their list elements). To
store/retrieve a list, hashing on the XML path of a list item is
used. Finally, we also modify the reply message by inserting
special codes that identify those lists, in the XML message,
that have been cached together with the number of elements in

 4

the list. The special codes are inserted into the message by the
server Update Manager and removed by the client Update
Manager.

On subsequent invocations of the web service by the
application, the server Update Manager compares the lists of
the web service’s reply XML message to those stored in the
cache. Any element, of a list, which has the same value as in
the previous reply stored in the cache, is removed from the
message. Of course, such an element is re-inserted on the
client-side once the reply is delivered to the client but before it
is passed to the application. In this way the size of the reply
messages is reduced and thus communication delays are
reduced.

Hash Table<Header>

</Header>
<Body>

</Body>

<List-1 Tag>
<List-11 Element><Value1>
<List-12 Element><Value2>
<List-13 Element><Value3>
……….
</List-1 Tag>

SOAP-XML Response
Message

Server
Update Manager

<Key1><List-1 List-11 List 12...>
<Key2><List-2 List-21...>
<Key3><List-3 List 31 ...>
…………
………….

Server
Cache

SOAP Response
Update Process

Figure 3 – Creating Cache to Store Content of the Reply

The above description is straight-forward when dealing
with a static list of elements. Complications, however, arise if
new elements are inserted in a list, or if elements of a list are
removed, by the web service. When a new element is inserted
in the list by the web service, the Update Manager on the
server detects it when it compares the new reply message with
the one in the cache. It inserts in the message a special code
indicating a newly inserted list element together with an index
of the preceding element of the list. Similarly, if an element
of a list is removed by the web service (i.e., it no longer
appears in the current reply), the Update Manager inserts into
the reply message a special code together with the index of the
element that has been removed. The code and index are in
binary and hence short in comparison to the size of XML tags.

2) Client-side Cache
The processing of a web service reply on the client-side is

complementary to that of the reply’s processing on the server.
When the first reply is received, it is cached in the client cache
in a similar manner as on the server (see Figure 3). However,
processing of the message is simpler as the cached lists are
identified in the message by special codes. As on the server,
the cache is organized as a hash table with the lists, extracted
from the reply, being the hash table entries. Hashing is on the
list’s path in the XML message. When the web service is
invoked again, subsequent replies from the web service are
modified by the client Update Manager to restore the original
message using the cache. The received reply message is
searched for special codes that identify the cached list items.

Elements of the list that have been removed on the server side
are re-inserted from the client’s cache – see Figure 4. The
client Update Manager also recognizes the special codes,
inserted in the message by the server Update Manager, that
identify those elements of the list that were, in comparison to
the previous reply, either inserted or removed by the web
service.

SOAP-XML Reply
Message

Client
Update Manager

Client
Cache

Generating
SOAP Reply

<Header>

</Header>
<Body>

</Body>

Hash Table

<List-1 Tag>
<List-11 Element><Value1>
<List-12 Element><Value2>
……….
</List-1 Tag>

<Key1><List-1 List-11 List 12...>
<Key2><List-2 List-21...>
<Key3><List-3 List 31 ...>
…………
………….

Figure 4 – Regenerating the Original Response Message

3) Application’s New Requests
Clearly, an application may request from the web service

new information, such that the web service’s reply does not
contain any, or not many, of the data elements of the previous
reply. For instance, a mobile application may ask for a
schedule of Bus #1 repeatedly but then it may ask (at the
user’s request) for a schedule for Bus #2. In such a case, the
list of bus stops and times would be completely different in
the new reply (for Bus #2) in comparison to the previous reply
(for Bus #1). The server Update Manager keeps track of the
number of changes in elements of a list between the previous
and current reply and if the number of changes exceeds some
threshold, then the cached reply is purged. The reply message
is also tagged to inform the client Update Manager to purge its
cache of the old reply.

B. Encoding
A disadvantage of using the XML format for messages is

that XML is verbose and thus leading to messages that have
large sizes. Various encoding techniques (e.g., (Girardot,
2000), (Devaram, 2003), (Werner, 2004) and (Naresh, 2005))
have been proposed and are being used to alleviate this
problem. One of the techniques relies on exchanged messages
having a static set of XML tags that are known to both the
web service and the application. The tags are encoded and it
is the codes that are transferred in XML messages instead of
the tags themselves.

