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Abstract—The classification of encrypted traffic on the fly from
network traces represents a particularly challenging application
domain. Recent advances in machine learning provide the op-
portunity to decompose the original problem into a subset of
classifiers with non-overlapping behaviors, in effect providing
further insight into the problem domain. Thus, the objective of
this work is to classify VoIP encrypted traffic, where Gtalk and
Skype applications are taken as good representatives. To this end,
three different machine learning based approaches, namely, C4.5,
AdaBoost and Genetic Programming (GP), are evaluated under
data sets common and independent from the training condition.
In this case, flow based features are employed without using the
IP addresses, source/destination ports and payload information.
Results indicate that C4.5 based machine learning approach has
the best performance.

I. INTRODUCTION

The increasingly popular Peer-to-Peer (P2P) Voice over
Internet Protocol (VoIP) applications have gain huge success
in the last few years and are becoming a major communication
service for enterprises and individuals since the cost of VoIP
calls is much cheaper than the traditional public Switched
Telephone Networks (PSTNs), the voice and video quality is
getting better, the communication is free of charge if placed
directly from VoIP end user to another one and the dynamic
approach to circumvent restrictive network environments such
as firewalls and Network Address Translation (NAT) boxes
is possible. To date, there are many VoIP products that are
able to provide high call quality such as Skype [1], Gtalk
[2], Microsoft Messenger (MSN) [3], and Yahoo! Messenger
(YMSG) [4].

Thus, an efficient classification of such VoIP traffic repre-
sents a fundamental issue for network management tasks such
as managing bandwidth budget and ensuring quality of service
objectives. Naturally, the process of traffic classification has
several unique challenges including: non-standard utilization
of ports, embedding of services within encrypted channels,
dynamic port-to-application relationships, and the real-time
nature of the domain. Usually, Network administrators can
depend on well known Transmission Control Protocol (TCP)
and/or User Datagram Protocol (UDP) port numbers assigned
by the Internet Assigned Numbers Authority (IANA) [5]
to classify traffic. However, this approach more and more
unreliable, since applications use nonstandard ports to by-
pass firewalls or circumvent operating systems restrictions.
Moreover, there is no control to force an application to use

reserved ports to send or receive traffic. Another extremely
accurate approach to classify network traffic is to inspect the
payload of every packet. However, encrypted applications such
as Gtalk, and Skype imply that the payload is opaque. Thus,
other techniques are required to increase the efficiency of VoIP
traffic classification.

One possibility is to identify specific features of the VoIP
traffic and use these to guide the traffic classification. Recent
research in this area focuses on the identification of efficient
and effective classifiers. Different research groups have em-
ployed expert systems or various machine learning techniques
such as Hidden Markov models, Naı̈ve Bayesian models,
AdaBoost, or Maximum Entropy methods to this problem [6],
[7], [8], [9], [10]. Moreover, the limitations of port and payload
based analysis have motivated the use of transport/flow layer
statistics for traffic classification [11], [12], [13], [14]. These
techniques rely on the observation that different applications
have distinct behavior patterns on the network. However, P2P
VoIP applications such as Skype and Gtalk adopt a new
technique to send and receive traffic using Web port (port 80
or port 443) to by-pass firewall restrictions and traverse NAT
boxes.

Skype is a proprietary P2P VoIP application. On the other
hand, Gtalk is an instance messenger developed by Google
that allows its users to place voice calls, send text messages,
check emails and transfer files. Gtalk provides very similar
services as of MSN, YMSG and Skype since it has abilities
for voice call, instant messaging and buddy lists. In practice, it
has resemblance with Skype application since Gtalk encrypts
its traffic; however the fundamental protocols and techniques
employed are relatively distinctive. Thus, the goal of this
work is to develop a model that distinguishes Gtalk/Skype
traffic from non-Gtalk/non-Skype traffic without using IP
addresses, port numbers or payload information using features
based on flow information. In order to identify Gtalk/Skype
traffic, three different machine learning algorithms, namely,
AdaBoost, C4.5 and GP, are employed. We believe that such
an approach can be more robust against evasion attacks if it
is successful.

