
A Lightweight Algorithm for Message Type

Extraction in Event Logs ∗

Adetokunbo Makanju, A. Nur Zincir-Heywood, Evangelos E. Milios
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia

B3H 1W5
Canada

{makanju, zincir, eem}@cs.dal.ca

June 26, 2009

Abstract

Message type or message cluster extraction is an important task in
automatic application log analysis. When the message types that exist
in a log file are defined, they form the basis for carrying out other auto-
matic application log analysis tasks. In this paper we introduce a novel
algorithm for carrying out this task. IPLoM, which stands for Iterative
Partitioning Log Mining, works through a 4-step process. The first 3 steps
hierarchically partition the event log into groups of event log messages or
event clusters. In its 4th and final stage IPLoM produces a message type
description or line format for each of the message clusters. IPLoM is able
to find clusters in data irrespective of the frequency of its instances in
the data, it scales gracefully in face of long message type patterns and
produces message type descriptions at a level of abstraction which is pre-
ferred by a human observer. Evaluations show that IPLoM outperforms
similar algorithms statistically significantly.

1 Introduction

The goal of autonomic computing as espoused by IBM’s senior vice president of
research, Paul Horn in March 2001 can be defined as the goal of building self-
managing computing systems [1]. The four key concepts of self-management in
autonomic computing are self-configuration, self-optimization, self-healing and

∗Preliminary results and a summary description of the algorithms in this paper were pre-
sented in A. Makanju et. al., Clustering Event Logs Using Iterative Partitioning.
Published in the Proceedings of the 15th ACM Conference on Knowledge Discovery and Data
Mining. June 28th - July 1st 2009. Paris, France.

1

self-protection. Given the increasing complexity of computing infrastructure
which is stretching the human capability to manage it to its limits, the goal of
autonomic computing is a desirable one. However, it is a long term goal which
must first start with the building of computing systems which can automatically
gather and analyze information about their states to support decisions made by
human administrators [1].

Event logs generated by applications that run on a system consist of sev-
eral independent lines of text data, which contain information that pertains
to events that occur within a system. This makes them an important source
of information to system administrators in fault management which is a cor-
nerstone for self-healing, and intrusion detection and prevention, which is an
important cornerstone for self-protection. Therefore as we move toward the
goal of building systems that are capable of self-healing and self-protection, an
important step would be to build systems that are capable of automatically an-
alyzing the contents of their log files to provide useful information to the system
administrators.

A basic task in automatic analysis of log files is message type or event clus-
ter extraction [2, 3, 4, 5, 6]. Extraction of message types makes it possible to
abstract the contents of event logs and facilitates further analysis and the build-
ing of computational models. Message type descriptions are the templates on
which the individual messages in any event log are built. For example, this line
of code:
sprintf(message, Connection from %s port %d, ipaddress, portnumber);
in a C program could produce the following log entries:
“Connection from 192.168.10.6 port 25”
“Connection from 192.168.10.6 port 80”
“Connection from 192.168.10.7 port 25”
“Connection from 192.168.10.8 port 21”.

These four log entries would form a cluster or event type in the event log
and can be represented by the message type description (or line format):
“Connection from * port *”.
The wild-cards “*” represent message variables. We will adopt this cluster
representation in the rest of our work. The goal of message type mining is to
find the message type representations of the message clusters that exist in a
log file. So far techniques for automatically mining these line patterns from
event logs have been based on the Apriori algorithm [7] for frequent itemsets
from data, e.g. SLCT (Simple Log File Clustering Tool) [8] and Loghound [9],
or other line pattern discovery techniques like Teiresias [10] designed for other
domains [5].

In this paper we introduce IPLoM (Iterative Partitioning Log Mining), a
novel algorithm for the mining of event type patterns from event logs. IPLoM
works through a 3-Step partitioning process, which partitions a log file into its
respective clusters. In a fourth and final stage the algorithm produces a cluster
description for each leaf partition of the log file. These cluster descriptions then
become event type patterns discovered by the algorithm. IPLoM is able to find
clusters in data irrespective of the frequency of its instances in the data, it scales

2

gracefully in face of long message type patterns and it produces message type
descriptions at a level of abstraction which is preferred by a human observer.
In our experiments we compared the outputs of IPLoM, SLCT, Loghound and
Teiresias on 7 different event log files, against message types produced manually
on the event log files by our faculty’s tech support group. Results demonstrate
that IPLoM consistently outperforms the other algorithms on similar tasks.

The rest of this paper is organized as follows: section 2 discusses previous
work in event type pattern mining and categorization. Section 3 outlines the
proposed algorithm and the methodology to evaluate its performance. Section
4 describes the results whereas section 5 presents the conclusion and the future
work.

2 Background and Previous Work

2.1 Definitions

We begin this section by first defining some of the terminology used in this
paper.

• Event Log: A text based audit trail of events that occur within the
system or application processes on a computer system. The lines in Fig.
1 shows examples of the contents of an event log.

• Event: An independent line of text within an event log which details
a single occurrence on the system. An event typically contains not only
a message but other other fields of information like a Date, Source and
Tag e.g as defined in the syslog RFC (Request for Comment) [11]. For
message type extraction we are only interested in the message field of
the event. This is why events are sometimes referred to in literature as
messages or transactions. In Fig. 1 each individual line represents an
event. The first five fields (delimited by whitespace) in each line represent
the Date, Source, Message Type, Facility and Severity of each event. The
remainder parts of the event represent the free-form message that we are
interested in.

• Token: A single word delimited by white space within the message field
of an event. For example in the first line of Fig. 1, the words instruction,
cache, parity, error and corrected are tokens in that message.

• Event Size: The number of individual tokens in the message field of an
event. The first line of Fig. 1 has an event size of 5, while the third line
has an event size of 2.

• Event Cluster/Message Type: These are message fields of entries
within an event log produced by the same print statement. Consecutive
pairs of lines in Fig. 1 belong to the same event cluster.

3

1 ! untitled 3 ! 2009-06-22 15:57 ! Tokunbo Makanju

2005-06-03-15.42.50.823719 R02-M1-N0-C:J12-U11 RAS KERNEL INFO instruction cache parity error corrected

2005-06-03-15.42.50.982731 R02-M1-N0-C:J12-U11 RAS KERNEL INFO instruction cache parity error corrected

2005-06-06-22.41.37.357738 R20-M0-NA-C:J15-U11 RAS KERNEL INFO generating core.3740

2005-06-06-22.41.37.392258 R20-M0-NA-C:J17-U11 RAS KERNEL INFO generating core.3612

2005-06-11-19.20.25.104537 R30-M0-N9-C:J16-U01 RAS KERNEL FATAL data TLB error interrupt

2005-06-11-19.20.25.393590 R30-M0-N9-C:J16-U01 RAS KERNEL FATAL data TLB error interrupt

2005-07-01-17.52.23.557949 R22-M0-NA-C:J05-U01 RAS KERNEL INFO 458720 double-hummer alignment exceptions

2005-07-01-17.52.23.584839 R22-M0-NA-C:J03-U01 RAS KERNEL INFO 458720 double-hummer alignment exceptions

Figure 1: An example application event log file.

• Cluster Description/Message Type Description/Line Format: A
textual template containing wild-cards which represents all members of
an event cluster. The message in the 3rd and 4th lines of Fig. 1 have a
cluster description of “generating *”.

• Constant Token: A token within the message field of an event which
is not represented by a wild-card value in its associated message type
description. The token generating in the 3rd line of Fig. 1 is a constant
token.

• Variable Token: A token within the message field of an event which is
represented by a wild-card value in its associated message type description.
The token core.3740 in the 3rd line of Fig. 1 is a variable token.

2.2 Previous Work

Data clustering as a technique in data mining or machine learning is a process
whereby entities are sorted into groups called clusters, where members of each
cluster are similar to each other and dissimilar from members of other groups.
Clustering can be useful in the interpretation and classification of large data-
sets, which may be overwhelming to analyze manually. Clustering therefore can
be a useful first step in the automatic analysis of event logs.