We use this encoding technique in our Differential Caching
method. Recall the two-phases of the mSOAP protocol. The
first phase consists of an exchange of messages, between the
client and the server Update Managers, for notification that
Differential Caching is used and of creation of the pair of
caches. In the first phase, information is also exchanged about

 5

which encoding technique, if any, is going to be used. In the
first mSOAP message, in addition to the request for using
Differential Updates method, the client Update Manager also
includes a request for encoding to be used together with which
encoding methods it can support. The server-side Update
Manager, when processing the first reply from the web service,
creates an encoding scheme for the tags of cached items and it
includes this encoding information in the mSOAP reply: For
each tag, the Manager also includes its code. When the client-
side Update Manager receives the first reply message, for each
tag it also finds its corresponding code and thus builds its
encoding table. The server-side Update Manager modifies
subsequent reply messages, produced by the web service, by
replacing any tags with their codes from the encoding table.

In short, in the first phase discussed in the previous section,
the encoding information is transferred from the server to the
client. In the second phase, before a reply message is sent
from the server to the client, the Update Manager on the
server replaces XML tags by their codes, while on the client-
side, when the Update Manager receives the reply message it
replaces the codes with the XML tags.

IV. SHARED CACHE
Clearly, there are many applications on distinct systems

that invoke a web service and having on the server a cache for
each application (that invokes that web service) results in
many server-side caches potentially storing the same data
returned by the web service. In this section we describe a
single shared cache.

A. Assumptions
Recall that we store lists, consisting of elements, in the

cache: We consult the WSDL to identify a list, as an XML
data element that contains a list of elements. For the shared
cache we make an additional assumption in that the web
service’s reply does not contain a list that in itself may be
repeated. For instance, the reply does not contain a list of bus
schedules, for various buses identified by numbers, such that
there are many lists in the reply, one for each bus schedule.

B. Shared Cache Architecture
The following issues arise when considering a cache that is

shared:

a. How to determine, efficiently, whether or not a value for
an element of a list has changed when compared to the
previous value returned to the specific application.

b. How to determine which of the cached data elements of a
list were or were not included in the previous reply to a
specific application.

An efficient solution for the first issue is to use timestamps
that are assigned by the server Update Manager. When the
web service is invoked it results in a reply message that is
examined by the server-side Update Manager, which also
creates a timestamp of the web service’s reply. If the value of
an element in the reply’s list is not the same as the
corresponding cached value, then the Update Manager

replaces the cached value with the new one, from the reply,
together with the reply’s timestamp value. Consequently,
each element of a list stored in the cache has a timestamp –
which is the time of the reply message from which the
element came.

The second issue is resolved, on the server by the Update
Manager, by keeping, for each application that invoked a web
service, a list of references (actually hash-keys) to the cached
list’s elements that appeared in the last reply of the web
service to that application.

1) Server Update Manager
The cache contains a hash table that stores elements of any

list returned by web services in their previous invocations by
applications. The element’s hash-key is created using a
function with arguments being the element’s tags (but not the
values) and the web service’s unique ID. Each element (of a
list) stored in the table contains, in addition to its tags and the
value, also the timestamp of the reply (from a web service)
from which the element came.

For each application that invokes a specific web service,
there is an information object describing the most recent reply
returned to that application by the web service. It contains a
timestamp of the reply, the web service’s ID, the application
ID, and a list of hash-keys. The hash-keys identify the
elements, of the list that appeared in the most recent reply (to
the application by that specific web service). For fast access,
these information objects are also stored in a hash table with
hashing being done on the unique combination of the
application’s ID and the web services ID.

Consider now the case when a web service was invoked by
an application and produced a reply that is now processed by
the server-side Update Manager. Using the current time, the
Manager creates a timestamp – it is the timestamp of the reply.
The Manager searches the cache for the most recent reply of
the web service for that application; more specifically it
accesses, using the combination of the application ID and the
web service ID, the hash table of the information objects. If
there is no information stored in the cache on previous replies
to the application by the web service, a new information
object is created and stored. It contains the timestamp of the
current reply and also a list of hash-keys that identify the
elements of the list contained in the reply message – these
elements of the list in the reply are inserted into the cache, i.e.,
they are inserted into the hash table, contained in the cache,
using their hash-keys.

If, on the other hand, the information object is found – that
means that the cache contains information on the previous
reply by the web service to the application. The information
object is retrieved – it contains the timestamp of the previous
reply and also a list of the hash-keys that identify the elements,
of the list, which were in the previous reply and are stored in
the cache. The server Update Manager must compare the
currently examined reply with the previous reply for the
following cases:
a. New list element appears in the reply: Each such new

element of the list is inserted into the cache (and also
remains in the reply message).

