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Abstract: The use of encrypted traffic combined with
non-standard port associations makes the task of traffic
identification increasingly difficult. This work benchmarks
the performance of five unsupervised clustering algorithms:
Basic K-Means, Semi-supervised K-Means, DBSCAN, EM, and
MOGA for encrypted traffic identification, specifically SSH.
Results show that the performance of MOGA, a multi objective
clustering approach using a Genetic Algorithm, is not only
better than the others, but also provides a good trade off in
terms of detection rate, false positive rate, and time to built and
run the model. This is a very desirable property for a potential
implementation of an encrypted traffic identification system.

Keywords: Unsupervised Machine Learning, Clustering Al-
gorithms, Genetic Algorithms, K-Means, DBSCAN, EM,
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1. Introduction

An important part of network management requires the ac-
curate identification and classification of network traffic [3],
[2]. Network administrators are normally interested in iden-
tifying application types for decisions regarding both band-
width management and quality of service [2]. A particularly
interesting area in network traffic identification pertains to
encrypted traffic, where the fact that the payload is encrypted
represents an additional degree of uncertainty. Specifically,
many traditional approaches to traffic classification rely on
payload inspection, which becomes unfeasible under packet
encryption. An alternative to payload inspection would be
the use of port numbers to identify application types. How-
ever, this practice has become increasingly inaccurate, as
users are now able to arbitrarily change the port number to
deceive security mechanisms. In short, the traditional ap-
proaches are unable to deal with the identification of en-

crypted traffic.
In this work we benchmark several unsupervised learning

algorithms in the identification of encrypted traffic, where
Secure Shell (SSH) is chosen as an example encrypted ap-
plication. While SSH is typically used to remotely access a
computer, it can also be utilized for “tunneling, file transfers
and forwarding arbitrary TCP ports over a secure channel be-
tween a local and a remote computer” [2]. These properties
of SSH make it an interesting encrypted application to fo-
cus on, given that it shows similar behavior like popular en-
crypted applications such as Skype. However, unlike Skype,
SSH is an open source protocol. This ensures that the ground
truth is known regarding the traffic tested. From the traffic
identification perspective we benchmark four unsupervised
clustering techniques: basic K-Means, semi-supervised K-
Means, DBSCAN, and EM; and compare the results with a
Multi-Objective Genetic Algorithm (MOGA) that is used for
the dual identification of appropriate (flow) feature subspace
and clustering of traffic types. We first proposed the use of
MOGA in [4], and it assumes that the resulting clusters par-
tition traffic into encrypted/not encrypted. Results show that
MOGA provides 93.5% detection rate and 0.7% false posi-
tive rate with very fast building and running times, outper-
forming all the other models here presented.

2. Previous Work

Given the limitations of port number analysis and payload
inspection, several previous attempts to identify encrypted
traffic have worked with statistics based on flows. A number
of these attempts have employed supervised learning meth-
ods. However, these classifiers have uncertain generalization
properties when faced with new data. One alternative to clas-
sifiers is the use of clustering mechanisms or unsupervised
learning methods. The following is an analysis of previous
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work with unsupervised methods.
McGregor et al. [16] presented an unsupervised approach

using Expectation Maximization (EM) clustering to classify
network traffic represented by a set of flow attributes. At-
tributes that did not have an impact on the classification were
removed. Using the Auckland VI trace they observed that
the clustering showed some capabilities in grouping flows to-
gether by traffic type, but that more work needed to be done
to derive better features to increase their performance.

Zander et al. [22] also proposed traffic identification
by using an unsupervised machine learning technique (au-
toclass). They employed the Auckland VI data set, and the
NZIX-II and Leiozig traces. The feature selection was based
on a sequential forward selection. The quality of the result-
ing classes was evaluated in terms of intra-class homogene-
ity, aiming to achieve good separation between different ap-
plications. They were able to achieve an average accuracy
across all traces of 86.5%.

Bernaille et al. [6] proposed an unsupervised clustering
(K-means) online approach, based solely on the packet size
of the first p packets. The best results were obtained with
the first 5 packets, being able to correctly classify more than
80% of the flows of almost all of the tested applications. The
authors did mention, however, that this approach is sensitive
to the arrival order of the packets.

