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Abstract—Recent research efforts have highlighted capability
of entropy based approaches in the automatic discovery of alerts
in system logs. We refer to messages maybe of interest to an
administrator as alerts. In the best case, they have been shown
to detect all alerts at a false positive rate of 0%.

In this work, we extend the recent research to present the
detailed evaluations of three entropy based approaches on new
datasets not utilized in previous papers. We also extend the
approach with the introduction of a Cluster Membership Anomaly
score. This extension of the approach is intended to reduce the
false positive rates required to detect all alerts. Previous work
has shown that false positive rates required for the detection of
all alerts for an entropy based approach could be very high. The
results show that the Cluster Membership Anomaly has value for
the reduction of false positive rates.

Index Terms—Algorithms; Networked Systems; System Man-
agement; Modeling and Assessment

I. INTRODUCTION

The need for the development of tools and techniques for
the automatic analysis of system logs is well documented in
literature [1]. Log analysis tasks are varied, our work however
focuses on the task of alert detection. By alert detection, we
refer to the task of identifying events (or group of events)
in a system log that are symptomatic of failure or require
the attention of an administrator. The automation of alert
detection is important, not only because it contributes to
system dependability but because it contributes to the larger
goal of building autonomic computer systems, i.e. computer
systems that are capable of self management [2].

Nodeinfo is an entropy based alert detection mechanism,
which is currently in production use at Sandia National Labo-
ratories [3]. Unlike previous automated approaches to anomaly
detection in system logs [4] [5], Nodeinfo has been shown to
work with an acceptable false positive rate of 0.05% [6], [3],
while a variant of Nodeinfo has been shown to detect all alerts
at a false positive rate of 0%. Entropy based approaches to
alert detection work on the assumption that “Similar computers
correctly executing similar code should have similar logs”,
as such alerts in system logs should stand out when logs
from similar computers are compared. Entropy measures that
measure randomness in data, are therefore suited for this kind
of analysis.

In this work, we build on our previous success in the
modification of the Nodeinfo framework [7], [8], [9]. We

extend our evaluations of the different variants of the entropy
based framework of Nodeinfo, through the use of several
different datasets. The ability to replicate previous success on
more datasets would indicate the robustness of the approach
and reveal weaknesses if the results are contrary.

We also experiment with a new concept to alert detection,
which we call cluster membership alert detection. This concept
works on the assumption that alerts are generally infrequent in
system logs. In some cases, predefined alerts maybe be pro-
grammed to report information into an event log periodically,
e.g. a sensor that reports surrounding temperature values every
x minutes or one that reports on the status of a link. Even
in such cases, only a few of the reported alerts will provide
information that will be of interest of the administrator. In the
examples given above, an administrator may only be interested
if the alerts report a temperature reading above a certain value
or if the link is down, respectively. Hence our assumption of
alerts being infrequent holds even in these cases.

If we can successfully cluster system log partitions based on
the information content of events contained in those partitions,
then we can assume that clusters that contain fewer log
partitions are more likely to contain alerts. It is hoped that the
introduction of this component to the framework would help
to reduce the false positive rates required to detect all alerts. A
problem that has been highlighted in previous work [9]. Based
on the results of the evaluations of this concept, which show
the efficacy of the approach, we propose a new entropy based
alert detection framework, which includes the use of a Cluster
Membership Anomaly score. We also discovered that contrary
to our previous deductions, an entropy based approach to alert
detection on groups of unrelated nodes could still produce
reasonable results.

The rest of this paper is organized as follows. We discuss
concepts important to understanding our work and previous
work in Section 2. Section 3 discusses the proposed cluster
membership alert detection technique. Section 4 discusses the
methodology of the experiments we carried out to evaluate our
proposed framework, whereas the results of those experiments
are discussed in Section 5. Finally, conclusions are drawn and
the future work is discussed in Section 6.