 6

b. List element in the previous reply no longer appears in the
new reply: For any element, of the list, which appears in
the previous reply but not in the new one, a special code is
inserted in the reply message to inform the client-side
Update Manager of the case.

c. List element appears in both the new and previous reply:
The Manager needs to determine whether the value of the
element of the list in the current reply is the same as in the
previous reply. First, it compares the values of the current
and previous elements. If they are different, the new
element, appearing in the reply message, is stored in the
cache together with the reply’s timestamp. If the values
are same, the Manager compares the timestamp of the
previous reply to the application (timestamp obtained from
the information object) to the timestamp of the element of
the list stored in the cache. If the element’s timestamp is
“older” than the timestamp of the previous message then
the value has not changed and the element is removed
from the reply message (the element will be re-inserted
into the message by the client Update Manager).
Otherwise the element remains in the reply message.

The above organization facilitates storing of only one copy
of an element of a list in the cache, as opposed to a copy of an
element for each application that invokes the web-service.
We do need to keep track of which elements of the list have
been most-recently received by an application but this is done
using hash-keys and thus reducing the storage size. The
organization also facilitates fast look up of the information
objects and search for elements of lists.

2) Client Update Manager
Processing of the reply message by the client Update

Manager does not change in comparison to the case when the
server did not have a shared cache.

C. Comments
Several issues, relating to the shared cache, have not been

addressed. Some are the cache management issues. For
instance, the cache needs to be examined for information
objects and elements of lists that have not appeared in replies
for a sufficiently long time so that they should be purged.

However, there is another issue that is critical for correct
execution and that may also impact performance – the issue of
synchronization of access to the cache. Web services are
executed concurrently by threads. As a reply is examined by
the server’s Update Manager code, access to the caches data
structure needs to be synchronized – this may affect the
performance. We have not examined the potential impact of
synchronization on the over-all performance at this time.

V. COMPLEXITY, SCALIABILITY, FAULT TOLERANCE
Complexity: Recall that the server has an individual cache for
each application. Thus, caching on the server is, in space
requirements, directly proportional to the sum, over all
applications, of the number of cached items per each
application. A caching operation on the server, executed by a
web service invocation, is directly proportional, in time, to the
number of items cached for that application. The time and

space complexity for the caching on the client is directly
proportional to the number of cached items.
Scalability: The scalability is not a significant issue assuming
that the cached DB items can be supported by (can fit on) a
server. Applications can be partitioned using their IDs and
thus each application can be assigned to one of many servers.
Requests from applications are directed to “their” servers
using their IDs.
Fault Tolerance: Timestamps can be used to support fault
tolerance in this simple request-response environment, which
is less complex than a DB recovery environment. The server
Update Manager inserts in the reply message a timestamp that
is then stored by the client Update Manager in its cache. In a
request message for a web service, the client Manager inserts
the time-stamp of the cached reply. If the client crashes, upon
recovery its cache will be empty with the time-stamp being set
to zero (oldest timestamp). Consequently, the client time
stamp in the request message to the server will force the
server to send all of the data. If the server crashes, the cache
will cold-start and the server will send all of the requested
data in a response message to the application. The server will
process subsequent requests normally utilizing the cache.

As in other work, we rely on TCP/IP for reliable delivery of
messages (no duplicates and delivered in the order they were
sent). There are no difficulties in case of a time-out and a
repeated request made by the client application as timestamps
are used to ensure that the client does not see out-dated data.
In case of network partitioning: When the server is
inaccessible, data can be supplied from the local cache,
depending on the adopted model of data consistency (e.g.,
eventual consistency) while the network partitioning issue is
being resolved on another level; however, this is another use
of the cache and is consider to be out of scope for this paper.

VI. EXPERIMENT SETUP
We have implemented a prototype as a proof of concept

and performed experiments in order to explore potential
benefits of using Differential Updates in reducing message
sizes and thus delays. We also measured overhead. The
prototype was for the non-shared cache organization described
in Section III, i.e., when the server has a separate cache for
each application invoking a web service.

We first overview the set-up and experiments, then we
describe the platforms, instrumentation of the Update
Managers on the server and the client, and finally describe the
client application and the web service it invokes. The
subsequent section reports results of experimentation.

A. Experimentation Overview
We created a simple application that repeatedly invokes a

web service asking it to provide information on rating of
stocks. The application invokes the web service while
providing it a list of stocks that are of interest. The web-
service accesses a DB system to retrieve the requested
information about each stock, which is a rating of the stock,
and then returns this information to the application – see
Figure 5. We measure the delays due to various activities,

 7

such as data transfer and Update Managers’ overhead delay.
The application has a number of input parameters that govern
the list of stocks and how frequently the web service is
invoked. One of the key parameters is the percentage of
data/ratings returned by the web service that have changed
from one invocation by the application to another – i.e.,
percentage of the list of stocks, which are returned by the web
service, for which the ratings have changed since the previous
invocation of the web service. The application and the web-
service are running on distinct computing systems. We have
instrumented the Differential Caching method and the
mSOAP protocol as described below.