If each textual line in an event log is considered a data point and its individ-
ual words considered attributes, then the clustering task reduces to one in which
similar log messages are grouped together. For example the log entry Command
has completed successfully can be considered a 4-dimensional data point with
the following attributes “Command”, “has”, “completed”, “successfully”. How-
ever, as stated in [8], traditional clustering algorithms are not suitable for event
logs for the following reasons:

1. The event lines do not have a fixed number of attributes.

2. The data point attributes i.e. the individual words or tokens on each line,
are categorical. Most conventional clustering algorithms are designed for
numerical attributes.

3. Traditional clustering algorithms also tend to ignore the order of at-
tributes. In event logs the attribute order is important.

While several algorithms like CLIQUE [12], CURE [13] and MAFIA [14]
have been designed for clustering high dimensional data, these algorithms are

4

still not quite suitable for log files because an algorithm suitable for clustering
event logs needs to not just be able to deal with high dimensional data, it also
needs to be able to deal with data with different attribute types[8, 15].

For these reasons several algorithms and techniques for automatic clustering
and/or categorization of log files have been developed. Moreover, some re-
searchers have also attempted to use techniques designed for pattern discovery
in other types of textual data to the task of clustering event logs.

In [16] the authors attempt to classify raw event logs into a set of categories
based on the IBM CBE (Common Base Event) format [17] using Hidden Markov
Models (HMM) and a modified Naive Bayesian Model. They report 85% and
82% classification accuracy respectively. While similar, the automatic catego-
rization done in [16] is not the same as discovering event log clusters or formats.
This is because the work done in [16] is a supervised classification problem,
with predefined categories, while the problem we tackle is unsupervised, with
the final categories not known apriori.

On the other hand SLCT [8] and Loghound [9] are two algorithms, which
were designed specifically for automatically clustering log files, and discovering
event formats. This is similar to our objective in this paper. Because both
SLCT and Loghound are similar to the Apriori algorithm [7] they require the
user to provide a support threshold value as input.

SLCT works through a three step process. The steps are described below

1. It firsts identifies the frequent words (words that occur more frequently
than the support threshold value) or 1-itemsets from the data

2. It then extracts the combinations of these 1-itemsets that occur in each
line in the data-set. These 1-itemset combinations are cluster candidates.

3. Finally, those cluster candidates that occur more frequently than the sup-
port value are then selected as the clusters in the data-set.

Loghound on the other hand discovers frequent patterns from event logs
by utilizing a frequent itemset mining algorithm, which mirrors the Apriori
algorithm more closely than SLCT because it works by finding itemsets which
may contain more than 1 word up to a maximum value provided by the user.
With both SLCT and Loghound, lines that do not match any of the frequent
patterns discovered are classified as outliers.

SLCT and Loghound have received considerable attention and have been
used in the implementation of the Sisyphus Log Data Mining toolkit [18], as
part of the LogView log visualization tool [19] and in online failure prediction
[20].

A comparison of SLCT against a bio-informatics pattern discovery algorithm
developed by IBM called Teiresias [10] is carried out in [5]. Teiresias was de-
signed to discover all patterns of at least a given specificity and support in
categorical data. Teiresias can be described as an algorithm that takes a set
of strings X and breaks them up into a set of unique characters C, which are
the building blocks of the strings. It then proceeds to find all motifs (patterns)

5

having specificity at least L/W, where L is the number of non-wild-card char-
acters from C and W is the width of the motif with wild-cards included. A
support value K can also be provided i.e. Teiresias only finds motifs that occur
at least K times in the set of strings X. While Teiresias was judged to work just
as effectively as SLCT by the author, it was found not to scale efficiently to
large data-sets.

In our work we introduce IPLoM, a novel log-clustering algorithm. IPLoM
works differently from the other clustering algorithms described above as it is not
based on the Apriori algorithm and does not explicitly try to find line formats.
The algorithm works by creating a hierarchical partitioning of the log data. The
leaf nodes of this hierarchical partitioning of the data are considered clusters of
the log data and they are used to find the cluster descriptions or line formats
that define each cluster. Our experiments demonstrate that IPLoM outperforms
SLCT, Loghound and Teiresias when they are evaluated on the same data-sets.

3 Methodology

In this section we first give a detailed description of our proposed algorithm
and our methodology for testing its performance against those of previous algo-
rithms.

3.1 The IPLoM Algorithm

The IPLoM algorithm is designed as a log data clustering algorithm. It works
by iteratively partitioning a set of log messages used as training exemplars.
At each step of the partitioning process the resultant partitions come closer to
containing only log messages which are produced by the same line format. At
the end of the partitioning process the algorithm attempts to discover the line
formats that produced the lines in each partition, these discovered partitions
and line formats are the output of the algorithm.

An outline of the four steps of the algorithm is given in Fig. 2. The algorithm
is designed to discover all possible line formats in the initial set of log messages
and does require a support threshold like SLCT or Loghound. As it may be
sometimes required to find only line formats that have a support that exceeds
a certain threshold, a file prune function (Algorithm 1) is incorporated into the
algorithm. By removing the partitions that fall below the threshold value at
the end of each partitioning step, we are able to produce only line formats that
meet the desired support threshold at the end of the algorithm. The use of the
file prune function is however optional.

The following sub-sections describe each step of the algorithm in more detail.

3.2 Step 1: Partition by event size.

The first step of the partitioning process works on the assumption that log
messages that have the same message type description are likely to have the

6

Figure 2: Overview of IPLoM processing steps.

same event size. For this reason IPLoM’s first step (Fig. 3) uses the event size
heuristic to partition the log messages. By partition we mean non-overlapping
groupings of the messages. Additional heuristic criteria are used in the re-
maining steps to further divide the initial partitions. The partitioning process
induces a hierarchy of maximum depth 4 on the messages and the number of
nodes on each level is data dependent. Consider the cluster description “Con-
nection from *”, which contains 3 tokens. It can be intuitively concluded that
all the instances of this cluster e.g. “Connection from 255.255.255.255” and
“Connection from 0.0.0.0” would also contain the same number of tokens. By
partitioning our data first by event size we are taking advantage of the property
of most cluster instances of having the same event size, therefore the resultant
partitions of this heuristic are likely to contain the instances of the different
clusters which have the same event size. A detailed description of this step of

7

Figure 3: IPLoM Step-1: Partition by event size.

the algorithm is given in section A of the Appendix.

3.3 Step 2: Partition by token position.

At this point each partition of the log data contains log messages which are of
the same size and can therefore be viewed as n-tuples, with n being the event
size of the log messages in the partition. This step of the algorithm works on the
assumption that the column with the least number of variables (unique words)
is likely to contain words which are constant in that position of the message type
descriptions that produced them. Our heuristic is therefore to find the token
position with the least number of unique values and further split each partition
using the unique values in this token position i.e. each resultant partition will
contain only one of those unique values in the token position discovered, as can
be seen in the example outlined in Fig. 4. A detailed description of this step of
the partitioning process is outlined in Algorithm 2.

Despite the fact that we use the token position with the least number of
unique tokens, it is still possible that some of the values in the token position
might actually be variables in the original message type descriptions. While an
error of this type may have little effect on Recall, it could adversely affect Pre-
cision. To mitigate the effects of this error a partition support threshold could
be introduced. We group any partition which falls below the provided threshold
into one partition (Algorithm 3). The intuition here is that a partition that is
produced using an actual variable value may not have enough lines to exceed a
certain percentage (the partition support threshold) of the log messages in the
partition. It should be noted that this partition threshold is not necessary for

8

Figure 4: IPLoM Step-2: Partition by token position.

the algorithm to function and is only introduced to give the system adminis-
trators the flexibility to influence the partitioning based on expert knowledge
they may have. This support threshold was not used in the experimental results
presented here.

3.4 Step 3: Partition by search for bijection

In the third and final partitioning step we partition by searching for bijective
relationships between the set of unique tokens in two token positions selected us-
ing a criterion as described in detail in Algorithm 4. A summary of the heuristic
would be to select the first two token positions with the most frequently occur-
ring event size value greater than 1. A bijective function is a 1-1 relation that is
both injective and surjective. When a bijection exists between two elements in
the sets of tokens, this usually implies that a strong relationship exists between
them and log messages that have these token values in the corresponding token
positions are separated into a new partition.