Erman et al. [8] compared an unsupervised approach us-
ing an Expectation Maximization (EM) based clustering al-
gorithm (AutoClass), against a supervised approach that used
a Naive Bayes Classifier. Both methods were tested on sub-
sets of the traces Auckland IV and Auckland VI. Their results
showed that the unsupervised technique had an accuracy of
up to 91%, outperforming the supervised technique by up
to 9%. Furthermore, they found that the unsupervised tech-
nique was also able to discover traffic from previously un-
known applications. In [7], they presented an evaluation of
three clustering algorithms: K-Means, DBSCAN and Auto-
Class. The authors used two datasets, one of them (Auckland
IV) containing DNS, FTP, HTTP, IRC, LimeWire, NNTP,
POP3, and SOCKS; and the other (Calgary trace), contain-
ing HTTP, P2P, SMTP, and POP3. The authors found that
with K-Means the overall accuracy steadily improved as the
number of clusters was increased. This continued until K was
around 100 with the overall accuracy being 79% and 84% on
each data set respectively. Thus, from their results they ob-
served that K-Means seemed to provide the best mix of prop-
erties. Then in [9], they presented a semi-supervised classi-
fication technique. The proposed model achieved high flow
and byte accuracy (greater than 90%), with some labelled
flows and many unlabeled flows. The authors employed a
K-Means algorithm, and the employed traces were collected
from the University of Calgary Internet link.

Siqueira Junior et al. [12] focused on P2P traffic, present-
ing an unsupervised approach in which 249 features were
analyzed, including statistics about the length of the pack-
ets and time between the packets. The feature selection was
based on the Ratio F, which use a ratio of two estimates, “di-
viding the variance mean of intra-group elements” and “the

mean variance of inter-group elements”. They were able to
achieve 86.12% in trust, and 96.79% in accuracy. It is impor-
tant to notice, however, that the Port server was included as
one of the selected features.

Yingqiu et al. also presented a flow based clustering ap-
proach, using K-Means to build the clusters with features
previously identified as the best discriminators [21]. To this
end, several feature selection and search techniques were per-
formed. The authors applied a log transformation that en-
abled them to reach an overall accuracy level of up to 90%
when utilizing K= 80 clusters. The authors concluded this
was a very promising approach for TCP classification.

Yang et al. [20] applied a DBSCAN clustering algorithm,
using 5 flow features. Feature selection was based on the
effect that different features have on the classification accu-
racy, i.e., a wrapper methodology. They were able to achieve
an accuracy of about 87%.

Maiolini et al [15] presented an online K-Means based
classifier, analyzing statistical features of the first packets of
each connection, such as arrival times, directions and lengths.
They focused on identifying applications like HTTP, FTP,
POP3, and SSH. Using locally captured and locally gener-
ated traffic they were able to achieve an average detection
rate of up to 95.4%.

To the best of our knowledge, this is the first work that
benchmarks a genetic algorithm for the dual problem of fea-
ture selection and clustering, and to investigate the perfor-
mance of several of the aforementioned unsupervised learn-
ing techniques for encrypted traffic identification.

3. Methodology

In this section we first characterize the data used for training
and testing. This is followed by a description of the process
of generating flows from the data source. We then explain the
four clustering techniques to be evaluated: basic K-Means,
semi-supervised K-Means, DBSCAN, and EM; and we fin-
ish with a description of our proposed model: MOGA for
combined feature subspace selection and clustering.

3.1 Data Set

The data set used was captured by the Dalhousie University
Computing and Information Services Centre (UCIS) in Jan-
uary 2007 on the campus network between the university and
the commercial Internet. Given the privacy related issues the
university may face, the data was filtered to scramble the IP
addresses and each packet was further truncated to the end
of the IP header so that all the payload was excluded. Fur-
thermore, the checksums were set to zero since they could
conceivably leak information from short packets. However,
any length information in the packet was left intact. Dal-
housie traces were labeled by a commercial classification
tool called PacketShaper, i.e., a deep packet analyzer [18].
PacketShaper uses Layer 7 filters (L7) to classify the appli-
cations. Given that the handshake part of SSH protocol is not
encrypted, we can confidently assume that the labeling of the
data set is 100% accurate and provides the ground truth for



our data set. We emphasize that our work did not consider
any information from the handshake phase nor any part of
the payload, IP addresses or port numbers. The handshake
phase was used solely to obtain the ground truth to which
we compare our obtained results. Also, we focus on SSH as
a case study, we could have employed any other encrypted
traffic protocol. However, the fact that the SSH’s handshake
is not encrypted, allowed us to compare our obtained results
with those obtained through payload inspection. In order to
build training data we sampled the data set. The training data
for all the clustering algorithms, unless stated otherwise, con-
sisted of 12250 flows, including SSH, MSN, HTTP, FTP, and
DNS. The test data, on the other hand, was the entire data
set (more than 18,500,000 flows) and consisted of flows of
each of those applications, plus flows that belonged to any of
the following applications: RMCP, Oracle SQL*NET, NPP,
POP3, NETBIOS Name Service, IMAP, SNMP, LDAP, NCP,
RTSP, IMAPS and POP3S.