The rest of this paper is organized as follows. Related work
is discussed in Section II and an overview of Gtalk and Skype
are given in Section III. Section IV presents the machine
learning algorithms employed whereas Section V details the
data sets and features. The experimental results are presented



in Section VI. Finally, conclusions are drawn and future work
is discussed in Section VII.

II. RELATED WORK

To the best of our knowledge, the focus on the literature
for detecting VoIP traffic is on Skype traffic. Skype is one
of the most commonly used VoIP applications (Skype has 246
million users and around 10 million users are logged in online
at any given time [15]). Skype analysis has become popular
in the last few years, in part due to the combination of the
encrypted operation and dynamic nature of the port assignment
making traditional methods of traffic identification redundant.
Baset et al. present an analysis of the Skype behavior such as
login, NAT and firewall avoidance, and call setting up under
three different network conditions [16]. Suh et al. concentrate
on the classification of relayed traffic and monitored Skype
traffic as an application using relay nodes [17]. Relay node
is part of the decentralized Skype network that can ease the
routing of Skype traffic to bypass NATs and firewalls. They
used several metrics based on features such as inter-arrival
time, bytes size ratio and maximum cross correlation between
two relayed bursts of packets to detect Skype relay traffic.
Their results (a 96% true positive and 4% false positive) show
the technique is reliable in recognizing relayed Skype sessions
but it might not be appropriate to classify all Skype VoIP
traffic. Bonfiglio et al. introduced two approaches to classify
Skype traffic [18]. The first approach is to classify Skype client
traffic based on Pearson’s Chi-Square test using information
revealed from the message content randomness (e.g. the FIN
and ID fields).Their second approach is to classify Skype
VoIP traffic based on Naı̈ve Classifier using packet arrival rate
and packet length. They obtained the best results when the
first and second approaches were combined. They achieved
approximately 1% false positive rate and between 2% to 29%
false negative rate depending on the data sets they employed.

On the other hand, we focus on encrypted tunnel identifica-
tion without using the IP addresses, port numbers and payload
data. We have also compared five based classifiers using flow
feature set to classify SSH/Skype traffic [19]. Results show that
the C4.5 based approach based approach outperforms other
algorithms on the data sets employed. Furthermore, recently,
we focus on the robustness/generalization of the machine
learning based approach to classify Skype encrypted traffic.
What we mean by robustness here is that the signatures to
classify/identify the encrypted traffic are generated on network
traffic from one network but evaluated (tested) on network
traffic, which are from completely different networks. We
compared Symbiotic Bid-based Genetic Programming (SBB-
GP) against C4.5 and AdaBoost, SBB-GP outperforms C4.5
and AdaBoost on identifying Skype encrypted traffic when we
evaluated the three machine learning algorithms on different
network traces from different institutions using flow based
features [20]. Moreover, we have compared (SBB-GP) based
classifier against C4.5 [21] on SSH traffic classification using
feature based on packet header approach. In that work, results

show that GP based classifier was quite competitive with the
C4.5 based classifier.

III. SUMMARY OF GTALK AND SKYPE APPLICATIONS

Skype [1] is a very popular P2P VoIP client developed
in 2002 by the developers of KaZaa that allows its users to
communicate through voice calls, audio conferencing and text
messages. Skype protocols are proprietary and an extensive
use of cryptography is implemented by the Skype creators.
Moreover, Skype employs a number of methods to circumvent
NAT and firewall restrictions [16], which increase the difficulty
of identifying it. Skype is based on P2P architecture except
users authentication, which is performed based on a central
architecture. Skype uses the TCP or the UDP protocols at
the transport layer to provide its services. For network com-
munication, Skype mostly prefers the UDP protocol. A more
detailed description of Skype protocol can be found in [16].