II. BACKGROUND AND PREVIOUS WORK

A. Alert Detection in System Logs

A system log is a record of events that occur on a computer
system, usually in temporal order. An event in a system log
is not a homogenous entity, it comprises several information
fields separated by a delimiting character, usually whitespace.
Most events in general, report occurrences, which are of
an informative nature i.e. non-critical events but sometimes
they do report events, which are critical and may require the
attention of an administrator. The task of identifying such
critical events (or group of events) in a system log is what
we refer to as alert detection.

A review of the literature shows that there are several
previous attempts at automating the task of alert detection in
system logs. They vary from simple approaches that search
system logs for message patterns, which are indicative of
previously known failure conditions [10], to visualization
techniques that aid the detection of alerts manually [11] and to
more complex schemes that use computational techniques like
time periodicity of messages [12] or term weighting schemes
[4].

More recent approaches to the task of automatic alert
detection include Nodeinfo [3], Principal Component Analysis
based alert detection [13] and Principle Atom Recognition in
Sets (PARIS) [14]. In [13], Xu et al. propose a framework for
detection of system problems through the mining of console
logs. Using message types extracted directly from program
source code, relevant features were extracted from system
logs and processed using Principal Component Analysis. The
Principal Component Analysis based analysis was able to
identify outliers (alerts), which they showed corresponded
with periods where faults were injected into the network.
In [14], Aharon et al. first propose a sequential algorithm
for the discovery of message types. They then propose a
novel algorithm, Principle Atom Recognition in Sets (PARIS),
which uses the message types discovered to identify message
types that tend to occur together in the event stream. These
correlated message types were then assumed to be indicative
of normal operation in the system. Aharon et al. then propose
an alert detection mechanism based on the monitoring and
visualization of these correlated message types.

On the other hand, in [3], Oliner et al. proposed an en-
tropy based approach to alert detection in system logs called
Nodeinfo. Nodeinfo proceeds from the work of Liao [5] and
Reuning[4] by using the more complex “log.entropy” term
weighting scheme. Though it utilizes the concept of encoding
token and position pairs as a means of capturing message
context, Nodeinfo does not fully capture message context as
it does not use message types. Nodeinfo does not assume that
message types are known a priori, like in the work of Taerat
et al. [15] or that a way of extracting them exists [13], [14],
[16].

In our recent work, we have improved the state of the art
as far as the Nodeinfo detection algorithm is concerned [7],
[8], [9] by introducing the concept of message types into the

framework and making modifications to its anomaly scoring
mechanism. In our work, we do not assume that these message
types are known, but we instead extract them automatically
using the Iterative Partitioning Log Mining (IPLoM) message
type extraction algorithm [16]. We utilize IPLoM for message
type extraction because we do not assume access to source
code as in the work of Xu et al. [13]. IPLoM had been shown
to produce message types, which matched manually produced
messages types closely. In addition, it is also capable of finding
not only frequent patterns in the data but also infrequent ones.
These are results, which improve on previous approaches to
message type extraction with open source implementations like
SLCT and Loghound [17]. In our recent work, we extracted
message types automatically using IPLoM on data from one
of the fastest supercomputers in the world [18] . These
automatically extracted message types were shown to achieve
91% F-Measure accuracy based on micro-averaging, when
they were compared to manually produced message types. The
modifications made to Nodeinfo have been shown to improve
on Nodeinfo by:

• Being able to process 100 times as many system log
entries per time unit without a drop in the detection
accuracy of the framework [7].

• Achieving an F-Measure detection accuracy of up to
100% leading to an effective false positive rate of 0%
[8], [9].

This work extends the work carried out in [18], [7], [9]
by extending our testing to more datasets and proposing
additional approaches to reduce the false positive rates of the
detection mechanism. This is explained in detail in section III.
In the next section, we describe the Nodeinfo framework [6],
[3] and its variants [7], [8], [9] in more detail. For the rest of
this paper, we will refer to variants of Nodeinfo collectively
as NodeinfoPlus.