B. Platforms
The client machine running the application and the

software to instrument the experiments, was Intel® Core™2
Duo Processor T5670 (2M Cache, 1.80 GHz, 800 MHz FSB).

The web service simply retrieves the requested stocks from
a database stored on the MySQL Relational DB System. The
DB was housed on the same platform/system as the web
server and the web service itself. The server platform was
Intel® Pentium® 4 Processor 2.80 GHz, 512K Cache, 400
MHz FSB. The web service accesses the DB through JDBC
drivers used for Connection Bridge. There was no other load
generated on the web server or the DB system besides the load
generated by our experimental software. The available
bandwidth for downloading the data from the server was 15
Mb/s, while the number of network nodes between the server
and the client was 3. The available bandwidth was relatively
steady as data was transferred only through local networks,
one of which was a wireless network, with fixed routing tables.
There was minimal interference from network activity
generated by software outside of our experimentation.

C. Implementation of the Server and Client Update Managers
Apache Axis 2 1.5 Framework was used on the server for

hosting the web services. The framework uses SAX based
parsing for serialization and de-serialization of SOAP-XML
messages. Web Services are created through Java class by
defining appropriate functions and making the object of the
class Serializable. mSOAP was implemented on the server
through including a wrapper over the top of a base web
services class with inclusion of a server cache. Requests were
first sent to the wrapper class that invokes the base web
services for execution. The wrapper class serves as another
service on top of base web services. There were no security
and privacy rules applied inside the framework and full
control was given to the wrapper class.

On the client, a cache is included to store previously
received response messages. A wrapper class is used on top of
web service client in order to implement client-side Update
Manager and required functions for the client cache. The
client application was implemented by using Sun J2SE 5.0
JDK and the web service client was compliant with JSR-109.

Figure 5 – Experimentation Setup

VII. EVALUATION
For comparison purposes we instrumented five different
schemes for an application to obtain stock ratings, schemes
labelled as SOAP, Encoding, Differential Updates, mSOAP,
and Binary.
1. SOAP: This is a regular invocation of the web service

without any of our optimization techniques.
2. Encoding: The mSOAP protocol is used for encoding but

without the Differential Updates. On the first invocation
of the web service, included in the reply is encoding for
XML tags that are used to encode the web service reply
messages. The client receives the encoding information
in the first reply. It reconstructs the tags in the
subsequent XML messages before forwarding them to the
invoking application. Encoding and decoding are
performed by the respective server-side and client-side
Update Managers. However, the Differential Updates are
not used.

3. Differential Updates: Differential Updates are in use by
the server and the client-side Update Managers but there
is no encoding of XML tags.

4. mSOAP: Both Encoding and Differential Updates are in
use.

5. Binary: No optimization is performed. As the name
implies, the XML messaging is not used and instead of
invoking a web service, the application uses the Remote
Method Interface (RMI) to invoke a method on the server
remotely. The method on the server retrieves the stock
rating data from the DB and returns them directly to the
application. Thus the web server and web service
overheads are avoided.

The application is repetitively asking for ratings on the

same 195 stocks that are stored in the DB. One of the

Apache Axis 2 Web Server

Application Connection
Software

Application Platform

Server Platform

Application

Web
Service
Client

Client
Update

Manager

MySQL

Web
Services

Server
Update

Manager

Internet Communication Link

 8

parameters governing the experiments is expressed in
percentages and governs the variability of the data values
contained in the reply from the web service. Variability of
60% means that 60% of the stock ratings have values that are
different from those of the previous invocation of the web
service. It should be noted that, exploring the variability of
data represents not only the case when the values, retrieved
from the DB, change between invocations of the web service,
but also the case when the application asks for stock ratings
for a list of stocks that varies between invocations of the web
service.

Recall that, with the exception of the communication delay,
the systems are isolated and the only load is due to our
experimentation. For each point presented in the graphs we
made several runs and report the average. Because of the
isolation of the systems, with the exception of some minor
variations in the network delays, little variation was observed
in repeated runs.

A. Average Overall Delays
Overall average delays for each of the five methods are

shown in Figure 6. It should be noted that the shown delays
are averages for variability of data records between 0%-100%
made in 10% increments. Influence of the different percentile
variability of records on the performance is shown in Figure 7
and will be discussed shortly.