Sometimes the relations found are not 1-1 but 1-M, M-1 and M-M. In
the example given in Fig. 5 the tokens Failed and on: have a 1-1 relationship
because all lines that contain the token Failed in position 2 also contain the

9

Algorithm 1 File Prune Function
Input: Collection C[] of log file partitions.

Real number FS as file support threshold.
Output: Collection C[] of log file partitions with support greater than FS.
1: for every partition in C do

2: Supp = #LinesInP artition
#LinesInCollection

3: if Supp < FS then
4: Delete partition from C[]
5: end if
6: end for
7: Return(C)

Algorithm 2 IPLoM Step 2
Input: Collection C In of log file partitions from Step 1.
Output: Collection C Out of log file partitions derived from C In.
1: for every partition in C In do {Lines in each partition have same event size}
2: Create temporary collection Temp C
3: Determine token position P with lowest cardinality with respect to set of unique tokens.
4: Create a partition for each token value in the set of unique tokens that appear in position P .
5: for each line in partition do
6: Add line to partition for the value that appears in position P of the line.
7: end for
8: Add newly created partitions to collection Temp C
9: Temp C = Partition Prune(Temp C) {See Algorithm 3}

10: Add all partitions from Temp C to C Out
11: end for
12: C Out = File Prune(C Out) {See Algorithm 1}
13: Return(C Out)

Algorithm 3 Partition Prune Function
Input: Collection C[] of log file partitions.

Real number PS as partition support threshold.
Output: Collection C[] of log file partitions with all partitions with support less than PS grouped

into one partition.
1: Create temporary partition Temp P
2: for every partition in C do

3: Supp = #LinesInP artition
#LinesInCollection

4: if Supp < PS then
5: Add lines from partition to Temp P
6: Delete partition from C[]
7: end if
8: end for
9: Add partition Temp P to collection C[]

10: Return(C)

10

token on: in position 3 and vice versa. On the other hand token has has a 1-M
relationship with tokens completed and been as all lines that contain the token
has in position 2 contains either tokens completed or been in position 3, a M-1
relationship will be the reverse of this scenario. To illustrate a M-M relationship,
consider the event messages given below with positions 3 and 4 chosen using
our heuristic.

Fan speeds 3552 3552 3391 4245 3515 3497
Fan speeds 3552 3534 3375 4787 3515 3479
Fan speeds 3552 3534 3375 6250 3515 3479
Fan speeds 3552 3534 3375 **** 3515 3479
Fan speeds 3311 3534 3375 4017 3515 3479

It is obvious that no discernible relationship can be found with the tokens
in the chosen positions. Token 3552 (in position 3) maps to tokens 3552 (in
position 4) and 3534. On the other hand token 3311 also maps to token 3534,
this makes it impossible to split these messages using their token relationships.
It is a scenario like this that we refer to as a M-M relationship.

In the case of 1-M and M-1 relations, the M side of the relation could
represent variable values (so we are dealing with only one message type descrip-
tion) or constant values (so each value actually represents a different message
type description). The diagram in Fig. 6 describes the simple heuristic that
we developed to deal with this problem. Using the ratio between the number
of unique values in the set and the number of lines that have these values in
the corresponding token position in the partition, and two threshold values, a
decision is made on whether to treat the M side as consisting of constant values
or variable values. M-M relationships are iteratively split into separate 1-M
relationships or ignored depending on if the partition is coming from Step-1 or
Step-2 of the partitioning process respectively.

11

Figure 5: IPLoM Step-3: Partition by search for bijection.

Figure 6: Deciding on how to treat 1-M and M-1 relationships.

12

Algorithm 4 IPLoM Step 3
Input: Collection C In of partitions from Step 1 or Step 2.
Output: Collection C Out of partitions derived from C In.
1: for every partition in C InasP In do
2: Create temporary collection Temp C
3: DetermineP1andP2(P In){See Algorithm 5}
4: Create sets S1 and S2 of unique tokens from P1 and P2 respectively.
5: for each element in S1 do
6: Determine mapping type of element in relation to S2.
7: if mapping is 1− 1 then
8: split pos = P1
9: else if mapping is 1−M then

10: Create set S Temp with token values on the many side of the relationship.
11: split rank : = Get Rank Position(S Temp). {See Algorithm 6.}
12: if split rank = 1 then
13: split pos = P1
14: else
15: split pos = P2
16: end if
17: else if mapping is M − 1 then
18: Create set S Temp with token values on the many side of the relationship.
19: split rank : = Get Rank Position(S Temp).
20: if split rank = 2 then
21: split pos = P2
22: else
23: split pos = P1
24: end if
25: else {mapping is M −M}
26: if partition has gone through step 2 then
27: Move to next token.
28: else {partition is from step 1}
29: Create sets S Temp1 and S Temp2 with token values on both sides of the relationship.
30: if S Temp1 has lower cardinality then
31: split pos = P1
32: else {S Temp2 has lower cardinality}
33: split pos = P2
34: end if
35: end if
36: end if
37: Split partition into new partitions based on token values in split pos.
38: if partition is empty then
39: Move to next partition.
40: end if
41: end for
42: if partition is not empty then
43: Create new partition with remainder lines.
44: end if
45: Add new partitions to Temp C
46: Temp C = Partition Prune(Temp C) {See Algorithm 3}
47: Add all partitions from Temp C to C Out
48: end for
49: C Out = File Prune(C Out) {See Algorithm 1}
50: Return(C Out)

13

Algorithm 5 Procedure DetermineP1andP2
Input: Partition P .

Real number CT as cluster goodness threshold.
1: Determine event size of P as token count.
2: if token count > 2 then
3: Determine the number of token positions with only one unique value as count 1.
4: GC = count 1

token count
5: if GC < CT then
6: (P1, P2) = Get Mapping Positions(P) {See Algorithm 7}
7: else
8: Return to calling procedure, add P to C Out and move to next partition.
9: end if

10: else if token count = 2 then
11: (P1, P2) = Get Mapping Positions(P)
12: else
13: Return to calling procedure, add P to C Out and move to next partition.
14: end if
15: Return()

Algorithm 6 Get Rank Position Function
Input: Set S of token values from the M side of a 1−M or M − 1 mapping of a log file partition.

Real number lower bound.
Real number upper bound.

Output: Integer split rank. split rank can have values of either 1 or 2.

1: Distance = Cardinality of S
#Lines that match S

2: if Distance ≤ lower bound then
3: if Mapping is 1-M then
4: split rank = 2
5: else
6: split rank = 1 {Mapping is M-1}
7: end if
8: else if Distance ≥ upper bound then
9: if Mapping is 1-M then
10: split rank = 1
11: else
12: split rank = 2 {Mapping is M-1}
13: end if
14: else
15: if Mapping is 1-M then
16: split rank = 1
17: else
18: split rank = 2 {Mapping is M-1}
19: end if
20: end if
21: Return(split rank)

14

Before partitions are passed through the partitioning process of Step 3 of the
algorithm they are evaluated to see if they already form good clusters. To do
this a cluster goodness threshold is introduced into the algorithm. The cluster
goodness threshold is the ratio of the number of token positions that have only
one unique value to the event size of the lines in the partition. Partitions that
have a value higher than the cluster goodness threshold are considered good
clusters and are not partitioned any further in this step.

3.5 Step 4: Discover message type descriptions (line for-
mats) from each partition.

In this step of the algorithm partitioning is complete and we assume that each
partition represents a cluster i.e. every log message in the partition was pro-
duced using the same line format. A message type description or line format
consists of a line of text where constant values are represented literally and
variable values are represented using wild-card values. This is done by counting
the number of unique tokens in each token position of a partition. If a token
position has only one value then it is considered a constant value in the line
format, if it is more than one then it is considered a variable. This process is
illustrated in Fig. 7.

Figure 7: IPLoM Step-4: Discover message type descriptions. Numbers by
arrows represent the number of unique tokens.

3.6 Algorithm Parameters

In this section we give a brief overview of the parameters/thresholds used by
IPLoM. The fact that IPLoM has several parameters, which can be used to
tune its performance, it provides flexibility for the system administrators since
this gives them the option of using their expert knowledge when they see it
necessary.