B. Entropy Based Alert Detection

Nodeinfo and NodeinfoPlus are unsupervised entropy based
system log alert detection frameworks [6], [3], [7], [8], [9].
They work based on the assumption that similar computers
correctly executing similar code should have similar logs [6].
With this in mind, they calculate entropy based information
content scores for the terms that appear in similar partitions
of a system log, i.e partitions produced by similar nodes on
the network. They then use these information content scores
as indicators of interestingness.

Neither Nodeinfo nor NodeinfoPlus attempts to identify
alerts on an event by event basis, they identify portions of
the log referred to as nodehours [3], which are more likely to
contain alerts than others. A nodehour is basically one hour
of log information produced by a single node on the network.

Nodeinfo and NodeinfoPlus carry out their alert detection
using a three step process:

• Step-1: Calculate an entropy based information content
score for each term that appears in the system log.



• Step-2: Calculate the information content score for each
nodehour based on the information content of the terms
that occur in it.

• Step-3: Create a ranking of the nodehours based on their
information content score to facilitate alert detection.

In the first step, Nodeinfo and NodeinfoPlus calculate
entropy based information content scores for each individual
term that appears in the free form message fields of an
event. The difference for both frameworks however comes
from how they define a term. With Nodeinfo each of the
individual tokens in the free form message is converted to
a term by concatenating it with a number corresponding
to its ordinal position in the free form message. However,
NodeinfoPlus creates terms with the use of message types.
Using Message Type Transformation (MTT) [8], the message
field of an event is transformed to produce more concise
and structured representations of the messages. Three mes-
sage transformations are proposed in [8], these are: Phrasal
message type transformation, (ii) message type transformation
with variables, and (iii) Full message type transformation.
Full message type transformation can provide up to a 99%
reduction in the number of unique terms found in a system
log without reducing the detection accuracy of the framework
[7], it is also utilized in this work. The computational and
memory complexity of an entropy based approach to alert
detection is largely affected by the number of the terms in
the data. We therefore achieve a reduction of computational
effort and memory requirements of NodeinfoPlus compared to
Nodeinfo because of its reduced term set.

Full message type transformation simply replaces a message
with a unique token representing its message type and ignores
its variables completely. The intuition here is that variable
tokens are not as important message types in the task of
identifying alerts. The results presented in [7] shows that this
hypothesis is plausible. If the analysis of message variables is
necessary, then it should be done between message variables
that occur within a single message type only and not between
all the message variables that occur in a system log.

In the rest of the first step of computation, Nodeinfo and
NodeinfoPlus largely remain the same. Once the set of unique
terms W in a system log is identified, we can calculate the
entropy based information content of each term using Eqs. 1
and 2. If we let C be the set of nodes on the network, then
matrix X represents a |W |×|C| matrix where xw,c is the count
of the number of times term w appears in messages having
node c as source. The output of this stage is vector G with
cardinality |W |, where each element gw of G represents that
entropy based information content of term w. Its values are
in the range [0, 1] , with 0 signifying low information content
and 1 signifying the highest information content possible.

The second step assigns a score to each nodehour based on
the information content of the terms contained in the nodehour.
With Nodeinfo this score represents the magnitude of the
vector of information content values of the terms contained
in nodehour Hc

j weighted by the frequency counts of the
terms. Let H be the set of all nodehours, a |W | × |H| matrix

Y is defined, where yc
w,j is the count of the number of

times term w appears in nodehour Hc
j . The Nodeinfo score

for nodehour Hc
j can then be calculated using Eq. 3. The

modifications made to this step of the framework produces
two variants of NodeinfoPlus, we will refer to these variants
as NodeinfoPlus Uniq and NodeinfoPlus Max in the rest of
this paper.