On the other hand, Gtalk application also provides many
services to end users, these are: i) voice communication, ii)
video communication, iii) file transfer, and iv) chat services.
The communication between users is established using a tra-
ditional end-to-end IP paradigm, but Gtalk routes call through
a relay node to ease the traversal of symmetric NATs and
firewalls. Though Gtalk may relay on TCP and UDP at the
transport layer, communication data are favorably carried over
UDP. Users authentication is performed by a client-server
architecture using public key mechanisms. After a user (client)
is authenticated, all further communication is carried out with
the nearest Google server relay node. This way not only the
quality of service can be guaranteed by Google but also both
the scaling issues and the control issues can be solved by
Google in a more seamless way. The main difference between
Gtalk and other VoIP clients is that Gtalk can benefit from the
vast amount of Google servers, which is being used as relay
nodes (super nodes) to ensure the quality of service. On the
other hand, other P2P architectures like Skype can choose any
suitable machine on the P2P network as a relay node [16].

IV. CLASSIFIER METHODOLOGIES

In this work, we are interested in the application of su-
pervised machine learning (ML) based techniques to network
traffic classification, specifically classification of VoIP traffic.
The reason we took a ML based approach is the need for
automating the process of identifying such traffic but in
terms of automatically creating the signatures (rules) that are
necessary to classify VoIP as well as automating the process of
selecting the most appropriate attributes for those signatures.
The ML techniques require a number of steps. First, a matrix
of instances vs. features are needed to describe the data set. A
vector of features describes each instance or record in a given
trace/traffic file. The features are used as values to quantify
different characteristic of the instance (network traffic) such
as packet size or inter-arrival time. Second, a label is provided
for each instance, which is the class description (network
application type). Finally, ML needs to be trained using a data
set (called training) and gives an output, which consists of



the rules or the model it generates. This output can then be
verified on a test data set (unseen instances). A more detailed
explanation of ML and traffic classification can be found in
[22].

Given the general success of C4.5 and AdaBoost in pre-
vious studies [19], [23], [24], [25], [26], [14], [7], [10], we
employ both models during this study in order to establish
a performance baseline. A more detailed explanation of C4.5
and AdaBoost algorithms can be found in [27] whereas a more
detailed explanation of GP can be found in [28]. The following
will summarize the C4.5, AdaBoost and GP algorithms.

A. C4.5

C4.5 is a decision tree based classification algorithm. A
decision tree is a hierarchical data structure for implementing a
divide-and-conquer strategy of attribute based model building.
It is an efficient non-parametric method applicable both to
classification and regression. Non-parametric models divide
the input space into local regions defined by a distance metric.
In a decision tree, the local region is identified in a sequence
of recursive splits in smaller number of steps. A decision tree
is composed of internal decision nodes and terminal leaves.
Each node m implements a test function fm(x) with discrete
outcomes labeling the branches. This process starts at the root
and is repeated until a leaf node is encountered. The value
of a leaf constitutes the output. In the case of a decision tree
for classification, the goodness of a split is quantified by an
impurity measure, typically entropy based. Naturally, if the
split is not ‘pure’, then the instances should be split to decrease
impurity, and there are multiple possible attributes on which
a split can be performed. Such a scheme is locally optimal,
hence has no guarantee on finding the smallest decision tree.

B. AdaBoost

AdaBoost, Adaptive Boosting, is a meta-learning algorithm,
which means that a strong classifier is built from a linear
combination of weak (simple) classifiers. It incrementally con-
structs a complex classifier by overlapping the performance of
possibly hundreds of simple classifiers using a voting scheme.
These simple classifiers are called decision stumps. They
examine the feature set and return a decision tree with two
leaves. The leaves of the tree are used for binary classification
and the root node evaluates the value of only one feature. Thus,
each decision stump will return either +1 if the object is in
class, or -1 if it is out class. AdaBoost is simple to implement
and known to work well on very large sets of features by
selecting the features required for good classification.

