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Abstract

In an important subclass of visual dataflow languages
that includes many developed for industrial use, programs
consist of acyclic diagrams embedded in control structures
of some form. We present here a formalisation of this class
of languages, which we call controlled dataflow. This work
was motivated by a previous study of an exceptions mecha-
nism for languages of this type, since to define how the ex-
ceptions mechanism would be incorporated into any CDL,
we needed a formalism to precisely capture the syntax and
semantics of this class, including a protocol for including
language-specific control structures. To illustrate the for-
malism, we provide examples that show how it captures con-
ditional execution, iteration and exception handling.

1. Introduction

It has been reported that the main challenge to visual
dataflow language design has not been the difficulty in
graphically representing dataflow, but rather, representing
control flow semantics within dataflow [11, 10]. Although,
formal semantics play a fundamental role in the develop-
ment, specification, and comprehension of control flow con-
structs, existing dataflow formalisms are either too language
specific, or incomplete, to provide a general solution to this
problem [12].

Classical dataflow, developed by Dennis et al. [8] as a
parallel hardware architecture solution to the so-called “von
Neumann Bottleneck” problem and previously by Suther-
land as a graphical specification for procedures [23], influ-
enced the design of early visual programming languages
such as DDN [6], and GPL [7]. Ackerman [1], and later
Abramson [24] listed the following important features of
dataflow languages: 1) freedom from side-effects, 2) local-
ity of effect, 3) data dependencies equivalent to scheduling,
4) single assignment of variables, 5) lack of history sensi-
tivity in procedures. However, they also note that items 1
and 4 lead to an awkward notion for conditional execution
and iteration based on gate and switch nodes. This design

presents challenges to developers as programs increase in
size and complexity, and the comprehensibility of the graph
decreases.

The difficulty of representing control structures in clas-
sical dataflow encouraged language designers to abandon
switches, gates, and cycles and adopt high-level control
nodes to represent control constructs. In these languages,
control is achieved via hierarchically embedded control
structures. Examples of this class of Controlled Dataflow
Languages (CDL) are LabVIEW [13], ShowAndTell [19],
and Prograph [5]. Despite these advances work still re-
mains on improving control structures. A recent survey of
advances in dataflow programming languages confirms that
control flow constructs are not adequately represented in ex-
tant languages [14].

The development of imperative textual languages, which
constitutes the largest group of languages in professional
use today, has benefited from the existence of mature tools
built up over many years. These tools provide facilities
for the definition of syntax, and development of scanners,
parsers, interpreters, compilers, and debuggers. Of partic-
ular significance is that these tools are based on sound se-
mantic theory [26]. In contrast, although the commercial
CDLs listed above share common features, each was de-
veloped “from scratch”, and their documented descriptions,
ranging from ad hoc to formal, have no common thread. As
a result, CDLs do not have a theory to support tools specific
to this class of languages.

The goal of the work reported here is to provide a frame-
work for investigating the addition of various kinds of con-
trol constructs to CDLs. The research evolved as a result
of earlier work on exception handling for CDLs [4], since
to define how the exceptions mechanism would be incorpo-
rated into any such language, we needed a formalism to pre-
cisely capture the common syntax and semantics of CDLs,
including a protocol for including language-specific control
structures. Such a framework not only serves as a basis for
investigating new control flow constructs, but as a kernel for
test-bed implementations for new tools and CDLs.

In the next section, we characterise CDLs by defining
their common syntactic and semantic features. In section 3
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we provide examples illustrating these definitions. The first
shows how they capture LabVIEW’s iteration and condi-
tional execution, while the second involves a simple case of
exception handling. Section 4 discusses related work, and
section 5 provides some concluding observations.

2. Characterisation of Controlled Dataflow

In this section we formally define the class of CDLs.
Note that these definitions do not describe a language, but
capture the common characteristics of languages of this
class. In particular, we include the concept of control struc-
ture without defining any specific control structures.