3.2 Flow Generation

Flows are defined by sequences of packets that present the
same values for source IP address, destination IP address,
source port, destination port and type of protocol. Each flow
is described by a set of statistical features and associated fea-
ture values. A feature is a descriptive statistic that can be cal-
culated from one or more packets. We used the NetMate [17]
tool set to process data sets, generate flows, and compute fea-
ture values. In total, 38 features were obtained from NetMate
(Table 1). Flows are bidirectional with the first packet deter-
mining the forward direction. Since flows are of limited du-
ration, in this work UDP flows are terminated by a flow time-
out, and TCP flows are terminated upon proper connection
teardown or by a flow timeout, whichever occurs first. A 600
second flow timeout value was employed here; where this
corresponds to the IETF Realtime Traffic Flow Measurement
working groups architecture [11]. It is important to mention
that only UDP and TCP flows are considered. Specifically,
flows that have no less than one packet in each direction, and
transport no less than one byte of payload. Payload data and
features like IP addresses and source/destination port num-
bers were excluded from the feature set to ensure that the
results were not dependent on such biases.

In this work, we employed the same features used in
[9] for the basic K-Means, semi-supervised K-Means, DB-
SCAN, and EM algorithms, Table 2. For the MOGA, on the
other hand, we employed all the 38 original features for it
to select the most appropriate ones during the training phase,
Table 1. In order to reproduce the features employed in [9]
we modified the netai flowstats.c module of NetMate, orig-
inally used to obtained the aforementioned 38 features em-
ployed by MOGA. The reason we employed the exact same
features as in [9] was to accurately reproduce the methodol-
ogy described in that paper.

Table 1: Features obtained from Netmate
ind. Feature Name Abreviation

1 protocol (tcp, udp) proto
2 total forward packets total fpackets
3 total forward volume total fvolume
4 total backward packets total bpackets
5 total backward volume total bvolume
6 min forward packet length min fpktl
7 mean forward packet length mean fpktl
8 max forward packet length max fpktl
9 std dev forward packet length std fpktl

10 min backward packet length min bpktl
11 mean backward packet length mean bpktl
12 max backward packet length max bpktl
13 std dev backward packet length std bpktl
14 min forward inter arrival time min fiat
15 mean forward inter arrival time mean fiat
16 max forward inter arrival time max fiat
17 std dev forward inter arrival time std fiat
18 min backward inter arrival time min biat
19 mean backward inter arrival time mean biat
20 max backward inter arrival time max biat
21 std dev backward inter arrival time std biat
22 duration of the flow duration
23 min active min active
24 mean active mean active
25 max active max active
26 std dev active std active
27 min idle min idle
28 mean idle mean idle
29 max idle max idle
30 std dev idle std idle
31 sub flow forward packets sflow fpackets
32 sub flow forward bytes sflow fbytes
33 sub flow backward packets sflow bpackets
34 sub flow backward bytes sflow bbytes
35 forward push counter fpsh cnt
36 backward push counter bpsh cnt
37 forward urg counter furg cnt
38 backward urg counter burg cnt

Table 2: Features for Clustering Algorithms
Total Number of Packets= fpackets+bpackets
Total Caller to Calle Payload Bytes= fvolume-fhlen
Total Bytes= fvolume+bvolume
Total Caller to Callee Header Bytes= fhlen
Total Header (Transport + Network Layer)= fhlen+bhlen
Number of Callee to Caller Packets= bpacket
Average Packet Size= (fpktl + bpktl)/(fpackets + bpackets)
Total Callee to Caller Payload Bytes= bvolume-bhlen
Number of Caller to Callee Packets= fpacket
Total Callee to Caller Header Bytes= bhlen
Total Caller to Callee Bytes= fvolume