C. Overview of SBB-GP

In this work, we have applied the Symbiotic Bid Based
Genetic Programming (SBB-GP) approach to our problem
domain. The SBB framework makes extensive use of co-
evolution [28], with a total of three populations involved: a
population of points, a population of learners, and a population
of teams. Individuals comprising a team are specified by the
team population, thus establishing a symbiotic relationship

with the learner population. Only the subset of individuals
indexed by an individual in the team population compete
to bid against each other on training exemplars. The use
of a symbiotic relation between teams and learners makes
the credit assignment process more transparent than in the
case of a population wide competition between bids. Thus,
variation operators may now be defined for independently
investigating team composition (team population) and bidding
strategy (learner population). The third population provides
the mechanism for scaling evolution to large data sets. In
particular the interaction between team and point population is
formulated in terms of a competitive coevolutionary relation
[29]. As such, the point population indexes a subset of the
training data set under an active learning model (i.e. the subset
indexed varies as classifier performance improves). Biases are
enforced to ensure equal sampling of each class, irrespective
of their original exemplar class distribution [30], whereas the
concept of Pareto competitive coevolution is used to retain
points of most relevance to the competitive coevolution of
teams.

V. EVALUATION METHODOLOGY

As discussed earlier, in this work, the preferred models of
classifications from Section IV (C4.5, AdaBoost and SBB-
GP) will be evaluated using the flow based feature sets for
identifying Gtalk/Skype encrypted traffic from a given network
traffic trace. The following describes the testbed setup, traffic
generation and features/attributes employed to represent the
traffic in this work.

A. Testbed Setup and Traffic Generation

In order to train our ML based classifiers, we needed a
controlled environment, where the ground truth is known.
Thus, we generated VoIP traffic using different applications
on a testbed that we set up. This testbed involved several
PCs connected through the Internet and several network sce-
narios were emulated using Gtalk and other (e.g. Primus,
Yahoo messenger) popular VoIP applications. To this end,
we observed how Gtalk/Skype reacts to different network
restrictions. Moreover, the effects (if any) of different types
of access technologies (i.e. WiFi and Ethernet) were also
investigated, as well as their combination. Overall, we have
conducted over 100 experiments equivalent to more than 25
hours of VoIP traffic. In these experiments, we generated
and captured more than 6 GB of traffic at both ends, where
approximately 34 million packets were transmitted.

For this work, a Gtalk client was installed on each of the
three windows XP machines. The first machine was a Pentium
4 2.4 GHz Core 2 Duo with 2 GB RAM, the second machine
was a Pentium 4 2 MHz Core 2 Duo with 2 GB RAM, and the
third machine was a MacBook 2 GHz Intel Core 2 Duo with 2
GB RAM. Two machines had a 10/100 Mv/s Ethernet and the
third machine had a wireless 10/100 Mv/s card. Furthermore,
one was connected to 1 GB/s network while the others were
connected to a 10/100 Mb/s network. All three machines had
Windows XP Service Packet 2 and all experiments were done



Fig. 1: Network Setup with restrictions.

using the Gtalk client version 1.0.0.104. In all experiments,
we have observed the Gtalk behavior from both ends. In all
cases, we have performed experiments under several different
network scenarios, Figure 1.

These scenarios include: i) Firewall restrictions on one
user end and no restriction at the other end; ii) Firewall
restrictions at both users ends; iii) No restrictions at both
users ends; iv) Use of wireless and wire-line connections;
v) Blocking of all UDP connections, and vi) Blocking of all
TCP connections. It should be noted here that during these
experiments all the Internet communications went through
our networks firewall. The firewall was configured to permit
access to the aforementioned restrictions such as do not permit
anything, or permit limited well known port numbers such as
port 22, 53, 80 and 443. Moreover, we have observed the Gtalk
client through out the installation period as well as the first
time login. Wireshark [31] and NetPeeker [32] were used to
monitor and control network traffic. NetPeeker was used to
block ports and to allow either both TCP and UDP traffic, or
only UDP or TCP traffic in order to analyze the behavior of
the Gtalk client. On the other hand, Wireshark was used to
capture traffic from both users ends.