Figure 6 shows that the highest delay, about 800 ms, is for
the invocation of the web service using the normal SOAP
protocol. If encoding is used to reduce the size of XML tags,
there is an improvement in delay of almost 200 ms to about
600 ms. When Differential Updates are used, but without
encoding, the delay is about 400 ms. When Differential
Updates are combined with encoding in the mSOAP protocol,
the average delay is reduced to about 350 ms. The smallest
delay, of about 10 ms, is for the binary method, i.e., when the
application uses RMI to invoke a method on the server to
retrieve and return the stock ratings.

To generalize, two observations, already made by other
researchers, are confirmed:
1. Minimization of the size of XML messages is beneficial as

it reduces delays. We utilize encoding of XML tags as one
of the minimization methods that has been discussed in a
number of research papers (e.g., (Werner, 2004), (Apte,
2005), and (Suzumura, 2005)). However, we also propose
a new method, Differential Updates, to further minimize
the XML message size in certain scenarios.

2. In comparison to applications invoking methods directly to
perform the required services, using RMI in our case, web
services incur high overhead delay – thus interoperability
of using web services comes at a steep price (e.g.,
(Devaram, 2003), (Ion, 2007), (Liu, 2007), and (Scholz,
2008)).

Figure 6 – Overall Delays

B. Variability of Data
The Differential Updates method reduces the size of XML

responses from a web service if the response data is relatively
static between invocations. We changed the variability of data
returned by the web services and observed the effect on the
response time. More precisely, we varied the percentage of
stock ratings that were changed from one invocation of the
web service to another. The observed delays for the five
methods are shown in Figure 7. To repeat, the variability of
60% means that 60% of the stock ratings are different from
those returned by the previous invocation of the web service.

The figure shows that the variability of data does not affect
the SOAP and RMI methods. This is because these methods
produce messages of fixed size if the number of stock ratings
retrieved does not change. The Encoding method is similar in
that, after the response message to the first invocation, which
includes the encoding information, the message size does not
change. Subsequent responses from the web service are of the
same size, but are smaller than in SOAP as the XML tags are
replaced in response messages by their codes. Encoding does
not depend on the variability of the data in response messages
in our case because the length of codes replacing the tags does
not change.

The Differential Updates method, of course, depends on the
data variability. Smaller variability means that more data
elements are removed, by the server-side Update Manager
from the response message, as they will be re-inserted on the
client-side from the cache. Thus less variability means
smaller messages sizes and lower delays. The same also
applies for the mSOAP method, which, in addition to
Differential Updates, also utilizes Encoding.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

SOAP	
 Encoding	
 Diff	

Updates	

M-­‐SOAP	
 Binary	

Av
er
ag
e	

Ro

un
d	

Tr
ip
	
 T
im

e	

in
	
 M

ill
iS
ec
on

ds
	

Service	
 Name	

Response	
 Delay	

 9

Figure 7 – Delay (horizontal axis in ms) vs.

Data Variability (vertical axis in %-increments)

The results show that Differential Updates perform over
100% better than Encoding when the data variability is in the
range of between 30% and 40% and over 300% better when
the variability is 20% or less. Of course, both Encoding and
Differential Updates should be used because, when combined,
they lead to the best reductions in delays.

C. Overhead Delays
In this subsection, we report on the overhead delays of our

mSOAP protocol. The mSOAP protocol includes overhead
due to the following activities:

 Differential Updates and Encoding at Server in Phase 1: In

Phase 1 (when the web service is invoked for the first time),
the server-side Update Manager creates a cache after
receiving the reply message from the web service, identifies
to-be-cached items in the reply message, and stores them in
the cache. It also creates the encoding table and inserts, in
the message, next to XML each tag its code – thus
conveying to the client Update Manager the encoding
information.

Differential Updates at Server in Phase 2: In Phase 2 (2nd and
subsequent invocation of the web service), the server-side
Update Manager compares the reply message generated by
the web service with the content of the cache. For any list
element in the message that has a value that matches the one
that is cached, it is removed from the response message.

Encoding at Server in Phase 2: In Phase 2, after the
Differential Updates method above is used to reduce the size
of the reply message, the server-side Update Manager uses
the coding table to replace any XML tags in the message
with their codes.

Differential Updates and Encoding at Client in Phase 1: In
Phase 1 (when the reply message from the first invocation of
the web service is received), the client-side Update Manager
creates a cache, identifies cached items in the reply message,
and stores them in the cache. It retrieves the encoding
information from the reply message and stores it in its data
structures. It removes from the message any mSOAP
protocol information.

Differential Updates at Client in Phase 2: In Phase 2
(receiving the reply messages from the 2nd and subsequent
invocation of the web service), the client-side Update
Manager compares the received reply message with the
content of the cache. For any list element in that cache that
is not appearing in the message, it is inserted in the message.