For NodeinfoPlus Uniq and NodeinfoPlus Max, we define
a new matrix Z analogous to matrix Y, where zc

w,j effectively
only records unique occurrences of terms in the event data.
NodeinfoPlus Uniq now defines a new equation for assign-
ing a information content score to a nodehour, i.e. Eq. 4.
NodeinfoPlus Max assigns an information content score to
each nodehour using Eq. 5. Results highlighted in [8], [9]
have shown that NodeinfoPlus Uniq and NodeinfoPlus Max
contribute significantly to improve alert detection accuracy, in
one case achieving an F-Measure score of 100%.

gw = 1 +
1

log2(C)

CX
c=1

pw,c log2(pw,c) (1)

pw,c =
xw,cPC

c=1 xw,c

(2)

NodeInfo(Hc
j ) =

vuut |W |X
w=1

(gw log2(y
c
w,j))

2 (3)

NodeinfoP lus Uniq(Hc
j ) =

vuut |W |X
w=1

(gw ∗ zc
w,j)

2 (4)

NodeinfoP lus Max(Hc
j ) = maxw(gw ∗ zw,c,j) (5)

The third step of the computation proceeds in very much the
same way for both systems. After each nodehour is assigned
an information content score, a ranking of nodehours based
on their information content scores is established. Nodehours
with high information content scores are then considered more
likely to contain alerts than those that come up lower in the
ranking. In summary the major differences between Nodeinfo
and NodeinfoPlus are twofold:
• The use of message types as terms instead of word and

token position pairs, i.e. Message Type Indexing (MTI).
• Variations in the mechanism for assigning a Nodeinfo

(information content) score to a nodehour.

III. CLUSTER MEMBERSHIP ALERT DETECTION

In this section, we introduce a new component of the alert
detection mechanism of our framework. We call this com-
ponent cluster membership alert detection, which produces
what we call a cluster membership anomaly score, which
measures the possibility that a nodehour contains an alert.
The intuition behind this is based on the fact that alerts are
usually infrequent in a system log. Therefore, if we are able to
cluster nodehours in a way that captures the probability that
a nodehour might contain an alert or not, then we can say
that nodehours that belong to clusters with very few members



are more likely to contain alerts than those that belong to
clusters with a larger number of members. Our implementation
is described below.

Let S be the set of all nodehours, we can separate S into n
clusters, S1 . . . Sn, such that S1 ∪ S2 ∪ . . . ∪ Sn = S and
Si ∩ Sj = ∅ ∀ i, j. The disjunctive rule follows from the
fact that every event in the system log contains information
about its source node and the time it was produced, hence an
event cannot belong to more than one nodehour. We also state
that each nodehour Hc

j in S is associated with an information
content score nicj calculated using the methods described in
Section II-B. We define the following terms:
• MaxICS: This is the maximum information content

score associated with any nodehour in S.
• MaxCNT : MaxCNT = max(|Si|) for i = 1 . . . n, this

is effectively the cardinality of the subset (cluster) of S
with the most number of elements.

• MinCNT : MinCNT = min(|Si|) for i = 1 . . . n, this
is effectively the cardinality of the subset (cluster) of S
with the least number of elements.

• NHCNT : This is a value associated with each nodehour.
For a nodehour Hc

j ∈ Si, then NHCNT (Hc
j ) = |Si|, this

is effectively the cardinality of the subset (cluster) of S
that nodehour Hc

j is a member of.
We now define the cluster member anomaly score

(CMS) for each nodehour using Eq. 6. The (MaxCNT −
NHCNT )/(MaxCNT −MinCNT ) component of Eq. 6 pro-
duces a value that represents the normalized distance (based
on cardinality) of the cluster a nodehour belongs to from the
cluster with the most number of elements. This value is then
squared, to ensure that only the clusters with the smallest
number of elements have large distance values. The distance
values produced are in the range [0, 1] and are intended to be
used in conjunction with the information content scores, so
we multiply the distance value by MaxICS to ensure that the
cluster membership anomaly scores produced have the same
scale as the information content scores.

CMS(Hc
j ) = MaxICS ∗

„
MaxCNT −NHCNT

MaxCNT −MinCNT

«2

(6)

We can now have a new anomaly score for each nodehour,
which is the sum of the information content score and the
cluster membership anomaly score as defined in Eq. 7, w1 and
w2, are weights, which can be used to adjust the contribution
of the information content score and cluster membership score
to the final anomaly score of a nodehour.