The general call set up between the caller and callee for
voice calls is as follows: caller transmits a standard audio file
to callee. We used an English spoken text (male and female
audio files) without noise and a sample rate of 8 kHz, which
was encoded with 16 bit per sample and can be downloaded at
[33]. The wav-file was played and then the output of Windows
media player was used as input for Gtalk, Primus (soft Talk
Broadband (softTBB)) and Yahoo messenger (Encrypted with
zfone) clients using a microphone. Wireshark was used to
capture the traffic from both users’ ends. We have made this
testbed traffic publicly available to the research community,
too [34].

On the other hand, we have also generated Yahoo messenger
traffic (encrypted with Zfone) and Primus VoIP traffic as
well as online banking traffic in order to distinguish Gtalk
and Skype traffic from these similar applications. In these
experiments, we generated and captured more than 6 GB of
traffic at both ends, where approximately 34 million packets
were transmitted.

Furthermore, Zfone traffic is another encrypted VoIP traffic
we generated. Zfone [35] is a software that secures VoIP calls
over the Internet. Zfone works by intercepting all the unen-

Fig. 2: Network Setup for Zfone Calls.

crypted VoIP channel and securely protect the VoIP channel
by encrypting all the VoIP packets. Zfone is the user interface
of the ZRTP protocol [36]. ZRTP uses a Diffie-Hellman to
exchange key over RTP (Real-time Transport Protocol) packet
stream (creates secure RTP sessions). It encrypts the payload
of a packet using standard cryptographic algorithms such
as Advanced Encryption Standard (AES) or Rivest Shamir
Adleman (RSA) algorithms. We used Zfone to secure all
Yahoo Messenger audio calls. Zfone detects Yahoo packets
and encrypts them as they are sent by the caller machine and
detects the encrypted packets received by the callee machine
and decrypts them, Figure 2.

On the other hand, we also generated non-encrypted VoIP
traffic using Primus Session Initiation Protocol (SIP) client
[37]. Primus Enterprise VoIP network deploys the SIP [38]
to set up, validate and complete calls over the Internet. The
main components of the Primus Enterprise VoIP network are:
i) IP phone: a terminal (softTBB software) with native VoIP
support and direct connection to the Internet; ii) Primus Voice
Gateway with ability to convert network signals from/to the
telephony interfaces and the VoIP protocols; and iii) Primus
SIP server, which is responsible in providing the management
and administrative functions with the essential support to route
calls across the network. We used the Primus softTBB to make
calls to Public Switched Telephone Network (PSTN) for voice
services (hard line phone) and Bell [39] Mobil Cell phone.
The softTBB client runs on a PC or a laptop and connects
to the Primus SIP Network over the Internet. Depending
on what we call, i.e. a mobile phone or a PSTN phone,
Primus SIP network routes the calls to the final destination
differently. For a call to a PSTN phone, the calls are routed
to the nearest Primus Voice gateway, which is responsible
for making the communication (converting the calls) between
the VoIP network and PSTN network. On the other hand,
for a call to a cell phone, which is subscribed to the Bell
General Packet Radio Service (GPRS) and Universal Mobile
Telecommunication System (UMTS) network, the route is
more complex. According to GPRS/UMTS specification [40],
the mains components of the GPRS/UMTS network are base
stations and gateways connected to the Internet. In this case,
firstly, the cell phone registers with the base station. Then, the
base station is connected to the Serving Gateway Support Node
(SGSN), which is connected to the Gateway GPRS Support
Node (GGSN) inside the Bell GPRA/UMTS network. Finally,



the GGSN is the first node that is responsible for processing
IP packets from the Internet to the mobile network and vice
versa. To establish the call between a Primus softTBB and
a Bell mobile phone, the call is routed through the Primus
SIP network through the Internet to the Bell GGSN gateway.
In all cases, we were able to listen to the call at the PSTN
phone and the mobile phone. All communications are done
without encryption and the traffic is captured using Wireshark
only at the machine, where the softTBB is running, since we
do not have permission to capture traffic with Primus or Bell
companies. In this case, we deliberately choose not to encrypt
the traffic so that we have different mixtures of VoIP traffic in
our traces, i.e. both encrypted (Gtalk, Skype, and Yahoo with
Zfone) and non-encrypted (Primus, Yahoo, IM). Furthermore,
we have captured an encrypted online banking traffic, which
is also included in these traffic traces.