Section 3 provides examples that illustrate these defini-
tions. We urge the reader to consult these examples while
reading the rest of this section.

2.1. Conventions

In the following, various entities are defined as tuples,
the components of which are identified by names. We will
use functional notation to refer to components of such enti-
ties. For example, if E is an expansion (see Definition 9),
then oper(E) refers to the first component of E.

We will use functional notation to refer to elements of se-
quences. For example, if X is a sequence X(2) denotes its
second element. Expressions in which functional notation
occurs more than once are read left to right; for example
x(y)(z)(w) means ((x(y))(z))(w).

Sequences may be treated as sets when the meaning is
clear in context. In particular, a sequence may be used as an
operand to a set operation.

If f is a function with domain X , and Y is
a sequence over X , f(Y ) denotes the sequence
(f(Y (1)), f(Y (2), . . .).

If f is a function with domain X , and Y is a subset of
X , f(Y ) denotes the set {f(y) | y ∈ Y }.

If X is a set, we denote the set of all finite sequences of
elements of X by X∗.

2.2. Syntax

The following definitions describe the basic characteris-
tics of CDLs. In a specific language, additional structures
and functions may be necessary. For example, operations
in Prograph have names, necessitating a function that maps
the set of operations of Def. 1 to some name set.

We assume the existence of infinite, arbitrary but fixed
sets of variables, denotedX , and identifiers, denotedN .

Definition 1 A controlled dataflow language L is a 5-tuple
(O, D, terms, roots, body), where O and D are mutu-
ally disjoint sets called operations and diagrams of L
respectively, and:

(i) terms and roots are functions from O ∪D → X∗

(ii) body is a function mapping O → 2N×D, and D →
2O.

(iii) if O ∈ O, then terms(O) and roots(O) are disjoint,
and no variable occurs more than once in roots(O).

(iv) if D ∈ D and some variable occurs more than once
in vars(D) (see Def. 12), then it occurs exactly once
in roots(D) ∪ {x | x ∈ roots(O) for some O ∈
body(D)}

(v) if D ∈ D, there exists a partial order < on body(D)
such that if x is a root of O1 and a terminal of O2, then
O1 < O2

If O is an operation, identifiers are associated with di-
agrams in body(O) in order to distinguish the roles the
diagrams play in the execution of O. To streamline our dis-
cussion, we will use informal but clear phrases such as “the
diagrams of O”.

Roots and terminals are data producers and consumers,
respectively; so if a variable occurs in a diagram as a root
and a terminal, a data flow link is established from the root
to the terminal. Condition (iv), the single-assignment prop-
erty, guarantees that no variable is assigned a value more
than once. Condition (v) disallows data flow cycles. As we
will see, every operation involved in an execution occurs
in a diagram, except for the operation that starts the execu-
tion. Condition (iii) ensures that this “ex-diagram” opera-
tion does not violate the single assignment and acyclicity
conditions.

Definition 2 Given a CDL L, we define a function vars :
O ∪D → 2X as follows:

(i) if O ∈ O,vars(O) = terms(O) ∪ roots(O).

(ii) if D ∈ D,vars(D) = terms(D) ∪ roots(D) ∪ {x |
x ∈ vars(O) for some O ∈ body(D)}.

Definition 3 The inarity and outarity of an operation O
are, respectively, |terms(O)| and |roots(O)|.

Definition 4 The inarity and outarity of a diagram D
are, respectively, |roots(D)| and |terms(D)|.

Definition 5 If the inarity and outarity of an operation or a
diagram are m and n respectively, we say that the arity of
the operation or diagram is (m,n).

Definition 6 Let O1 and O2 be operations of L, then O2 is
a variant of O1 induced by a bijection γ on X iff

(i) O1 and O2 have the same arity.