AS(Hc
j ) = (w1 ∗NodeInfo(Hc

j )) + (w2 ∗ CMS(Hc
j )) (7)

The question that may now be asked is how to cluster S to
ensure that clusters produced are somehow representative of
the nodehours containing alerts? To provide a proof of concept
and test this idea, we design a simple clustering technique,
which clusters nodehours based on the entropy of the message

TABLE I
LOG DATA STATISTICS

System # Days Size(GB) Messages
Blue-Gene/L (BGL) 215 1.21 4,747,963
Liberty 315 22.82 265,569,231
Spirit 558 30.29 272,298,969

types they contain. The steps of this clustering technique are
given below in Algorithm 1.

Algorithm 1 This pseudo-code describes our method for
clustering the nodehours in S.
Input: Set S of nodehours with associated information content (Nodeinfo) scores.

Set MT of all message types found in the system log E defined by S.
Output: Collection S1 . . . Sn of clusters of S.
1: for each message type in MT do
2: Define a cluster Si of S, such that |Si| = ∅
3: end for
4: for each nodehour Hc

j ∈ S do
5: if message type with maximum entropy in Hc

j is mti then
6: Hc

j ∈ Si {Add Hc
j to Si}

7: end if
8: end for
9: for each cluster Si of S do

10: if |Si| = ∅ then
11: Delete Si {Discard all empty clusters}
12: end if
13: end for

IV. METHODOLOGY

A. Datasets

The three datasets utilized in our work are part of a set of
high performance computing (HPC) system logs, which were
made publicly available in the USENIX Computer Failure
Data Repository [19]. These datasets are well suited for the
evaluations, which we undertake for the following reasons:
• The events in these datasets have been previously labelled

as alerts and non-alerts by domain experts. This gives
us ground truth with which to compare the results of
automatic analysis.

• The fact that the datasets are all publicly available adds
to reproducibility of the results presented here.

• Previous work in the development and evaluation of
Nodeinfo has used these datasets [6], [3].

Details of the hardware architecture, configuration, character-
istics, log collection methods and alert identification policies
of these datasets and the systems that produced them can be
found in [20]. A summary of the characteristics of the datasets
is provided in Table I.

Compared to our previous publications, the additional data
sets considered in this work (i.e., Liberty and Spirit) are much
larger in size and cover a longer time period, but they contain
fewer alerts [20]. These characteristics make it more difficult
to detect alerts in them. Their addition therefore supports a
more robust evaluation.

Both the Nodeinfo and NodeinfoPlus frameworks rely on
the assumption that “Similar computers correctly executing
similar work should produce similar logs” [6]. For this reason,
log events from similar nodes need to be analyzed together for



TABLE II
FUNCTIONAL GROUP DATA STATISTICS

# Events # Nodes # Nodehours % Alerts
BGL-Compute 4,153,009 32,770 1,581,845 4.42
BGL-IO 400,923 1,024 219,722 38.22
BGL-Link 2,935 517 1,395 2.37
BGL-Other 191,096 2,167 13,666 0.43
Liberty-Compute 200,940,735 236 1,748,865 0.29
Liberty-Admin 52,211,676 2 27,162 0.04
Liberty-Other 12,416,820 6 44,447 0.22
Spirit-Compute 218,697,851 512 6,648,719 0.19
Spirit-Admin 41,847,257 2 26,216 3.10
Spirit-Other 11,753,861 7 57,532 0.25

the framework to work effectively. To this end, we separated
the messages in the datasets based on the functional roles of
the nodes that produced them, leading to ten categories. Four
categories for BGL i.e. Compute, IO, Link and Other; and
three categories for Liberty and Spirit, i.e. Compute, Admin
and Other, for each dataset. The three Other node categories
are actually not functional groupings of messages but consist
of all messages that could either not be placed in any of
the other categories (of each dataset) or had unknown source
information. The data statistics of the resultant datasets based
on functional groupings are detailed in Table II.