Last but not the least, we have also employed network traces
captured on the campus network of our university. To this
end, university traces employed in this work contain DNS,
FTP, SSH, MAIL, HTTP, HTTPS and MSN traffic. Thus,
we have traffic traces of 11 applications that have similar
behavior to Gtalk. In short, we believe that the traffic traces
we employed in this work are representative of traces that
can be encountered in real life. It should be noted here
that University traffic traces were captured on the Dalhousie
University Campus network by the University Computing
and Information Services Centre (UCIS) in January 2007.
Dalhousie is one of the biggest universities in the Atlantic
region of Canada. There are more than 15000 students and
3300 faculty and staff. The UCIS is responsible for all the
networking on the campus, which includes more than 250
servers and 5000 computers. Moreover, the wireless network is
enabled on the campus, where thousands of users (students and
staff) are connected daily. Dalhousie network is connected to
the Internet via a full-duplex T1 fiber link. Full-duplex traffic
on this connection was captured for 8 hours. Given the privacy
related issues, data is filtered to scramble the IP addresses and
each packet is further truncated to the end of the IP header
so that the payload is excluded. Moreover, the checksums are
set to zero since they could conceivably leak information from
short packets. However, any information regarding size of the
packet is left intact. The University traces are labeled using
a commercial classification tool (PacketShaper), which is a
deep packet analyzer [41], by the university’s network team,
UCIS (i.e. not by us). PacketShaper uses Layer 7 filters (L7)
to classify applications [42].

Finally, establishing the ground truth for the traces (Gtalk,
Primus etc.) that we generated on our testbed was not a
problem, since we knew exactly which applications were
running in every experiment. Brief statistics on the traffic data
collected are given in Table I. In this work, for Gtalk/Skype
traffic identification, we have used a sampled subset of Gtalk
traces and mix them with University traces as the training data
set. Naturally, the rest of the University traces, Zfone traces,
Primus traces, online banking traces and the rest of the Gtalk
traces are used as the testing data set. In total, Test traces

TABLE I: An overview of network traces employed

University Gtalk Primus Zfone
Total Packets 337,041,778 34,292,124 1,920,991 1,092,093
MBytes 213,562 6,492 384 146
% of TCP packets 86.51% 18.70% 0.06% 1.32%
% of TCP bytes 91.03% 17.0% 0.18% 0.99%
% of UDP packets 13.33% 81.30% 99.94% 98.68%
% of UDP bytes 8.95% 83% 99.82% 99.01%
% of Other packets 0.16% 0.0% 0.0% 0.0%
% of Other bytes 0.02% 0.0% 0.0% 0.0%
# non Gtalk Flows 35,565,561 0 9,591 29,961
# Gtalk Flows 0 301,735 0 0
# Skype Flows 8,664,137 0 0 0

TABLE II: Flow based feature set employed

Feature Name Abbreviation
1 Protocol proto
2 Duration of the flow Duration
3 # Packets in forward direction fpackets
4 # Bytes in forward direction fbytes
5 # Packets in backward direction bpackts
6 # Bytes in backward direction bbytes
7 Min forward inter-arrival time minfiat
8 Mean forward inter-arrival time meanfiat
9 Max forward inter-arrival time maxfiat
10 Std deviation of forward inter-arrival times stdfiat
11 Min backward inter-arrival time minbiat
12 Mean backward inter-arrival time meanbiat
13 Max backward inter-arrival time maxbiat
14 Std deviation of backward inter-arrival times stdbiat
15 Min forward packet length minfpkt
16 Mean forward packet length meanfpkt
17 Max forward packet length maxfpkt
18 Std deviation of forward packet length stdfpkt
19 Min backward packet length minbpkt
20 Mean backward packet length meanbpkt
21 Max backward packet length maxbpkt
22 Std deviation of backward packet length stdbpkt

consist of 44,588,269 flows.