15

100pt[t]

Table 1: Log Data Statistics
Name Description No. of Messages No. of Formats (Manual)

HPC High Performance Cluster Log (Los Alamos) 433490 106
Syslog OpenBSD Syslog 3261 60
Windows Windows Oracle Application Log 9664 161
Access Apache Access Log 69902 14
Error Apache Error Log 626411 166
System OS X Syslog 24524 9
Rewrite Apache mod rewrite Log 22176 10

• File Support Threshold: Ranges between 0-1. It reduces the number of
clusters produced by IPLoM. Any cluster whose instances have a support
value less than this threshold is discarded. The higher this value is set to,
the fewer the number of clusters that will be produced. This parameter
is similar to the “support threshold defined for SLCT and Loghound.

• Partition Support Threshold: Ranges between 0-1. It is essentially
a threshold that controls backtracking. Based on our experiments, the
guideline is to set this parameter to very low values i.e. < 0.05 for optimum
performance.

• Upper Bound and Lower Bound: Ranges between 0-1. They control
the decision on how to treat M side of relationships in Step-2. Lower Bound
should usually take values < 0.5 while Upper Bound takes values > 0.5.

• Cluster Goodness Threshold: Ranges between 0-1. It is used to avoid
further partitioning. Its optimal should lie in the range of 0.3− 0.6.

3.7 Experiments

In order to evaluate the performance of IPLoM, we selected open source imple-
mentations of algorithms previously used in system/application log data min-
ing. For this reason SLCT, Loghound and Teiresias were selected. We therefore
tested the four algorithms against seven log data-sets which we compiled from
different sources, Table 1 gives an overview of the data-sets used. The HPC
log file is an open source data-set collected on high performance clusters at the
Los Alamos National Laboratory NM, USA [21]. The Access, Error, System
and Rewrite data-sets were collected on our faculty network at Dalhousie, while
the Syslog and Windows files were collected on servers owned by a large ISP
working with our research group. Due to privacy issues we are not able to make
this data available to the public.

The message type descriptions of these 7 data-sets were produced manually
by Tech-Support members of the Dalhousie Faculty of Computer Science. Table
1 gives the number of clusters identified in each file manually. Again due to
privacy issues we are able to provide manually produced cluster descriptions

16

only for the HPC data 1. These cluster descriptions then became our gold
standard, against which to measure the performance of the algorithms as an
information retrieval (IR) task. As in classic IR, our performance metrics were
Recall, Precision and F-Measure which are described by Eqs. (1), (2) and (3)
respectively. The terms TP, FP and FN in the equations are the number of
True Positives, False Positives and False Negatives respectively. Their values are
derived by comparing the set of manually produced message type descriptions
to the set of retrieved formats produced by each algorithm. In our evaluation a
message type description is still considered an FP even if matches a manually
produced message type description to some degree, the match has to be exact
for it to be considered a TP.

For completeness we evaluated our Precision, Recall and F-Measure values
using three different methods. In the two methods we evaluated the results of
the algorithms as a classification problem. Using the manually produced event
types as classes we evaluated how effectively the automatically produced clas-
sification matched the manually produced labels. This classification evaluation
produced Micro-average and Macro-average results. These results are referred
to as “Micro” and “Macro” in the results section. In the third method the
manually produced message type descriptions are compared against the auto-
matically produced ones. This evaluation method is called “IR” in the results
section. We however believe that what we called the “IR” method evaluation
satisfies our goals better as it tests the goodness of the clusters produced. The
next section gives more details about the results of our experiments.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(3)

4 Results

In our first set of experiments we tested SLCT, Loghound, Teiresias and IPLoM
on the data-sets outlined in Table 1. The parameter values used in running
the algorithms in all cases are provided in Tables 2, 3 and 4. The rationale for
choosing the support values used for SLCT, Loghound and IPLoM is explained
later in this section and this leads to two classes of experiments. The seed value
for SLCT and Loghound is a seed for a random number generator used by the
algorithms, all other parameter values for SLCT and Loghound are left at their
default values. The parameters for Teiresias were also chosen to achieve the
lowest support value allowed by the algorithm. The IPLoM parameters were

1Descriptions are available for download from http://torch.cs.dal.ca/˜makanju/iplom

17

all set empirically except in the case of the cluster goodness threshold and the
partition support threshold .

In setting the cluster goodness threshold we ran IPLoM on the HPC file while
varying this value. The parameter was then set to the value (0.34) that gave the
best result and was kept constant for the other files used in our experiments.
On the other hand, the partition support threshold was set to 0 to provide a
baseline performance. A 0 setting for the performance threshold implies that
no backtracking was done during partitioning.

It is pertinent to note that we were unable to test the Teiresias algorithm
against all our data-sets. This was due to its inability to scale to the size of
our data-sets. This is a problem that is attested to in [5]. Thus in this work,
Teiresias could only be tested against the Syslog data-set, as it crashed against
all the other data sets.

Table 2: SLCT and Loghound Parameters
Parameter Value

Support Threshold (-s) 0.01 - 0.1
Seed (-i) 5

Table 3: Teiresias Parameters
Parameter Value

Sequence Version On
L (min. no. of non wild card literals in pattern) 1
W (max. extent spanned by L consecutive non wild card literals) 15
K (Min. no. of lines for pattern to appear in) 2

Table 4: IPLoM Parameters
Parameter Value

File Support Threshold (Percentage) 0 - 0.1
File Support Threshold (Absolute) 1 - 20
Partition Support Threshold 0
Lower Bound 0.1
Upper Bound 0.9
Cluster Goodness Threshold 0.34

SLCT, Loghound and Teiresias need a line support threshold to produce
clusters. For SLCT and Loghound this support value can be specified either as
a percentage of the number of events in the event log or as an absolute value.
For this reason we run two set of experiments using percentage specified support
values and absolute value specified support values. In either case we set these
support values low because intuitively this allows for finding most of the clusters
in the data, which is one of our goals. The next two sections present the results
of our first set of experiments.

18

4.1 Absolute Support Values

In this set of experiments we compare the result of the algorithms using absolute
support values in the range of 1 - 20. SLCT and Loghound cannot be run with
an absolute support value of 1, so we run them with 2 instead. An absolute
support value of 1 means every line/word will be considered frequent and the
result of the algorithms will be reduced to the trivial case of finding unique
lines. An absolute support value of 1 however is IPLoM’s default setting, which
highlights an advantage of IPLoM, i.e. a line support value is optional. Since
Teiresias worked only on the Syslog data-set, its results are not included in our
analysis, which used the parameter values listed in Table 3, Teiresias produced
a Recall performance of 0.1, a Precision performance of 0.04 which led to an
F-Measure performance of 0.06 using the IR evaluation method.

The average F-Measure results for the other 3 algorithms are highlighted in
Table 5. The results show that IPLoM performs better than the other algorithms
on all data sets in the IR evaluation, which measures the goodness of the clusters
produced. In the Micro and Macro evaluations, IPLoM still does better than the
other algorithms in general. However, we see performance improvement from
SLCT and Loghound and in one case (with the Syslog data-set) SLCT actually
performs better than IPLoM.

The rest of the results are evaluated using the IR method. A detailed sum-
mary of the IR Recall, Precision and F-Measure results can be found in Section
C of the Appendix.

Table 5: Average F-Measure performance of algorithms using absolute support
values

F-MEASURE PERFORMANCE
HPC Syslog

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.64 0.55 0.66 0.10 0.06 0.07
Macro 0.25 0.45 0.45 0.13 0.07 0.11

IR 0.02 0.01 0.59 0.14 0.08 0.14
Windows Access

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.22 0.25 0.28 0.00 0.00 0.00
Macro 0.17 0.18 0.22 0.11 0.15 0.20

IR 0.18 0.11 0.34 0.00 0.00 0.26
Error System

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.68 0.28 0.82 0.20 0.16 0.83
Macro 0.22 0.17 0.31 0.18 0.09 0.56

IR 0.01 0.01 0.43 0.15 0.07 0.75
Rewrite

SLCT Loghound IPLoM

Micro 0.08 0.05 0.83
Macro 0.10 0.13 0.30

IR 0.01 0.01 0.49

As discussed earlier, IPLoM was designed to be able to run without the
provision of a line support value, however the concept of a line support value
can be introduced. Its performance at this support value could therefore be

19

Table 6: Log Data Event Size Statistics
Name Min Max Avg.