B. Experiments

The experiments, which we report in this work, are designed
to investigate three questions.

1) Which of the NodeinfoPlus Uniq and Nodeinfo-
Plus Max frameworks is more robust? Previous
work has shown the NodeinfoPlus Uniq and Nodein-
foPlus Max to be capable of producing more accurate
results than Nodeinfo with 99% less computation [7], [8],
[9]. No clear winner was however established, we carried
out further tests in a bid to determine the more robust of
the two frameworks.

2) How does the information loss caused by the use of
the Z matrix in NodeinfoPlus, as opposed to the Y
matrix used in Nodeinfo affect the alert detection
capabilities of NodeinfoPlus? The Z matrix effectively
only records unique occurrences of terms in the event data
as opposed to the Y matrix which records the frequency
of term occurrences. It is our opinion that measuring the
occurrence frequency of terms will most likely only be
beneficial to the task of alert detection, when we are
detecting bursty alert types.

3) How does the cluster membership anomaly score
helps to reduce the false positive rates of the alert
detection mechanism of NodeinfoPlus. We evaluate our
experiments to show the contribution of this score with
experimentally measured metrics.

In light of the first question above, we add the Liberty and
Spirit datasets [20] in addition to the BGL dataset used in
previous work, so as to provide more robust evaluations that
will show a clear winner. We do note two major differences
between the results presented here and those presented in
[7], [8], [9]. Firstly, in previous works, the message types

were extracted from the entire event log, before functional
decomposition. However in this work, the message types
were extracted after functional decomposition, i.e. message
types were extracted from each of the node category logs
independently. This slight difference in order is more logical.
This change may not make much of a difference to the results
but is reported to ensure the reproducibility of our results.
Secondly, the results presented for the BGL Compute node
category were not carried out on a subset of the data but on
the entire dataset. In these set of experiments, w1 and w2 in
Eq. 7 are set to 1 and 0, respectively.

To be able to answer the second question, we add a new
evaluation technique to the experiments carried out above. A
high event inter-arrival rate (or burstiness) in any system log is
usually an indication of a faulty condition [6]. Event burstiness
should usually lead to a system log with an unusually large
size. A very simple technique called Bytes uses this knowledge
for alert detection [6], [3]. Bytes simply ranks nodehours
based on the number of bytes of data that they contain,
i.e. nodehours with a high byte count are more likely to
contain alerts. Previous work has already shown that Nodeinfo
outperforms Bytes in the task of alert detection [3]. If we
are able to show that Nodeinfo only significantly outperforms
NodeinfoPlus when Bytes is able to detect alerts effectively, it
will add strength to our argument. It will also help to validate
our hypothesis that collecting statistics about the frequency
of message terms, as is done with the Nodeinfo framework,
is perhaps only beneficial when alerts, which have bursty
signatures, are detected.

After we have established the more robust framework be-
tween NodeinfoPlus Uniq and NodeinfoPlus Max, we now
boost the nodehour scores of that framework using the cluster
membership anomaly score to answer the third question. In
these set of experiments, w1 and w2 in Eq. 7 are set to
1 and 1, respectively. We then compare the evaluations of
both frameworks to ascertain the contribution of the cluster
membership anomaly score. Any improvement in performance
will provide a proof of concept for the idea of using clustering
to determine the existence of alerts.

For all our experiments, we utilized the binary scoring met-
ric as defined in [3], which defines the true positives (TP), false
positives (FP), true negatives (TN) and false negatives(FN).
With these values, we are able to calculate Precision, Recall,
F-Measure and False Positive Rate results using Eqs. 8, 9, 10
and 11, respectively.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(10)

FPR =
FP

FP + TN
(11)



If we define R as an array of the nodehours in S sorted using
their anomaly scores at the end of an experiment and Rk as the
set of nodehours formed by taking the top k nodehours in R,
then we can vary the value of k from minimum to maximum
and calculate Precision and Recall values for each value of
k. This is essentially the way we evaluated our experiments
to generate the Precision-Recall graphs, which we present in
Figure 1. In our evaluations, we assume that Rk should contain
the set of alerts and ∼ Rk should contain non-alerts.