Decoding at Client in Phase 2: In Phase 2, the client-side
Update Manager uses the Encoding table to replace any
codes in the response message with their corresponding
XML tags.

mSOAP Network: Delay of transferring the mSOAP message
over the network between the client and the server is also
shown for comparison purposes.

Processing delays for the activities in the Phase 1 of the

mSOAP protocol, on the server and the client, are shown in
Figure 8. The figure also shows the network delay due for
transferring Phase 1 response message, i.e., the first response
message, from the web service to the client. The transfer
delay is about the same as for the regular SOAP protocol,
shown in Figure 7 – inclusion of the Encoding information
does not have a significant impact on delaying the first
message. In a list of stock ratings stored in the web service
reply message, total number of unique tags is smaller in
comparison to the total number of tags as tags are repeated in
list elements. The processing delays at the client and the
server are below 100 ms and are low relative to the data
transfer delay. In summary, in its Phase 1, the mSOAP
protocol has low overhead processing delays and low impact
on data transfer delay.

The overhead delays and data transfer delays in the
mSOAP’s Phase 2 are shown in Figure 9, which appears at the
end of this paper, as a function of the variability of data.

First we discuss the delays due to Differential Updates. As
the variability of the data increases, the overhead delays of
Update Managers, at both the client and the server, do
increase slightly. In both cases the Update Manager
manipulates each element of a list being processed. On the
server, the Update Manager determines whether a list element
can be removed if its value has not changed from the previous
invocation of the web service. On the client, the Update
Manager determines whether a list element in the cache needs
to be inserted in the message. The slight increase due to
variability is that our coding performs slightly more work if
the value of a list element has changed from the previous
invocation of the web service.

When considering overhead delays due to encoding on the
server and decoding on the client, Figure 9 shows that they do
not vary. The Encoding method has been instrumented
without the usage of Differential Updates and, consequently,
all XML tags are encoded on the server and decoded on the
client. It should be noted that incorporating
encoding/decoding of XML tags within the Differential
Method is simple and with negligible execution delay. As list
elements are processed by either of the client or server Update
Managers in the Differential Updates method,

0	

200	

400	

600	

800	

1000	

0	
 20	
 40	
 60	
 80	
 100	

SOAP	

Encoding	

M-­‐SOAP	

Diff	
 Updates	

RMI	

 10

encoding/decoding simply causes a direct table look-up and
hence incurs minimal delay.

Figure 8 – mSOAP Overhead Delay in Phase 1

The figure also includes, for comparison purposes, the

network delay of transferring an mSOAP reply message –
transferring the reply message is not overhead as the message
is transferred in any case. From the figure it is clear that the
network overhead delays dominate the overhead delays. We
expected that, in a realistic environment of mobile devices
invoking web services, the network delays would be far more
dominant than in our experimental set up. Consequently,
reducing the size of XML messages is highly beneficial and
comes at a low overhead cost. Reducing the size of messages
exchanged by a mobile device has the benefit, in addition to
reducing delays, of also reducing the power consumption due
to communication. However, reductions of power
consumption or usage of caches for the purposes of
availability in case of communication interruptions are out of
scope of this paper.

VIII. RELATED WORK
There has been much research on the usage of compression

and encoding techniques applied to reducing the size of XML
documents and XML-based communication. For instance,
one of the most popular methods is Gzip that enables
compression of XML message to reduce its size (Deutsch,
1996)).

In (Natchetoi, 2007), XML compression uses both context
and acceptable loss (of unnecessary task data) to produce
more efficient mobile communications. New concepts include
a scheme for contextual dictionary management (i.e.
dictionary construction, update, and transfer) combined with a
separation of dictionary and data messages.

Encoding of XML tags into binary codes and transferring
the codes instead of tags has been proposed in (Naresh, 2005)
together with formally incorporating the encoding in the
communication protocol, which is called the Wireless SOAP.
We incorporate encoding into our mSOAP protocol in
addition to using Differential Updates/Caches. Various XML

encoding methods were proposed, such as XMill, Millau DDT,
WBXML, WSOAP and TDXML ((Girardot, 2000), (Ng,
2006a, 2006b)). XMill and TDXML were found to be good
encoding schemes when applied for SOAP-XML
communication (Ng, 2006a); however, the reduction in the
message sizes of exchanged documents is at the cost of
increased processing requirements and complexity on the
client when reconstructing the original form. TDXML
describes the SOAP messages using indexing of tags (Ng
2006b). This is useful when replication of tag names occurs
within the same message as using tag indices instead of tags
reduces the message size.