3.3 Unsupervised Learning Algorithms

The use of clustering algorithms for traffic classification is
normally done in two phases. The first phase consists of
training the model with a relatively small set of data (training
data), and the second phase consists of using the trained
model to classify unknown traffic. During the training phase,
the training data is used to build clusters based on some
criteria of similarity, which will ideally separate the data
into similar clusters (groups). The resulting clusters need



then to be labelled, which is normally based on the class of
the majority of the flows in each cluster. The second phase
consist of assigning a class to the flows to be identified,
depending on the label of the cluster that each flow is more
similar to. For the experiments presented here, this criteria
of similarity will be the Euclidean distance, defined by:

d(p, q) =

√√√√
n∑

i=0

(pi− qi)2

The three clustering algorithms selected for this work are
K-Means, DBSCAN, and EM. The selection of these algo-
rithms is based in part on the work of Erman et al. in [7],
in which the authors made a similar comparison. Further-
more, we also compared these systems to a semi-supervised
method proposed in [9]. Then, we compare the performance
of all these algorithms to the performance of the MOGA we
first proposed in [4]. The following subsections give a brief
explanation of these algorithms, more details can be found
in [7] and [9]. For the implementations of these algorithms
we used the K-Mean, DBSCAN, and EM provided by Weka
[19].

3.3.1 K-Means

K-Means clustering is a method of unsupervised learning that
aims to partition n observations into K clusters, in which each
observation belongs to the cluster with the nearest mean. Er-
man et al. observed in their experiments that one of the main
advantages of the K-Means algorithm over other clustering
algorithms was the resulting clusters tended to be mainly of
a single application type [7]. In our experiment we tested
several values of K (20, 40, 60, 80, 100, 200, 300, 400), and
selected the best result to be compared with the other models.
A more detailed explanation of the algorithm can be found in
[1].

3.3.2 Semi-supervised K-Means

We followed the semi-supervised approach proposed in [9],
in which high detection rates are achieved by labeling the re-
sulting clusters with only a small fraction of the training data
labeled. For this semi-supervised approach, we first trained
the model with only 5% of the original training data labelled,
using a K-Means clustering algorithm. Then, we labeled the
clusters post training, using only that 5% of the flows, 613
out of 12250. We also trained with larger data sets consist-
ing of 32000 flows, with 80, 800, and 8000 of them labeled.
Following the work in [9], the K number of clusters was set
to 400. In all of these experiments the total number of SSH
flows was 6000, so that we had a base point of comparison
with the other methods presented. In addition, we also eval-
uated the effectiveness of the weighted sampling approach
proposed in [9]. We generated a 3602 flows training data,
out of which only 180 flows were labeled. For this approach
we selected 50% of the flows from below, and 50% of the

flows above the 95th percentile of the flow transfer size of
our original training data (12250 flows).

3.3.3 DBSCAN

DBSCAN [10] is a density based algorithm, so it regards
“clusters as dense areas of objects that are separated by
less dense areas” [7]. The main advantage of this algo-
rithms is that unlike K-Means, it is not limited to “spherical
shaped clusters but can find clusters of arbitrary shapes” [7].
The DBSCAN algorithm takes two input parameters, epsilon
(eps) and the number of minimum points (minPts). minPts is
the minimum required points to form a core object, and eps
is the distance between two objects to be considered “eps-
neighbors”. DBSCAN does not take as an input the number
of clusters to generate, it finds the optimum number of clus-
ters based on the minPts and eps. Also, unlike K-means and
EM, if an object is not part of an existing cluster it is consid-
ered noise [7]. Yang et al. provide a complete description of
DBSCAN in [20].

3.3.4 EM

The Expectation Maximization algorithm works with the
probabilities of each instance belonging to each cluster [19].
The algorithm has two phases, an expectation phase and a
maximization phase. The parameters used by the algorithm
that “govern the distinct probability distribution of each clus-
ter” [7] are estimated during the expectation phase, and are
continually re-estimated during the maximization phase [7].
A more detailed explanation of the algorithm can be found in
[1].

3.4 Proposed Algorithm: Use of MOGA

In this section we provide a detailed explanation of the
MOGA for combined feature subspace selection and cluster-
ing. We also describe the post-training phase, used to deter-
mine which of a Pareto front of non-dominated solutions is
selected as the best individual and final solution. The entire
process is outlined in Figures 1 and 2.