Precision measures the ratio of alert nodehours to non-
alert nodehours in Rk. While Recall measures the ratio of
alert nodehours in Rk to the complete set of nodehours in R.
Precision and Recall are usually negatively correlated, i.e. in
a non-trivial problem, it is is difficult to improve one without
degrading the other. To this end, the F-Measure accuracy score
is used to provide a balanced measure of accuracy using both
Precision and Recall. Definitions of and detailed discussion
about Precision, Recall and F-Measure can be found in these
works: [21], [22]. While an example of the use Precision and
Recall in evaluation of experiments in the retrieval of failure
signatures in systems management can be found in [23].

Precision, Recall and F-measure scores do not consider
Type-II errors, as such they do not give a complete picture
of accuracy. To this end, we also present evaluations utilizing
false positive rate scores. The false positive rate measures the
ratio of non-alert nodehours in Rk to the complete set of non-
alert nodehours in R. The false positive rates in our work
are reported at the point when maximum Recall is achieved
and is therefore representative of the worst case false positive
rate, which can be encountered with the frameworks. Much
lower false positive rates are possible, albeit at the expense of
not been able to detect all alerts. Since the maximum Recall
always reaches 100%, the false positive rate measurement
taken at that point can sometimes be susceptible to the effect of
outliers, i.e. alert nodehours with very low Nodeinfo scores.
To this end, we also present false positive scores measured
at 99% Recall to evaluate experiments in the general case.
The false positive rate at 99% Recall implies that the false
positive rate measured at the value of k where 99% of alerts
are included in Rk. However, we present false positive rates
measured at 100% Recall for experiments, which evaluate the
contribution of cluster membership alert detection. Likewise,
the false positive rate at 100% Recall implies that the false
positive rate measured at the value of k where 100% of alerts
are included in Rk.

V. RESULTS

Before we discuss the results of our experiments in detail,
we highlight points, which are important for the interpretation
of the results presented. Firstly, all the results presented
here using any variation of the NodeinfoPlus framework are
produced with 99% less computation and memory on average.
As this result was already shown in previous work, we do not
give detailed results in this paper [7]. Secondly, low (below
50%) Precision scores in the Precision-Recall plots presented
in Fig. 1 do not necessarily mean poor results. These results

have to be evaluated in conjunction with alert ratios presented
in Table. II. We notice from Table. II, that in most cases
alert nodehours form less than 1% of all nodehours. So if for
instance, in one functional grouping, we have alert nodehours
forming only 1% of all nodehours, achieving a Precision score
of 10% could actually be good, as this performance is in the
order 10 times better than what would be expected from a
simple random sampling of nodehours. The results in Fig. 2
show the false positive rates achieved at 99% Recall for all
node categories. These false positive rates are representative
of the worst case false positive rates required to detect all alert
nodehours in the data. Lower false positive rates are possible
at the expense of not detecting all alerts. Let us now analyze
the results of our experiments in more detail.

Our first conclusion from the results is that Nodeinfo-
Plus Uniq is the most robust framework amongst the frame-
works evaluated. This is inspite of the fact that Nodeinfo-
Plus Max produces the best overall result (100% F-Measure)
on the BGL-Link category. The false positive rates results
for the Liberty-Admin and Spirit-Admin node categories in
Fig. 2 show NodeinfoPlus Max with a false positive rate,
which is significantly poorer than both NodeinfoPlus Uniq
and Nodeinfo. These results support the assumption that
NodeinfoPlus Uniq is a better framework and this answers
the first question we asked in Section IV-B. The effect of
faults in a system log are most times not restricted to any
single event in the log, NodeinfoPlus Max takes the greedy
approach of evaluating nodehours based on a single event.
This approach can achieve very good results as seen with the
BGL-Link category but is generally not robust.