(ii) γ(terms(O1)) = terms(O2)

(iii) γ(roots(O1)) = roots(O2)

(iv) there exists a bijection ψ from body(O1) to
body(O2) such that if (x,D) ∈ body(O1) then
ψ((x,D)) = (x,D′) where D′ is a variant of D in-
duced by γ.

Definition 7 LetD1 andD2 be diagrams of L, thenD2 is a
variant ofD1 induced by a bijection γ onX iff there exists
a bijection ψ from body(D1) to body(D2) such that

(i) for each O ∈ body(D1), ψ(O) is a variant of O in-
duced by γ;

(ii) for all operations O1, O2 ∈ body(D1) and integers
i and j such that 1 ≤ i ≤ |roots(O1)| and 1 ≤
j ≤ |terms(O2)| , roots(O1)(i) = terms(O2)(j)
iff roots(ψ(O1))(i) = terms(ψ(O2))(j).

There is not necessarily a unique variant of an operation
or diagram corresponding to a given bijection γ. For ex-
ample, a diagram may have two operations which have the
same terminals, no roots and the same body, in which case
there are two possible bijections ψ for mapping the body of
a diagram to the body of a variant.

Definition 8 A CDL L is closed iff for every bijection γ :
X ↔ X , if O1 is an operation of L and D1 is a diagram of
L, then there exists an operation O2 of L and a diagram D2

of L such that O2 and D2 are, respectively, variants of O1

and D1 induced by gamma.

Definition 8 embodies a standard property of program-
ming languages, that consistent renaming of variables does
not alter the meaning of a program.

2.3. Semantics

The definitions that follow apply to a closed CDL L. We
will define the semantics of L by characterising an execu-
tion as a tree which is transformed by repeatedly applying
a function to certain nodes. We define two types of struc-
tures, operation expansions and diagram expansions, that
form the nodes of this tree.

A diagram expansion captures the state of execution of
a dataflow diagram; that is, the usual notion of execution
driven by the flow of data through a graph. An operation
expansion corresponds to the execution of an operation in a
data flow diagram, and embodies the non-dataflow control
semantics specific to the language in question.

Definition 9 An expansion of an operation O is a pair
E = (oper, body) where oper(E) = O, body(E) is a
set of diagram expansions such that for eachB ∈ body(E)

(i) B is an expansion of a variant of a diagram in
body(O);

(ii) vars(B) is disjoint from both terms(O) and
roots(O);

(iii) if B′ ∈ body and B′ 6= B, then vars(B) and
vars(B′) are disjoint.

Definition 10 If E is an operation expansion, vars(E) =
terms(oper(E))∪roots(oper(E))∪{x | x ∈ vars(B)
for some B ∈ body(E)}.

Definition 11 An expansion of a diagram D is a 4-tuple
E = (id, roots, terms,body) where id is an identifier,
roots = roots(D), terms = terms(D) and body is a
set of operation expansions such that for each B ∈ body

(i) there is exactly one O ∈ body(D) such that O =
oper(B);

(ii) vars(body(B)) is disjoint from both terms and
roots;

(iii) if B′ ∈ body then vars(body(B)) is disjoint from
vars(B′).

The restriction in these definitions on the occurrences of
variables ensure that variables are local, so no data is unex-
pectedly transmitted between unrelated diagrams.

Definition 12 If E is a diagram expansion, vars(E) =
terms(E) ∪ roots(E) ∪ {x | x ∈ vars(B) for some
B ∈ body(E)}.

Definition 13 An operation expansion E if basic iff
body(E) = ∅. A diagram expansion E is basic iff ev-
ery operation expansion in body(E) is basic.

Definition 14 If E is an operation expansion, we de-
note by inputs(E) and outputs(E) the set if variables
terms(oper(E)) ∪ {x | x ∈ term(B) for some B ∈
body(E)} and roots(oper(E)) ∪ {x | x ∈ roots(B)
for some B ∈ body(E)}, respectively.