3.4.1 Feature Selection

Feature selection is “the process of choosing a subset of the
original predictive variables by eliminating redundant and
uninformative ones” [13]. By using a smaller number of fea-
tures we save significant computing time, and “often build
models that generalize better to unseen points” [13]. In this
work we took the framework for feature selection proposed
by Kim et al. [13], but adapted its evolutionary component to
follow the model proposed by Kumar et al. [14]. The latter
ensures a convergence towards the Pareto front (set of non-
dominated solutions) without any complex sharing/niching
mechanism. One specific property of this Genetic Algorithm
(GA) is the utility of a steady-state GA, thus, only two mem-
bers of the population are replaced at a time, Figure 2.



Figure. 1: System Diagram

3.4.2 GA for Feature Selection and Clustering

A GA starts with a population of individuals (potential so-
lutions to a problem), and incrementally evolves that pop-
ulation into better individuals, as established by the fitness
criteria. Fitness is naturally relative to the population. Then,
for several iterations, individuals are selected to be combined
(crossover) to create new individuals (offspring) under a fit-
ness proportional selection operator. In order to model the
problem of feature selection to the GA, each individual in the
population represents a subset of features f and a number of
clusters K. Specifically, an individual is a 60 bit binary string
(100 bit string for our second set of experiments), where bits
between the first bit and the 38th bit represent the features
to include, and the remaining 21 bits represent the K number
of clusters (remaining 61 for the second set of experiments).
The zeroth bit is related to the port number so it is always
ignored. Bits of the individuals in the initial population are
initialized with a uniform probability distribution. For fea-
ture selection, a “one” means to include the feature at that
index (from Table 1), and a “zero” ignores the feature. The
K number of clusters, on the other hand, is represented by
the number of “ones” (as opposed to “zeros”) contained be-
tween the 39th bit and the 59th bit (between the 39th bit and
the 99th bit for second set of experiments). Clusters are iden-
tified using the standard K-means algorithm, using the f sub-
set of features, and the K number of clusters as the inputs for
the algorithm. Like on the previously discussed algorithms,
we used the K-means algorithm provided by Weka [19]. The
fitness of the individual will then depend on how well the
resulting clusters perform in relation to the following four
predefined clustering objectives:

1. Fwithin: Measures cluster cohesiveness, the more co-
hesive the better. For this purpose the average standard
deviation per cluster is assumed. That is, the sum of the
standard deviations per feature over the total number of
employed features. Then Fwithin will be the number of
clusters in a solution, K, over the sum of all the clusters’
average standards.

Figure. 2: Evolutionary Component Diagram

2. Fbetween: Measures how separate the clusters are from
each other, the more separated the better. For each pair
of clusters i and j, we calculate their average standard
deviations and we also calculate the euclidean distance
between their centroids. Then, Fbetween for clusters i
and j is:

Fbetween(i, j) =
EuclideanDistanceFrom i to j√

(AveStdevi)2 + (AveStdevj)2

Thus, Fbetween will be the sum of all pairs of cluster’s
Fbetween(i,j), over K.

3. Fclusters: Measures the number of clusters K, “Other
things being equal, fewer clusters make the model more
understandable and avoid possible over fitting” [13].

Fclusters = 1− K −Kmin

Kmax−Kmin

Kmax and Kmin are the maximum and minimum num-
ber of clusters.

4. Fcomplexity: Measures the amount of features used to
cluster the data, this objective aims at minimizing the
number of selected features.

Fcomplexity = 1− d− 1
D − 1

D is the dimensionality of the whole dataset and d is
the number of employed features.

Instead of combining these objectives into a single objec-
tive, this model followed a multi-objective approach, which



has the goal to approximate to the Pareto front, or set of non-
dominated solutions. Informally, a solution is said to domi-
nate another if it has higher values in at least one of the objec-
tive functions (Fwithin, Fbetween, Fclusters, Fcomplexity),
and is at least as good in all the others. After the objective
values for each individual have been assessed, individuals
are assigned with ranks, which indicate how many individu-
als dominate that particular individual. Thus, the fitness of
the individuals is inversely proportional to their ranks, which
is used to build a roulette wheel that is ultimately used for
parental selection.