B. Feature Selection -Flow based Features

The flow based feature set, a feature is a descriptive statistic
that can be calculated from one or more packets for each flow.
To this end, NetMate [43] is employed to generate flows and
compute 22 feature values, Table II. Flows are bidirectional
and the first packet seen by the tool determines the forward
direction. In this work, we consider only UDP and TCP
flows. Moreover, UDP flows are terminated by a flow timeout,
whereas TCP flows are terminated upon proper connection
teardown or by a flow timeout, whichever occurs first. The
flow timeout value employed in this work is 600 seconds as
recommended by the IETF [44].

VI. EMPIRICAL EVALUATION

In traffic classification, two metrics are typically used in
order to quantify the performance of the classifier: Detec-
tion Rate (DR) and False Positive Rate (FP). In this case,
DR will reflect the number of Gtalk/Skype flows correctly
classified and is calculated using DR = TP

TP+FN ; whereas
FP rate will reflect the number of non-Gtalk/non-Skype flows



TABLE III: SBB-GP parameters

Parameter Description Value
Psize Point population size. 90
Msize Team population size. 90
tmax Number of generations. 30000
pd Probability of learner deletion. 0.1
pa Probability of learner addition. 0.2
µa Probability of learner mutation. 0.1
ω Maximum team size. 30
Pgap Point generation gap. 30
Mgap Team generation gap. 60

incorrectly classified as Gtalk/Skype and is calculated using
FPR = FP

FP+TN . Naturally, a high DR rate and a low
FP rate are the most desirable outcomes. Moreover, False
Negative, FN, implies that Gtalk/Skype traffic is classified
as non-Gtalk/Skype traffic, and False Positive, FP, implies
that non-Gtalk/non-Skype traffic is classified as Gtalk/Skype
traffic.

All three candidate classifiers are trained on the training data
using fifty runs to generate 50 different models for each run so
that the results are statistically valid. Weka [45] is employed
with default parameters to run C4.5 and AdaBoost. Fifty runs
of the C4.5 algorithm are performed using different confidence
factors to generate different models for C4.5 and fifty runs of
the AdaBoost algorithm are performed using different weight
thresholds to generate different models for AdaBoost. The
SBB-GP classifier’s default parameters are summarized in
Table III. Fifty runs of the SBB-GP algorithm are performed
using different population initializations to generate different
models.

A. Results

In these set of experiments, the objective is to identify Gtalk
and Skype on a flow by flow basis using only the set of features
given in Table II. To this end, we first trained each classifier
on our training data set using the same feature set. Then, we
tested each trained model (C4.5, AdaBoost and SBB-GP) on
the test data set, which consists of five test traces, namely,
University traces, Gtalk, Primus, Zfone and Italy traces.

Results given in Figures 3 and 4 illustrate that C4.5 based
classification approach is much better than other algorithms
employed in identifying the Skype flow traffic based on the
training data set. Moreover, in the case of C4.5, much lower
variance (Table IV) implies that the corresponding solutions
generalize to the wider case, implicit in the test results.
We use these trained models, on all of the complete traces
employed. Furthermore, Table I shows that the percentages
of the TCP and UDP traffic are different for each trace.
What this demonstrates is that these traces indeed belong to
substantially different networks. Therefore, we believe that
only well generalized models are able to classify Skype or
Gtalk traffic correctly on these networks.

To visualize which machine learning algorithms have the
most diverse performance on the test data sets, Figures 5
and 6 show the DR and FPR for all 50 models on the test
data sets. On average, C4.5 is much better than other machine

Fig. 3: Results on the Training Data set for Flow based Feature
set for Skype detection.

Fig. 4: Results on the Training Data set for Flow based Feature
set for Gtalk detection.

learning algorithms on the test data sets in terms of high DR
and low FPR. In the case of Skype, C4.5 based classification
approach is much better than other machine learning algo-
rithms employed in identifying the Skype traffic. C4.5 based
system can correctly classify ≈99% of the instances with
less than 1% FPR on combined test traces. For Gtalk, results
show that again, the C4.5 classifier performs better than the
other classifiers on all of the data sets. C4.5 classifier achieves
≈99% DR and 0.2% FPR on combined test traces. Moreover,
the SBB-GP classifier is very competitive with C4.5 under
test traces (particularly in terms of Gtalk False Positive rate
and Gtalk Detection rate) whereas the AdaBoost based system
performs the poorest of the three.