HPC 1 95 30.7
Syslog 1 25 4.57
Windows 2 82 22.38
Access 3 13 5.0
Error 1 41 9.12
System 1 11 2.97
Rewrite 3 14 10.1

Table 7: Algorithm performance based on cluster event size
Event Size Range No. of Clusters Percentage Retrieved(%)

SLCT Loghound IPLoM

1 - 10 316 12.97 13.29 53.80
11 - 20 142 7.04 9.15 49.30

>21 68 15.15 16.67 51.52

considered its default performance. As SLCT and Loghound cannot be run
without providing a support value, the closest thing to running them without
a support value will be an absolute support value of 2. When we look at the
IR performance of the algorithms at this support level we see that the average
F-Measure performance across the data-sets is 0.07, 0.04 and 0.46 for SLCT,
Loghound and IPLoM respectively. The graphs in Figure 8 visualize these
results for Recall, Precision and F-Measure metrics for all the algorithms.

However, as stated in [22], in cases where data sets have relatively long
patterns or low minimum support thresholds are been used, apriori based algo-
rithms incur non-trivial computational cost during candidate generation. The
event size statistics for our data sets are outlined in Table 6, which shows the
HPC file as having the largest maximum and average event size. Loghound was
unable to produce results on this data set with an absolute support value of 2,
because the algorithm crashed due to the large number of item-sets that had
to be generated as can be seen in Figure 8. This was however not a problem
for SLCT (as it generates only 1-item-sets). This results show that Loghound
is vulnerable to the computational cost problems outlined in [22], which is how-
ever not a problem for IPLoM as its computational complexity is not adversely
affected by long patterns or low minimum support thresholds. In terms of per-
formance based on event size, Table 7 shows consistent performance from IPLoM
irrespective of event size, while SLCT and Loghound seem to suffer for mid-size
clusters.

One of the cardinal goals in the design of IPLoM is the ability to discover
clusters in event logs irrespective of how frequently its instances appear in the
data. The performance of the algorithms using this evaluation criterion is out-
lined in Table 8. The results show a reduction in performance for all the al-
gorithms for clusters with a few instances, however IPLoM’s performance was
more resilient.

20

Algorithm Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HPC Windows Syslog Access Error System Rewrite

R
e
c
a
ll Loghound

SLCT

IPLoM

(a) Recall

Algorithm Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HPC Windows Syslog Access Error System Rewrite

P
r
e
c
is

io
n

Loghound

SLCT

IPLoM

(b) Precision

Algorithm Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HPC Windows Syslog Access Error System Rewrite

F
-M

e
a
s
u

r
e

Loghound

SLCT

IPLoM

(c) F-Measure

Figure 8: Comparing algorithm IR performance at lowest support values.

21

Table 8: Algorithm performance based on cluster instance frequency
Instance Frequency Range No. of Clusters Percentage Retrieved(%)

SLCT Loghound IPLoM

1 - 10 263 2.66 1.90 44.87
11 - 100 144 16.67 18.75 47.92

101 - 1000 68 20.59 23.53 72.06
>1000 51 34.00 38.00 82.00

4.2 Percentage based Support Values

A system administrator can specify a support value using an absolute value (as
in the section above) or a value that is dependent on the number of lines in
the event log i.e. a percentage. To determine IPLoMs performance according
to this specication of support value, we ran another set of experiments using
percentage based support values. For the same reasons as described above the
range of values are low i.e. 0.1% - 1.0%. The F-Measure results of this scenario
are shown in Fig 9, where we note IPLoM performing better than the other
algorithms on all the tasks. A single factor ANOVA test done at 5% significance
on the results shows a statistically significant difference in all the results except
in the case of the Syslog file. Table 9 provides a summary of these results.
Similar results for Recall and Precision are given in sections B, D and E of the
Appendix.

4.3 Parameter Sensitivity Analysis

IPLoM has 5 parameter values which can affect its results. These parameters
are the File Support Threshold (FST), Partition Support Threshold (PST),
Cluster Goodness Threshold (CGT) and the Upper Bound (UB) and Lower
Bound (LB) thresholds used to decide if the “many” end of a 1-M relationship
represents constant values or variable values. It is important that we assess the
sensitivity of IPLoM’s performance to the value settings of these parameters. In
this section we present such an analysis. We ran IPLoM against the data-sets
using a wide range of values as outlined in Table 10, because the FST used in
IPLoM is similar to the support threshold used in SLCT and Loghound we also
ran tests on them using the range of values for FST in Table 10.

The results show that IPLoM is most sensitive to varying values of FST as
can be seen in Fig. 10. This can be explained by the observation that increasing
the support value decreases the number of event types that can be found, since
any event type with instances that fall below the support value cannot be found.
The graphs however show that generally for support values greater than 20%
there is not much difference in the performance of the algorithms. Using the
standard deviation of the results over the range of results for each parameter, as
seen in Table 11, we can evaluate the sensitivity of the algorithms to changing
parameter values. The results show that IPLoM is stable in face of changing
parameter values. The largest standard deviation values are found with IPLoM

22

HPC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(a) HPC

Syslog

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(b) Syslog

Windows

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(c) Windows

Access

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(d) Access

Error

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(e) Error

System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(f) System

Rewrite

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

F
-M

e
a
s
u

re

SLCT

IPLoM

Loghound

(g) Rewrite

Figure 9: Comparing F-Measure performance of IPLoM, Loghound and SLCT
using percentage based support values.

23

Table 9: Anova Results for F-Measure Performance
HPC

Source of Variation SS df MS F P-value F crit
Between Groups 0.08 2 0.04 35.35 2.89E-08 3.35
Within Groups 0.03 27 0.00

Total 0.03 29

SYSLOG
Source of Variation SS df MS F P-value F crit

Between Groups 0.01 2 0.00 1.63 0.21 3.35
Within Groups 0.04 27 0.00

Total 0.05 29

WINDOWS
Source of Variation SS df MS F P-value F crit

Between Groups 0.08 2 0.04 26.54 4.22E-07 3.35
Within Groups 0.04 27 0.00

Total 0.12 29

ACCESS
Source of Variation SS df MS F P-value F crit

Between Groups 0.50 2 0.25 366.31 2.73E-20 3.35
Within Groups 0.02 27 0.00

Total 0.51 29

ERROR
Source of Variation SS df MS F P-value F crit

Between Groups 0.03 2 0.01 51.34 6.291E-10 3.35
Within Groups 0.01 27 0.00

Total 0.03 29

SYSTEM
Source of Variation SS df MS F P-value F crit

Between Groups 2.80 2 1.40 1.96E+34 0 3.35
Within Groups 1.93E-33 27 7.13E-35

Total 2.80 29

REWRITE
Source of Variation SS df MS F P-value F crit

Between Groups 1.35 2 0.67 51076.72 4.98E-49 3.35
Within Groups 4.0E-04 27 1.32E-05

Total 1.34 29

24

under the FST parameter, which is due to IPLoM’s superior performance for
FST values less than 20%.

4.4 Analysis of Incorrect Results

The IPLoM algorithm, as with all algorithms that utilize heuristics, is capable
of making errors and does in fact make errors during its partitioning phase. Our
analysis of these errors is described in this section. In some cases these problems
can be mitigated by preprocessing of the event data or post-processing of results,
and we also describe the possible remedy.