The population is evolved for 5000 epochs, after which
we identify the set of non-dominated individuals (individu-
als whose ranks equal to 1). These individuals correspond to
the set of potential solutions. The evolutionary component of
the algorithm is then terminated and the best individual in the
set of non-dominated solutions (the one that better identifies
SSH traffic) is identified in the post-training phase. We take
each individual from the set of non-dominated solutions, ap-
ply K-Means with its proposed set of features f and number
of clusters K, and label its clusters as SSH or non-SSH. If
the majority of the flows in a cluster have SSH labels, then
that cluster is labeled as SSH, otherwise it is labeled as non-
SSH. The post-training phase is then entered and consists of
testing each of the non-dominated individual in our training
data (used to build the clusters on), to identify the solution
with best classification rates. The entire system is displayed
in Figure 1, and its evolutionary component in Figure 2.

4. Experiments and Results

In traffic classification, two metrics are typically used to
quantify performance: Detection Rate (DR) and False
Positive Rate (FPR). In this case, DR will reflect the number
of SSH flows correctly classified, and FPR will reflect the
number of non-SSH flows incorrectly classified as SSH.
Given that the encrypted traffic only forms a few percent of
the traffic in real life, false positive rates are a very important
performance indicator on such heavily unbalanced data sets.
As we can observe, a high DR and a low FPR would be the
desired outcomes.

DR = 1− #false negatives

total number of SSH flows

FPR =
#false positives

total number of non SSH flows

Where false negatives means SSH traffic incorrectly
classified as non-SSH traffic, and false positives means
non-SSH traffic incorrectly classified as SSH traffic.

4.1 K-Means Results

For the basic K-Means algorithm we tried values of K from
20 to 400 (Table 3). The best combination of DR and FPR
was obtained with K = 100, which achieved a DR of 98% and
a FPR of 11%.

Table 3: K-Means Results
Number of clusters DR FPR

20 90% 13%
40 94% 11%
60 97% 11%
80 97% 11%

100 98% 11%
200 98% 15%
300 98% 15%
400 98% 15%

4.2 Semi-supervised K-Means Results

For the semi-supervised model proposed in [9], we first test
with the same training data (12250 flows), with K= 400 (as
done in [9]), but only considering the labels of 5% (613) of
the flows when labeling the clusters. The DR for that exper-
iment was 90.1% and the FPR was 0%. Then we expanded
the training data to 32,000 flows, considering the labels of 80,
800, and 8000 of the flows when labeling the clusters (Table
4). The highest DR, 98.9%, was achieved with 8000 labelled
flows. However, the FPR was 19%, which is much higher
than the other results. Thus, the best combination of DR and
FPR was achieved with only 800 of the flows labelled, which
gives a DR of 92.0% with a 0% FPR. Also, in evaluating
the effectiveness of the weighted sampling approach, we ob-
tained a DR of 90% and FPR of 0%, which is the same we
obtained without the weighted sampling method. However,
with the weighted sample approach the training data con-
sisted of only 3602 flows, with 180 of them labeled. Thus,
from these results we can observe that the weighted sam-
ple approach achieves good results with a very small training
data.

Table 4: Semi-Supervised Results
Number of clusters # labelled flows DR FPR

400 80 90.8% 0%
400 800 92.0% 0%
400 8000 98.9% 19%

4.3 DBSCAN Results

The results obtained with DBSCAN are displayed in Figure
3. The y axis represent the detection rate and the x axis repre-
sent the eps. We experimented with several values for minPts
(3, 6, 9, 12) and with several values for eps (0.01, 0.02, 0.04,
0.06, 0.08). The best results were achieved with minPts= 3
and eps= 0.02, with a DR of 47.4% and FPR of 47%.



Figure. 3: DBSCAN Results

4.4 EM Results

For the EM algorithm we tried with the number of clusters
between 100 and 400 (Table 5). The best results are achieved
with the number of clusters being 400, which gives a high
DR, 96.4%, while at the same time keeping the FPR rela-
tively low, 5%.