Differential Encoding and Differential de-serialization are
two approaches used to obtain a difference document from a
previously sent SOAP message ((Werner, 2004), (Suzumura,
2005)). The basic assumption underlying these two
approaches is that the majority of SOAP envelope remains the
same when communicating between the client and the server.
Before transferring a message, a difference is calculated,
between the previously transferred message and the message
to be transmitted, and it is this difference that is transferred.
The receiver reconstructs the original message from the
received difference and the cached message that was
previously received. There are a number of key distinctions
between their methods and our Differential Updates method.
In their methods, the size of the difference document is
independent of how much data has actually changed and,
furthermore, slight modifications made in random parts of the
message may result in the size of the difference document that
is almost equal to the size of the original SOAP message and
thus achieving low reduction in the size of transferred data.
This a fundamental difference when compared to our method,
in which a few changes in the reply message would result in
high reduction in the size of transferred data. Another
distinction is that their methods concentrate on reduction of
message sizes in the whole SOAP message envelope while we
concentrate on reduction of the Body of the SOAP envelope.

Caching of data for web service communication has also
been researched for the use with mobile devices. An example
of a useful approach is presented in (Xin, 2007), in which the
authors used dual side caching in web servers and Personal
Digital Assistants to improve availability in face of loss of
connections. Their basic technique is to cache the SOAP
response messages in the client so that the response messages
would be available in case of a connection loss or fluctuation
in bandwidth. We also cache response messages from a web
service but for the purposes of reducing the size of responses
from the web services when it is invoked again. Although we
have not addressed the issue of using our cache for availability
in case of lost connections, it could be used for that purpose.

There is much research on software caches in client-server
or n-tier architectures, with many objectives ranging from
providing transactional guarantees, through providing
consistency based on relaxed consistency models, to providing
availability (e.g., (Garrod, 2008), (Haas, 1999), (Oh, 2005)
and (Pitoura, 2007), just to name a few). It should be noted
that although the hardware for mobile devices is improving at

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

Ti
m
e	

in
	
 M

ill
is
ec
on

ds
	

Delay	

 11

a tremendous rate, mobile devices still have limitations in
terms of memory, processing power, communication
bandwidth, and, in particular, power consumption.
Consequently, caches targeted to mobile devices, in general,
are smaller and simpler than caches targeted to servers or
desktops. This is also the case in our proposal. The client
cache is limited in size and the work of the client’s Update
Manager is not demanding.

IX. SUMMARY AND CONCLUSIONS
We created Differential Caches and the Differential

Updates to reduce the size of response messages returned by a
repeatedly invoked web service. A novel cache-based system
to speedup the transfer of data is described. The
communication between the client and the server is through
the mSOAP protocol, which is a transparent extension of the
SOAP protocol. We reduce the size of reply messages, from
the web service to a client application, by removing from the
messages data elements that are the same as in the previous
response message. When the message is received by the
client, the missing data elements are re-inserted into the
message from the cache before the reply message is forwarded
to the application.

The advantage of our proposed method is that it is
transparent to the web service and application developers as
they need no knowledge of it. The method is provided
automatically, without affecting the functionality of the web
services or applications.

We described two cache designs. In one, the server
maintains a cache for each application invoking a web service.
The second design is based on a shared cache, which utilizes
timestamps for replies and for cached data in order to ensure
correctness of reconstruction of reply messages. The mSOAP
protocol supports not only our Differential Caches/Updates
method but also other optimization techniques, such as
encoding, that can be used to reduce communication delays.

We created a research prototype and performed
experiments in order to evaluate the trade-off between the
potential benefits and overhead. The processing overhead on
the server and the client is more than outweighed by the
potential benefits of reducing the communication delay. The
research prototype included the mSOAP protocol that
supported encoding to reduce the size of exchange messages
in addition to our method. Experiments show that a speedup
of up to 800% is possible using our method in comparison to
SOAP communication, depending on the data variability.
Furthermore, experiments also show that Differential Updates
perform over 100% better than Encoding when the data
variability is in the range of between 30% and 40% and over
300% better when the variability is 20% or less.

Our method, by design, does not affect the development
and implementation of web services or applications. However,
in future, it may be advantageous in some cases to include
Differential Caches within web services. Besides further
reducing delays, data stored in the server cache may, in certain
situations, be exploited to avoid retrieval from the data
stores/DBs. Additionally, synchronization issues to the shared

cache need to be addressed. A further expansion of the
mSOAP protocol will be to incorporate the usage of cached
data on the client for availability when connection between
the client and the server is not available.

REFERENCES

Apte, N., Deutsch, K., & Jain, R. (2005). Wireless SOAP:
optimizations for mobile wireless web services. Special
interest tracks and posters of the 14th international
conference on World Wide Web (pp. 1178-1179). ACM.