4.4.1 Insufficient Information in Data

Apart from the cluster descriptions produced by all the algorithms as output,
IPLoM has the added advantage of producing the partitions of the log data
which represent the actual clusters. This gives us two sets of results we can
evaluate for IPLoM, the clusters and their descriptions. In our evaluation of
the partition results of IPLoM, we discovered that in certain cases that it was
impossible for IPLoM to produce the right cluster descriptions for a partition due
to the fact that the partition contained only one event line or all the event lines
were identical. This situation would not pose a problem for a human subject
as they are able to use semantic and domain knowledge to determine the right
cluster description. This problem is illustrated in Fig. 11. This indicates that
the IR comparison of the cluster descriptions produced by IPLoM does not give a
complete picture of IPLoM’s performance. To get a complete picture of IPLoM’s
capabilities, we evaluated IPLoM’s performance based on partitioning. These
results are called Partitions in Fig. 12, while the cluster description results are
called Before . The partition comparison differs from the cluster description by
including as correct, cases where IPLoM came up with the right partition but
was unable to come up with the right cluster description. The results show an
average F-Measure of 0.48 and 0.78 for IPLoM when evaluating the results of
IPLoM’s cluster description output and partition output respectively. Similar
results are also noticed for Precision and Recall.

Due to the fact that SLCT and Loghound do not generate partitions to eval-
uate against (these partitions can however be found through post-processing if
desired) and it can be argued that the insufficient information in data scenario
could also apply to them, we constructed another experiment. In this case, we

Table 10: Parameter Value Ranges Used for Sensitivity Analysis
Parameter Range

File Support Threshold(%) 0 - 100
Partition Support Threshold(%) 0 - 5
Lower Bound 0.1 - 0.5
Upper Bound 0.5 - 0.9
Cluster Goodness Threshold 0 - 1

25

HPC

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLOM

SLCT

Loghoun
d

(a) HPC

System

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(b) Syslog

Windows

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(c) Windows

Access

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(d) Access

Error

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(e) Error

System

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(f) System

Rewrite

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 10 20 30 40 50 60 70 80 90 100

Support Value

F
-M

e
a
s
u

r
e

IPLoM

SLCT

Loghound

(g) Rewrite

Figure 10: F-Measure performance of IPLoM, Loghound and SLCT against
FST values in the range 0% - 100%. 0% support values for SLCT and Loghound
are equivalent to using an absolute support value of 2.

26

inserted counter-examples for all the cases where there was insufficient informa-
tion in the event data for the algorithms to come up with the cluster descriptions
and ran SLCT, Loghound and IPLoM against the new datasets with counter-
examples inserted. SLCT and Loghound were run in this case with the absolute
support values which gave their best results in the experiments described in
Section 4.1 above while IPLoM was run in its default state. This results are
called After in Table 12. The results show that unlike SLCT and Loghound,
IPLoM was able to make use of the new information to improve its results in
all cases. IPLoM’s After results however did not measure up to its Partitions
due to the fact in some cases the third step of IPLoM’s partitioning process was
able to discern some of the counter-examples and place them in separate groups
at the end of the partitioning process. This however did not occur in all cases
hence we see improved performance.

We consider the Partitions results to be the most accurate illustration of
IPLoM’s capabilities. These results show that IPLoM can achieve an average
Recall of 0.83, Precision of 0.74 and F-Measure of 0.78.

Figure 11: Example: Insufficient Information in Data.

Table 11: Standard Deviation over F-Measure results for parameter values
FST PST CGT LB:UB

Loghound SLCT IPLoM IPLoM IPLoM IPLoM

HPC 0.017 0.017 0.197 0.009 0.107 0.048
Syslog 0.025 0.000 0.058 0.000 0.013 0.025

Windows 0.036 0.044 0.146 0.002 0.088 0.018
Access 0.000 0.001 0.079 0.036 0.085 0.006
Error 0.005 0.010 0.146 0.034 0.034 0.028

System 0.035 0.066 0.279 0.000 0.000 0.197
Rewrite 0.001 0.000 0.123 0.000 0.000 0.000

27

4.4.2 Ambiguous Token Delimiters

In the problem of message type extraction, the assumption is that the space
character acts as the token delimiter. On close inspection of certain messages in
the log files we find this not to be true in all cases. The most common example
occurs when part or all of a message contains a “variable = value” phrase. In
some cases there’s no space character between the variable token and the =
sign and also between the value token and the = sign. This scenario becomes a
problem for IPLoM when for instance these log messages “Temperature reading:
ambient=30”, “Temperature reading: ambient=25” and “Temperature reading:
ambient=28 are evaluated to the type “Temperature reading: ambient=*” by a
human observer. When and if IPLoM correctly produces a partition containing
these log messages the type produced will be “Temperature reading: *”, due to
IPLoM’s inability to separate the tokens in the “variable = value” phrase. This
scenario can also occur in other cases when token delimiters are ambiguous.

An approach to mitigating this problem is outlined in [5]. By scanning for
words containing an = sign before mining for clusters and splitting such words
into three parts at the = sign. The word triple can then be concatenated at
the end of the clustering process, this will ensure that we can still match future
instances of the message type to the message type description produced.

4.4.3 Clusters with events of variable size

Another scenario that occurs is with clusters with events of variable size. We
assume that messages belonging to the same cluster should have the same num-
ber of tokens or event size. Again on close inspection we find this not to be
true in some cases. Clusters with events of variable sizes usually occur when a
variable position in the line format can contain strings instead just single words.
For example consider these messages “The LightScribe service has started” and
“The Message Queuing service has started” which should belong to the same
message type and have message type description “The * service has started”,
having a differing number of tokens. These messages would be separated by the
Step-1 of IPLoM’s partitioning process and IPLoM would likely produce two
message type descriptions for this cluster “The * service has started” and “The
* * service has started”, the latter line format being redundant.

This problem can be mitigated by performing message type description re-
finement after the message types are produced. By searching through the mes-
sage type descriptions and finding message type descriptions with consecutive
occurrences of the wild-card character “*” (that is more than one wild-card
character appearing directly after each other). When this message type descrip-
tions are found, we can replace the consecutive multiple wild-card characters
with a single wild-card character, doing this will make all the message type
descriptions produced for the clusters with events of variable size identical. We
can then search through the complete list of message type descriptions for rep-
etitions. If repetitions are found the message type description with consecutive
occurrences of the wild-card character can then be discarded. The message type

28

HPC

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(a) HPC

Syslog

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

SLCT Loghound IPLoM

F
-M
e
a
s
u
r
e

Before

After

Partitions

(b) Syslog

Windows

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(c) Windows

Access

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(d) Access

Error

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(e) Error

System

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(f) System

Rewrite

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

SLCT Loghound IPLoM

F
-
M
e
a
s
u
r
e

Before

After

Partitions

(g) Rewrite

Figure 12: Comparing F-Measure performance of IPLoM, Loghound and SLCT
before insertion of counter-examples, after insertion of counter examples and
evaluating the accuracy of cluster partitioning before the insertion of counter
examples.

29

description can be returned unchanged to the list of message type descriptions
if no repetition is found.

5 Conclusion and Future Work

Due to the size and complexity of sources of information used by system ad-
ministrators in fault management, it has become imperative to find ways to
manage these sources of information automatically. Application logs are one
such source.

In this work, we present our work on designing a novel message type extrac-
tion and partitioning algorithm, IPLoM. Through a 3-Step hierarchical parti-
tioning process IPLoM partitions log data into its respective clusters. In its 4th
and final stage IPLoM produces message type descriptions or line formats for
each of the clusters produced. IPLoM is able to find message clusters whether or
not its instances are frequent. We also ascertained that IPLoM produces clus-
ter descriptions which match human judgement more closely when compared
to SLCT, Loghound and Teiresias. It is also shown that IPLoM demonstrated
statistically significantly better performance than either SLCT or Loghound on
six of the seven different datasets tested.

Message types are fundamental units in any application log file. Determining
what message types can be produced by an application accurately and efficiently
is therefore a fundamental step in the automatic analysis of log files. Message
types, once determined, not only provide groupings for categorizing and sum-
marizing log data, which simplifies further processing steps like visualization or
mathematical modeling, but also provides a way of labeling the individual terms
(distinct word and position pairs) in the data.

Future work on IPLoM will involve using the information derived from the
results of IPLoM in other automatic log analysis tasks which help with fault
management.