Table 5: EM Results
Number of clusters DR FPR

100 93.8% 7.9%
200 95.8% 7.6%
300 97.5% 10.6%
400 96.4% 5.0%

4.5 MOGA Results

The MOGA was run in two sets of experiments, of 25 runs
each. In the first set of experiments the length of the individ-
uals in the population was 60, which allowed the individuals
to cluster with a minimum K of 2, and a maximum K of 23.
In the second set of experiments the length of the individ-
uals was 100, allowing the K number of clusters to be up
to 63. The first set of experiments generated a total of 1173
non-dominated individuals and the second set of experiments
generated a total of 869 non-dominated individuals. Out of
those individuals, we identified in the post-training phase the
ones that had the lowest FPR (under 1%) and the highest
DR. We considered those individuals to be our final solutions.
Figures 4 and 5 display the plot of the candidate solutions in
the post-training phase for both sets of experiments. The x-
axis represents the FPR and the y-axis represents the DR. The
best individual in the first set of experiments, which is repre-
sented by a larger black square instead of a gray diamond in
Figure 4, achieved a DR of 94.9% and a FPR of 0.9% in the
post training phase. That same individual achieved a DR of
90.9% and a FPR of 1.5% in the test data (Table 6). This fi-
nal solution employed 22 out of the 38 available features, and
clustered the data into 10 clusters. The best individual in the
second set of experiments, which is represented by a larger
black square instead of a gray diamond in Figure 5, achieved
a DR of 95.8% and a FPR of 0.8% in the post training phase.
That same individual achieved a DR of 93.5% and a FPR
rate of 0.7% in the test data (Table 6). This final solution em-

Figure. 4: Non-dominated individuals length 60.

Figure. 5: Non-dominated individuals length 100.

Table 6: MOGA Results
Number of clusters DR FPR

10 90.9% 1.5%
36 93.5% 0.7%

ployed 18 out of the 38 available features, and clustered the
data into 36 clusters. Thus, these solutions not only achieved
superior results in terms of DR and FPR, but also consider-
ably decreased the number of employed features, and clus-
tered the data in a relatively low number of clusters, both
very desirable outcomes. For details about the features most
frequently selected by the resulting non-dominated individu-
als of this MOGA the reader should refer to [5]

4.6 Time Analysis

One clear advantage of being able to obtain a high DR and
a low FPR with a low number of features and a low number



of clusters is the time involved in both, building the models,
and testing the data. We measured the building time and the
test time for all the models here described (Table 7). Specif-
ically, we measured the algorithms with the parameters that
produced the best results in our previously described exper-
iments. Thus, for the K-Means algorithm we employed K=
100, and for the semi-supervised K-Means we employed K=
400. It should be noted that in the case of the semi-supervised
K-Means the training data was about three times larger than
with the other algorithms (32,000 flows). For the DBSCAN
algorithm we employed eps= 0.02 and minPts 3, and for the
EM algorithm we employed K= 400. For the MOGA, we
tested the two individuals that were selected as the best in-
dividuals in each of the two conducted sets of experiments.
These results show a considerable advantage of the MOGA
over all the other algorithms, except DBSCAN. However,
the DR obtained with DBSCAN was much lower. We con-
ducted these experiments on a standard PC with an Intel(R)
Core(TM) 2 Duo CPU T6400@ 2.00 GHz, with 4 GB of
memory.

Table 7: Time Results
Algorithm # clusters Build time Test time
K-Means 100 00:02:19 00:49:29
K-Means (semi-sup.) 400 00:22:32 03:07:55
DBSCAN (mP.=3) 36 00:04:30 00:05:43
EM 400 00:37:01 03:54:15
MOGA (ind 60) 10 00:00:11 00:18:09
MOGA (ind 100) 36 00:01:55 00:35:10

5. Conclusions

In this work we compared the performance of basic K-
Means, semi-supervised K-Means, DBSCAN, EM, and
MOGA, to identify encrypted traffic, specifically SSH. Re-
sults show that the MOGA obtained better performance in
terms of combined DR, FPR, and computatinoal cost (mea-
sured in CPU time). The MOGA also clustered the data with
a very small value of K, which is very desirable for a poten-
tial implementation of an encrypted traffic detection system.

In this case, MOGA’s best individual achieved a detection
rate of 93.5% and a false positive rate of 0.7%, whereas it em-
ployed only 18 out of the 38 available features and clustered
the data in only 36 clusters. The fact that MOGA was able
to cluster the data with a much smaller number of clusters,
provided a noticeable advantage over the other presented al-
gorithms in terms of the amount of time needed to both build-
ing the models and testing/running them on real life data
sets. With regards to the semi-supervised model proposed
by Erman et al. in [9], we observed that the weighting sam-
pling method could achieve good results with a very small
training data. Thus, for future work, we are interested in
employing MOGA under a semi-supervised context with a
weighted sampling method. Moreover, we also aim to apply
this methodology to other types of encrypted traffic such as
Skype.
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