Execution of CDLs involves two familiar mechanisms:
function calling, in which an operation is executed by in-
voking the code which it represents, and dataflow trigger-
ing, in which execution of an operation is initiated by the
presence of data at some (perhaps none) of its terminals.
We will define an execution as a tree, the nodes of which are
operation expansions and diagram expansions, respectively
corresponding to these two mechanisms. In an execution
step, some subtree is replaced by a new tree. The structural
properties of this replacement are defined as follows.



Definition 15 If E is an expansion of a diagram D,
E1 ∈ body(E) and E2 is an expansion of oper(E1)
such that vars(body(E2)) is disjoint from vars(E) −
vars(body(E1)), then (id(E), roots(E), terms(E),
(body(E)− {E1})∪ {E2})) is an expansion of D, called
a direct replacement of E1 by E2 in E.

Definition 16 If E is an expansion of an operation O,
E1 ∈ body(E) and E2 is an expansion of a variant
of a diagram in body(O) such that vars(E2) is disjoint
from vars(E)− vars(E1), then (oper(E), (body(E)−
{E1}) ∪ {E2})) is an expansion of O, called a direct re-
placement of E1 by E2 in E.

Definition 17 If E1 and E2 are expansions, then E1 occurs
in E2 iff either E1 = E2 of E1 occurs in an element or
body(E2).

Definition 18 If E1 and E2 are expansions of the same op-
eration, and E1 occurs in an expansion E, then a replace-
ment of E1 by E2 in E is either a direct replacement of E1

byE2 inE, or a direct replacement ofE′1 byE′2 inE, where
E1 occurs in E′1 ∈ body(E) and E′2 is a replacement of
E1 by E2 in E′1.

A consequence of conditions (ii) and (iii) of Definition
9 and condition (ii) and (iii) of Definition 11 is that one
expansion can occur in another only once. That is if E1

occurs in E2 and E1 6= E2, then E1 occurs in exactly one
element of body(E2). Consequently, ifE1 andE2 are both
replacements of E3 by E4 in some expansion E, then E1 =
E2.

Definition 19 A range is a set that includes that special
value ⊗ (“undefined”). If V is a range and x, y ∈ V ∗, then
x and y are compatible iff |x| = |y| and for 1 ≤ i ≤ |x|,
either x(i) = y(i) or one of x(i) and y(i) is ⊗.

Definition 20 If Y is a subset of X a valuation for Y over
a range V is a function from Y to V .

The semantics of a particular CDL are embodied in a
function which conforms to the conditions in the next defi-
nition. Given an operation expansion and the values for the
variables that occur in it, this function computes a new ex-
pansion for the same operation, and values for its variables.
In Prograph, for example, if the given operation expansion
is basic and all the terminals of its operation have values
other than ⊗, the function will produce an expansion, the
body of which consists of an expansion of the diagram for
the first case of the corresponding method. It will also copy
the values from the terminals of the operation to the roots
of this diagram expansion.

Definition 21 Let E be the set of all operation expansions
of L, and V the set of all valuations of subsets of X over
some range V . An expansion function for L over V is a
partial function φ : 2X × V × E → V × E such that

(i) φ(Y, v, E) is undefined iff any of the following hold:

(a) the domain of v is not inputs(E)∩outputs(E)

(b) Y ∩ vars(E) 6= ∅

(ii) if φ(Y, v, E1) = (u,E2), then

(a) oper(E2) = oper(E1);

(b) the range of u is outputs(E2)

(c) ifB ∈ body(E2) then eitherB ∈ body(E1) or
B is a basic expansion of a variant of some dia-
gram in body(oper(E1)) such that vars(B) ⊆
Y ;

(d) if x is in the domains of both u and v|output(E1),
then either v(x) = ⊗ or u(x) = v(x).

(iii) if φ(Y, v1, E1) = (u′1, E
′
1), φ(Y, v2, E2) =

(u′2, E
′
2), oper(E1) is a variant of oper(E2) and

v1(terms(oper(E1)) and v2(terms(oper(E2))
are compatible, then u′1(roots(oper(E′1)) and
u′2(roots(oper(E′2)) are compatible.