Axis-dev (2010). Axis User's Guide. Retrieved 4 1, 2010,
from Web Services Apache Axis:
http://ws.apache.org/axis/java/user-guide.html

Cheng, S.-T., Liu, J.-P., Kao, J.-L., & Chen, C.-M. (2002). A
New Framework for Mobile Web Services. Symposium on
Applications and the Internet Workshops (SAINT 2002
Workshops), 2002 , 218.

Deutsch, P. (1996). GZIP file format specification version 4.3.
RFC 1952, Aladdin Enterprises, May 1996.
http://www.ietf.org/rfc/rfc1952.txt.

Devaram, K., & Andresen, D. (2003). SOAP optimization via
client-side caching. Proceedings of the First International
Conference on Web Services (ICWS 2003) (pp. 520-524).
Citeseer.

Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T.,
Olston, C., et al. (2008). Scalable query result caching for
web applications. Proceedings of the VLDB Endowment ,
1 (1), 550-561.

Girardot, M., & Sundaresan, N. (2000). Millau: an encoding
format for efficient representation and exchange of XML
over the Web. Computer Networks, Elsevier , 33 (1-6),
747-765.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J.,
Nielsen, H. F., Karmarkar, A., et al. (2007, April 27).
SOAP Version 1.2 Part 1. Retrieved February 19, 2010,
from W3C Recommendation:
http://www.w3.org/TR/soap12-part1/

Haas, L., Kossmann, D., & Ursu, I. (1999). Loading a cache
with query results. VLDB 1999 (pp. 351-362). Citeseer.

Ion, I., Caracas, A., & Hopfner, H. (2007). MTrainSchedule:
Combining Web Services and Data Caching on Mobile
Devices. Datenbank Spektrum , 21, 51-53.

Liu, F., Chou, W., Li, L., & Li, J. (2004). WSIP--Web Service
SIP Endpoint for Converged Multimedia/Multimodal
Communication over IP. Proceedings of the IEEE
International Conference on Web Services, 2004 (pp. 690-
699). IEEE Computer Society.

Liu, X., & Deters, R. (2007). An efficient dual caching
strategy for web service-enabled PDAs. Proceedings of the
2007 ACM symposium on Applied computing (pp. 788-
794). ACM.

 12

Natchetoi, Y., Wu, H., Babin, G., and Dagtas, S. (2007).
EXEM: Efficient XML Data Exchange Management for
Mobile Applications. Information Systems Frontiers, Vol.
9, 2007, pp. 439-448.

Ng, A. (2006a). Optimising Web Services Performance with
Table Driven XML. Australian Software Engineering
Conference (ASWEC'06) (pp. 100-112). IEEE Computer
Society.

Ng, W., Lam, W., & Cheng, J. (2006b). Comparative analysis
of XML compression technologies. World Wide Web , 9
(1), 5-33.

Oh, S., & Fox, G. C. (2005). HHFR: A new architecture for
Mobile Web Services Principles and Implementations.
Community Grids Technical Paper .

Pitoura, E., & Chrysanthis, P. (2007). Caching and replication
in mobile data management. IEEE Data Engineering
Bulletin, Citeseer , 30 (3), 13-20.

Scholz, A., Buckl, C., Kemper, A., Heuer, J., & Winter, M.
(2008). WS-AMUSE-web service architecture for

multimedia services. Proceedings of the 30th international
conference on Software engineering} (pp. 703-712). ACM.

Srirama, S. N., Jarke, M., & Prinz, W. (2006). Mobile web
service provisioning. Advanced International Conference
on Telecommunications, 2006. AICT-ICIW'06.
International Conference on Internet and Web
Applications and Services, (pp. 120-120).

Suzumura, T., Takase, T., & Tatsubori, M. (2005). Optimizing
Web Services Performance by Differential Deserialization.
2005 IEEE International Conference on Web Services,
2005. ICWS 2005. Proceedings, (pp. 185 - 192).

Varshney, U., & Vetter, R. (2002). Mobile commerce:
framework, applications and networking support. Mobile
Networks and Applications , 7, 185-198.

Werner, C., Buschmann, C., & Fischer, S. (2004).
Compressing SOAP messages by using differential
encoding. IEEE International Conference on Web Services,
2004. Proceedings (pp. 540-547). IEEE Computer Society.

Figure 9 – Overhead Delays in Phase 2

0	

100	

200	

300	

400	

500	

600	

700	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Ti
m

e
in

 M
ill

is
ec

on
ds

Data Variabilitiy in 10% Increments

Differential Updates at Client

Encoding at Client

M-SOAP Network

Encoding at Server

Differential Updates at Server