Furthermore, we note that SBB-GP generates fewer individ-
uals (rules) on average to detect Gtalk/Skype flow traffic (on
average 10 individuals for both Skype and Gtalk detection),
Figures 7 and 8. Moreover, C4.5 found the most complex
solution for Skype (on average 350 rules for Skype detection



TABLE IV: Standard Deviation of Results on the training data for Gtalk/Skype based on flow feature set

C4.5 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of university) x 50
Non-Skype 0.0002 0.0001 0.0046 0.0008 0.026 0.0214
Skype 0.0001 0.0002 0.0008 0.0046 0.0214 0.026
Non-Gtalk 2.6E-05 0.0001 0.096 0.137 0.023 0.024
Gtalk 0.0001 2.6E-05 0.137 0.096 0.024 0.023

Fig. 5: Results on all Test Data sets for Flow based Feature
set for Skype detection.

Fig. 6: Results on all Test Data sets for Flow based Feature
set for Gtalk detection.

and 100 rules for Gtalk detection).
Figures 9 and 10 list the application flows, which C4.5

misclassifies as Gtalk/Skype flows for the traces employed.
Given the fact that both Gtalk and Skype uses many services
such as DNS, HTTP, HTTPS, and STUN, and the fact that both
of them can run over TCP or UDP, this is to be expected.
On the other hand, the flow based classifier can sometimes
classify HTTP, HTTPS, Skype and Zfone flows as Gtalk flows
since these applications can be used to transfer data between
two hosts and some of them are in fact encrypted traffic as

Fig. 7: Number of Rules/Individuals for each classifier for
Skype detection.

Fig. 8: Number of Rules/Individuals for each classifier for
Gtalk detection.

well. In the case of Skype detection, C4.5 and SBB-GP flow
based classifiers are mostly classifying DNS traffic as Skype
since Skype can use UDP protocol to set up communication
calls. As a final note, even though there were not many flows
representing the Other class in the training data sets, results
show that a few of them misclassified during the tests, so we
can say that the C4.5 classifier was able to generalize well on
that front.
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Fig. 9: Applications that are mostly misclassified as Skype by
the C4.5 model based on the flow feature set.
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Fig. 10: Applications that are mostly misclassified as Gtalk by
the C4.5 model based on the flow feature set.

VII. CONCLUSION AND FUTURE WORK

In this work, we have evaluated three machine learning algo-
rithms, namely AdaBoost, SBB-GP and C4.5, for classifying
VoIP traffic in particular Gtalk and Skype traffic from a given
traffic file. In this case, the classification based approach is
employed with flow attributes.

In our experiments, the C4.5 based classifier can achieve a
≈99% DR and less than ≈1% FPR at its best test performance
using the flow based feature set to detect Gtalk and Skype
traffic. It should be noted again that in this work, automat-
ically identifying VoIP traffic from a given network trace is
performed without using any payload, IP addresses or port
numbers. Thus, the automatic rules, i.e. solutions, generated
by C4.5 are robust generic signatures as well as being easy to
understand.

To the best of our knowledge, there is no publicly available
data set that includes Gtalk traffic. Thus, we generated our own
Gtalk traffic traces for this research. To make the training and

test data sets as realistic as possible, we included other VoIP
(Skype, Yahoo, Primus) data as well as other encrypted data
(SSH, Skype, Yahoo with Zfone). Moreover, we have included
other well-known TCP and UDP based applications in our
traffic traces. In summary, we believe that our experimental
results show a very promising performance for our classifiers
to identify and differentiate VoIP traffic from other encrypted
or non-encrypted traffic.

Future work will follow similar lines to perform more
tests on different and larger data sets in order to continue to
evaluate the robustness of the proposed approach. Moreover,
as a next step, we aim to train and evaluate classifiers for other
encrypted applications.
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