With the issue of message types sorted out, our overall goal with this work
is to develop methods for automatically extracting information about previ-
ous failure events from application logs and feeding this information into a
knowledge-base which can be searched by system administrators when a new
failure event occurs. When a network fault occurs system administrators at-
tempt to relate symptoms on the network with possible root causes and solu-
tions. Over time experienced administrators can draw on past experience to
solve fault cases quickly. The value of experience gained by system administra-
tors is therefore high. A system that cannot only store this sort of experience
but can also retrieve this experience information without manual input would
not only be advantageous for experienced system administrators by aiding recall
but will shorten the learning curve for new administrators. This would lead to
an optimal use of resources during downtime events.

According to [24], the process of troubleshooting a network fault follows
a seven-step process. The 4th and 5th stages of this process i.e. root cause
identification and resolution planning are said to take up to 80% of the time

30

spent troubleshooting network failure. Reducing the amount of time spent in
troubleshooting is an open research question [25]. Previous work in this area has
proposed knowledge-base systems where administrators can store and retrieve
information about previous down time events [25], [26], [27], [28],[24]. These
knowledge-base systems however do not always meet expectations because they
require the manual entry of information. System administrators usually lack
the incentive to input their knowledge into the knowledge-base.

Automating the population of such knowledge-bases is therefore desirable.
As log files form a major source of information used by system administrators
in troubleshooting, the importance of automating the extraction of fault related
information from them is self-evident. Using machine learning and informa-
tion retrieval techniques, coupled with message type clusters, this goal can be
achieved. Our future work with automatic fault management will proceed along
these lines.

Acknowledgements

This research is supported by a Natural Science and Engineering Research Coun-
cil of Canada (NSERC) Strategic Project Grant. The authors would also like to
acknowledge the staff of Palomino System Innovations Inc., TARA Inc. and Dal-
CS Tech-Support for their support in completing this work. This work is con-
ducted as part of the Dalhousie NIMS Lab at http://www.cs.dal.ca/projectx/.

References

[1] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, Monthly publication of the IEEE Computer Society, vol. 36, pp.
41– 50, June 2003.

[2] M. Klemettinen, “A Knowledge Discovery Methodology for Telecommu-
nications Network Alarm Databases,” Ph.D. dissertation, University of
Helsinki, 1999.

[3] S. Ma, , and J. Hellerstein, “Mining Partially Periodic Event Patterns with
Unknown Periods,” in Proceedings of the 16th International Conference on
Data Engineering, 2000, pp. 205–214.

[4] Q. Zheng, K. Xu, W. Lv, and S. Ma, “Intelligent Search for Correlated
Alarm from Database Containing Noise Data,” in Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2002, pp. 405–419.

[5] J. Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings of
the 2004 IEEE International Conference on Cluster Computing, 2004, pp.
309–318.

31

[6] R. Vaarandi, “Mining Event Logs with Slct and Loghound,” in Proceedings
of the 2008 IEEE/IFIP Network Operations and Management Symposium,
April 2008, pp. 1071–1074.

[7] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in Proc. 20th Int. Conf. Very Large Data Bases, VLDB, J. B.
Bocca, M. Jarke, and C. Zaniolo, Eds. Morgan Kaufmann, 12–15 1994,
pp. 487–499.

[8] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns from Event
Logs,” in Proceedings of the 2003 IEEE Workshop on IP Operations and
Management (IPOM), 2003, pp. 119–126.

[9] ——, “A Breadth-First Algorithm for Mining Frequent Patterns from Event
Logs,” in Proceedings of the 2004 IFIP International Conference on Intel-
ligence in Communication Systems (LNCS), vol. 3283, 2004, pp. 293–308.

[10] I. Rigoutsos and A. Floratos, “Combinatorial Pattern Discovery in Biolog-
cal Sequences: The Teiresias Algorithm,” in BioInformatics, vol. 14. Ox-
ford University Press, 1998, pp. 55–67.

[11] C. Lonvick, “The BSD Syslog Protocol,” RFC3164, August 2001.

[12] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Sub-
space Clustering of High Dimensional for Data Mining Applications,” in
Proceedings of the ACM SIGMOID International Conference on Manage-
ment of Data, 1998.

[13] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering Algo-
rithm for Large Databases,” in Proceedings of ACM SIGMOD International
Conference on Management of Dat, 1998, pp. 73–84.

[14] S. Goil, H. Nagesh, and A. Choudhary, “MAFIA: Efficient and Scalable
Subspace Clustering for Very Large Data Sets,” Northwestern University,
Tech. Rep., 1999.

[15] J. H. Bellec and M. T. Kechadi, “CUFRES: Clustering using Fuzzy Repre-
sentative Events Selection for the Fault Recognition Problem in Telecom-
munications Networks,” in PIKM ’07: Proceedings of the ACM first Ph.D.
workshop in CIKM. New York, NY, USA: ACM, 2007, pp. 55 – 62.

[16] T. Li, F. Liang, S. Ma, and W. Peng, “An Integrated Framework on Mining
Log Files for Computing System Management,” in Proceedings of of ACM
KDD 2005, 2005, pp. 776–781.

[17] B. T. et. al., “Automating Problem Determination: A First Step
Toward Self Healing Computing Systems,” IBM White Paper, October
2003. [Online]. Available: http://www-106.ibm.com/developerworks/
autonomic/library/ac-summary/ac-prob.html

32

http://www-106.ibm.com/developerworks/autonomic/library/ac-summary/ac-prob.html
http://www-106.ibm.com/developerworks/autonomic/library/ac-summary/ac-prob.html

[18] J. Stearley, “Sisyphus Log Data Mining Toolkit,” Accessed from the Web,
January 2009. [Online]. Available: http://www.cs.sandia.gov/sisyphus

[19] A. Makanju, S. Brooks, N. Zincir-Heywood, and E. E. Milios, “Logview:
Visualizing Event Log Clusters,” in Proceedings of Sixth Annual Conference
on Privacy, Security and Trust. PST 2008, October 2008, pp. 99 – 108.

[20] F. Salfener and M. Malek, “Using Hidden Semi-Markov Models for Effec-
tive Online Failure Prediction,” in 26th IEEE International Symposium on
Reliable Distributed Systems., 2007, pp. 161–174.

[21] L. Los Alamos National Security, “Operational Data to Support and
Enable Computer Science Research,” Published to the web, January
2009. [Online]. Available: http://www.pdl.cmu.edu/FailureData/andhttp:
//institutes.lanl.gov/data/fdata/

[22] J. Han, J. Pei, and Y.Yin, “Mining Frequent Patterns without Candidate
Generation,” in Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, 2000, pp. 1–12.

[23] A. Oliner, A. Aiken, and J. Stearley, “Alert Detection in System Logs,”
in Proceedings of the International Conference on Data Mining (ICDM).
Pisa, Italy. Los Alamitos, CA, USA: IEEE Computer Society, 2008, pp.
959–964.

[24] G. Penido and J. Nogueira, “An Automatic Fault Diagnosis and Correction
System for Telecommunications Management,” in Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management,
1999, pp. 777–791.

[25] A. George, A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Infor-
mation Retrieval in Network Administration,” in Proceedings of the 6th
Annual Communication Networks and Services Research Conference., May
2008, pp. 561 – 568.

[26] R. Cronk, P. Callahan, and L. Bernstein, “Rule-based Expert Systems for
Network Management and Operations: An Introduction,” in IEEE Net-
work, 1988, pp. 7–21.

[27] H. Inamura, O. Takahashi, T. Ishikawa, H. Shigeno, and K. Okada, “Au-
tomating Detection of Faults in TCP Implementations,” in 18th Interna-
tional Conference on Advanced Information Networking and Applications,
vol. 1, 2004, pp. 315–320.

[28] L. Lewis, “A Case-based Reasoning Approach to the Management of Faults
in Communication Networks,” in Proceedings of the 12th Annual Joint Con-
ference of the IEEE Computer and Communications Societies, 1993, pp.
1422–1429.

Appendix

33

http://www.cs.sandia.gov/sisyphus
http://www.pdl.cmu.edu/FailureData/ and http://institutes.lanl.gov/data/fdata/
http://www.pdl.cmu.edu/FailureData/ and http://institutes.lanl.gov/data/fdata/

A Step-1: Partition by event size

Algorithm 8 provides a detailed description of the first step of the IPLoM algo-
rithm.