Secondly, the results presented for the Liberty-Compute
and Spirit-Compute categories in Fig. 2, strongly support our
second hypothesis. In these categories, Nodeinfo performs
just as well as NodeinfoPlus for lower Recall rates. With the
Liberty-Compute category, it even outperforms both Nodein-
foPlus frameworks for Recall rates below 55% and achieves a
Precision score of ∼75% but its performance falls steeply for
Recall rates above 55%. It is pertinent to mention that Bytes
also produced good results in these categories, meaning that
a good portion of the alerts in these categories have bursty
signatures. We also notice how similar the trend lines for
Nodeinfo and Bytes are with the Liberty-Compute category.

Thirdly, the false positive rate at 100% Recall for the
BGL node categories in Fig. 3 highlight the contribution
of the cluster membership anomaly score. As stated earlier,
false positive rates measured at 100% Recall are sometimes
susceptible to the effect of outliers. In Fig. 1, it can be
seen that at this point the entropy based approaches do not
differ significantly from the simple Bytes technique. Thus,
reducing the justification for their use when the detection of
all alerts is required. The results shown in Fig. 3 show how the
introduction of the cluster membership anomaly score helps to
reduce the effect of these outliers by reducing the effective
false positive rates experienced at 100% Recall. The most
significant is with the BGL-Compute and BGL-IO categories.

Fourthly, looking generally at the results presented in Fig. 1



and Fig. 2, we see that the NodeinfoPlus frameworks generally
outperform the Nodeinfo framework, especially for Recall
rates below 50%. We also notice the high false positive rates
(for all frameworks) produced on BGL-IO node category. This
can explained by the fact that certain alert types in the BGL-IO
category can be reported by nodes in the category even when
the fault is not local to the node [9]. This causes these alerts
to appear normal as they have an equal rate of occurrence
across the nodes in the category. The unusually high alert
ratio of this node category of 38.22% further emphasizes the
fact that the alerts in this node category are unusual. We also
note that contrary to the results presented in previous work,
an entropy based approach can still show high performance
with non-functional groupings of nodes. This can be seen from
the results of the NodeinfoPlus Uniq framework on the Other
node categories in Fig. 1. It is possible that the extraction
of messages types after the Other node categories have been
grouped together may have contributed to this success.

VI. CONCLUSION AND FUTURE WORK

In this work, we present our findings on the evaluation of
three variants of the Nodeinfo alert detection mechanism using
new datasets not used in previous evaluations. We also propose
the introduction of a Cluster Membership Anomaly score to the
framework to reduce the false positive rates required to detect
all alerts.

Based on our evaluations we were able to determine the
following. Firstly, we determined that the NodeinfoPlus Uniq
is generally more robust than the NodeinfoPlus Max frame-
work. Secondly, we determined that the use of the Z matrix in
NodeinfoPlus, as opposed to the Y matrix used in Nodeinfo
limits the ability for NodeinfoPlus to detect alerts, which have
bursty signatures. Thirdly, we also determined that the use of
the proposed cluster membership anomaly score reduces the
false positive rate required for the detection of 100% of all
alerts. Lastly, we determined that an entropy based approach
can show good performance when a non-functional grouping
of nodes is analyzed.

While the Nodeinfo framework may seem better when it
comes to detecting bursty alerts, it is not as generalized as
NodeinfoPlus Uniq. Thus, the signatures that faults introduce
into system logs are so varied that no one alert detection
mechanism can detect them all. Based on our results, we
suggest that the future direction of alert detection mechanisms
in system logs should consist of not one (probably complex)
mechanism, which is able to detect all types of alerts, but
several (probably simple) detection mechanisms, which are
specialized toward detecting certain alert signatures.

Future work will involve the analysis of the clusters formed
by the purposed clustering technique. Perhaps a more sophis-
ticated approach to clustering of nodehours could improve the
results, too.

While we test our framework using data from HPCs, it is
possible for the proposed framework to be generalized for use
on any system log, with a little modification if necessary.
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