Algorithm 8 IPLoM Step 1
Input: Log file containing log messages.
Output: Collection C of log file partitions.
1: for each line in the log file do
2: Determine the count of tokens in line as token count. {Token delimiter is assumed to be

space character.}
3: if partition for lines with token count tokens exists then
4: Add line to the appropriate partition.
5: else
6: Create partition for lines with token count tokens.
7: Add line to the appropriate partition.
8: end if
9: end for

10: Add all partitions to C.
11: C = File Prune(C)
12: Return(C)

B Precision and Recall Performance

Figs. 13 and 14 show the comparison of the Precision and Recall performances
of IPLoM against those of SLCT and Loghound. The results show as IPLoM
outperforming both algorithms in all cases.

C IR Results Summary for Absolute Support
Value Experiments

This section shows the IR Recall, Precision, and F-Measure results summary
for the absolute support value experiments. The results are presented in Tables
12, 13 and 14 respectively.

Table 12: IR Recall Result Summary for Absolute Support Value Experiments
SLCT Loghound IPLoM (CD)

HPC 0.25 0.45 0.55
Syslog 0.13 0.10 0.13

Windows 0.17 0.22 0.26
Access 0.11 0.19 0.24
Error 0.23 0.21 0.38

System 0.18 0.11 0.67
Rewrite 0.10 0.16 0.36

34

HPC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(a) HPC

Syslog

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(b) Syslog

Windows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(c) Windows

Access

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(d) Access

Error

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(e) Error

System

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(f) System

Rewrite

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

P
re
c
is
io
n

SLCT

IPLoM

Loghound

(g) Rewrite

Figure 13: Comparing Precision performance of IPLoM, Loghound and SLCT
using percentage support values.

35

HPC

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(a) HPC

Syslog

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(b) Syslog

Windows

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(c) Windows

Access

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(d) Access

Error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(e) Error

System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(f) System

Rewrite

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support

R
e
c
a
ll

SLCT

IPLoM

Loghound

(g) Rewrite

Figure 14: Comparing Recall performance of IPLoM, Loghound and SLCT using
percentage support values.

36

D Anova Results on Precision Performance

This section shows the results of the Anova test on the precision performance
of IPLoM, SLCT and Loghound in Table 15. The results show a statistical
significant difference in all cases.

E Anova Results on Recall Performance
This section shows the results of the Anova test on the Recall performance of
IPLoM, SLCT and Loghound in Table 15. The results do not show a statistical
significant difference in all cases, the HPC, Syslog and Windows files did not
show a statistically significant difference.

Table 13: IR Precision Result Summary for Absolute Support Value Experi-
ments

SLCT Loghound IPLoM (CD)

HPC 0.01 0.01 0.64
Syslog 0.16 0.06 0.18

Windows 0.25 0.08 0.58
Access 0.00 0.00 0.30
Error 0.01 0.01 0.58

System 0.14 0.05 0.87
Rewrite 0.01 0.01 0.89

37

Table 14: IR F-Measure Result Summary for Absolute Support Value Experi-
ments

SLCT Loghound IPLoM (CD)

HPC 0.02 0.01 0.59
Syslog 0.14 0.08 0.14

Windows 0.18 0.11 0.34
Access 0.00 0.00 0.26
Error 0.01 0.01 0.43

System 0.15 0.07 0.75
Rewrite 0.01 0.01 0.49

Algorithm 7 Get Mapping Positions Function
Input: Log file partition P .
Output: Integer token positions P1 and P2 as (P1,P2).
1: Determine event size of P as count token
2: if count token = 2 then
3: Set P1 to first token position.
4: Set P2 to second token position.
5: else {count token is > 2}
6: if P went through step 2 then
7: Determine cardinality of each token position.
8: Determine the event size value with the highest frequency other than value 1 as

freq card.
9: if there is a tie for highest frequency value then
10: Select lower token value as freq card
11: end if
12: if the frequency of freq card > 1 then
13: Set P1 to first token position with cardinality freq card.
14: Set P2 to second token position with cardinality freq card.
15: else {the frequency of freq card = 1}
16: Set P1 to first token position with cardinality freq card.
17: Set P2 to first token position with the next most frequent cardinality other than value

1.
18: end if
19: else {P is from Step 1}
20: Set P1 to first token position with lowest cardinality.
21: Set P2 to second token position with lowest cardinality or first token position with the

second lowest cardinality.
22: end if
23: end if
24: {Cardinality of P1 can be equal to cardinality of P2}
25: Return((P1,P2))

38

Table 15: Anova Results on Precision Performance
HPC

Source of Variation SS df MS F P-value F crit
Between Groups 0.92 2 0.50 2133.74 1.9E-30 3.3541
Within Groups 0.00 27 0.00

Total 0.1822 29

SYSLOG
Source of Variation SS df MS F P-value F crit

Between Groups 0.05 2 0.02 30.96 1.03E-07 3.3541
Within Groups 0.02 27 0.00

Total 0.07 29

WINDOWS
Source of Variation SS df MS F P-value F crit

Between Groups 1.55 2 0.78 1343.19 19.35E-28 3.3541
Within Groups 0.02 27 0.00

Total 1.57 29

ACCESS
Source of Variation SS df MS F P-value F crit

Between Groups 2.56 2 1.28 318.62 1.67E-19 3.3541
Within Groups 0.11 27 0.00

Total 2.67 29

ERROR
Source of Variation SS df MS F P-value F crit

Between Groups 5.08 2 2.54 603.31 3.91E-23 3.3541
Within Groups 0.11 27 0.00

Total 5.20 29

SYSTEM
Source of Variation SS df MS F P-value F crit

Between Groups 5.54 2 2.77 9.72E+33 0 3.3541
Within Groups 7.7E-33 27 2.85E-34

Total 5.54 29

REWRITE
Source of Variation SS df MS F P-value F crit

Between Groups 6.54 2 3.27 348431.5 2.76E-60 3.3541
Within Groups 0.00 27 9.39E-06

Total 6.54 29

39

Table 16: Anova Results on Recall Performance
HPC

Source of Variation SS df MS F P-value F crit
Between Groups 0.08 2 0.04 35.35 2.89E-08 3.35
Within Groups 0.03 27 0.00

Total 0.11 29

SYSLOG
Source of Variation SS df MS F P-value F crit

Between Groups 0.00 2 0.00 0.13 0.88 3.35
Within Groups 0.07 27 0.00

Total 0.07 29

WINDOWS
Source of Variation SS df MS F P-value F crit

Between Groups 0.01 2 0.01 3.88 0.03 3.35
Within Groups 0.037 27 0.00

Total 0.05 29

ACCESS
Source of Variation SS df MS F P-value F crit

Between Groups 0.20 2 0.10 165.13 7.21E-16 3.3541
Within Groups 0.02 27 0.00

Total 0.22 29

ERROR
Source of Variation SS df MS F P-value F crit

Between Groups 0.01 2 0.00 21.09 3.05E-06 3.3541
Within Groups 0.00 27 0.00

Total 0.01 29

SYSTEM
Source of Variation SS df MS F P-value F crit

Between Groups 1.68 2 0.84 1.83E+32 0 3.35
Within Groups 1.24E-31 27 4.58E-33

Total 1.68 29

REWRITE
Source of Variation SS df MS F P-value F crit

Between Groups 0.54 2 0.27 13812.74 2.29E-41 3.35
Within Groups 0.00 27 1.95E-05

Total 0.54 29

40

	Introduction
	Background and Previous Work
	Definitions
	Previous Work

	Methodology
	The IPLoM Algorithm
	Step 1: Partition by event size.
	Step 2: Partition by token position.
	Step 3: Partition by search for bijection
	Step 4: Discover message type descriptions (line formats) from each partition.
	Algorithm Parameters
	Experiments

	Results
	Absolute Support Values
	Percentage based Support Values
	Parameter Sensitivity Analysis
	Analysis of Incorrect Results
	Insufficient Information in Data
	Ambiguous Token Delimiters
	Clusters with events of variable size

	Conclusion and Future Work
	Step-1: Partition by event size
	Precision and Recall Performance
	IR Results Summary for Absolute Support Value Experiments
	Anova Results on Precision Performance
	Anova Results on Recall Performance