Note that condition (iii) of Definition 21 enforces refer-
ential transparency, and would clearly have to be modified
in languages with side-effects.

We can now define the semantics of CDLs by describing
the execution of an operation. As we remarked above, the
“execution” is a tree representing the state of execution of
an operation. The root of the tree is an expansion of the
operation in question. The execution is advanced by apply-
ing the expansion function φ to some operation expansion
in the tree.

Definition 22 If O is an operation and φ is an expansion
function for L over some range V , an execution of O with
respect to φ is a pair (v,E) where v is a valuation of X over
V and E is an expansion of O, such that

(i) either E is basic and v(x) = ⊗ for every x /∈
terms(oper(E)),

(ii) or there exists an execution (v′, E′) of O such that

(a) E is a replacement of E1 by E2 in E′ where
φ(X−vars(E′), v′|inputs(E1)∪outputs(E1),E1)
= (u,E2)

(b) v(x) =

 u(x) ifx ∈ outputs(E2)
⊗ ifx ∈ X − vars(E)
v′(x) otherwise



Note that conditions (i)(b) and (ii)(c) of Definition 21
together with the way the expansion function is applied in
Definition 22, guarantee that the constraints on the occur-
rences of variables in the definitions of expansions are not
violated.

2.4. Discussion

The semantics of a particular language is embodied in
the expansion function that drives execution. First, the ex-
pansion function defines different kinds of data-driven ex-
ecution of diagrams, depending on how it reacts to values
available at the terminals of an operation. For example, it
may initiate execution of one or more of the operation’s
diagrams, even if every terminal of the operation has the
value ⊗ (“undefined”), resulting an “eager” execution. At
the other extreme, it may wait until every terminal has a
value other than ⊗, the conservative style of execution im-
plemented in Prograph, for example.

Second, the expansion function embodies any non-
dataflow control mechanisms that the language may have.
When applied to an operation expansion, the function de-
cides, on the basis of the current input and output values
of the operation and of the diagrams involved in its execu-
tion, whether execution of some of the diagrams should be
terminated and whether new diagram executions should be
initiated. It also determines new values for inputs to the dia-
grams and outputs from the operation, subject to the condi-
tion that it cannot overwrite any value except ⊗. This con-
dition, together with the syntactic restrictions on variable
occurrences, ensures that CDLs have the single-assignment
property.

The definition of execution does not include any notion
of ordering: the expansion function may be applied any-
where in the tree. Hence it accommodates any kind of im-
plementation, parallel or sequential. Note that a property of
all CDLs, embodied in the function body in Def. 1, is the
notion that an operation refers to a set of diagrams that will
be involved in any execution of the operation. This provides
the basis for procedure calling, and therefore recursion.

3. Modeling Control Flow

In this section we illustrate the definitions with examples
of conditional branching, iteration and exception handling
constructs.

3.1. LabVIEW: Conditional Branching and
Iteration

We begin with an example illustrating both conditional
branching and iteration. Figure 1 illustrates a LabVIEW op-
eration P1 with associated dataflow diagram, D1, that sums

the odd elements of an integer array. Comments beside the
operations, terminals, and roots name the associated oper-
ations and variables. Table 1 provides the correspondence
between items in the diagram and the preceding definitions.
Note that the identifiers 0 and 1 in the body elements of
P4 define the roles of the two diagrams in the conditional
construct, clarified in the execution below.

x1

x2

x3

x4

x5

x6

x7

x8

x9
x10

x11
x12

x17

P1
D1

D2

P2
P3

P4

P5

x16

x0

[2,3,5]

0

x13
x14
x15

D3

Figure 1. Example: LabVIEW Loop and Con-
ditional

Table 1. The structure underlying the Lab-
VIEW fragment in Figure 1

operation /
diagram

body roots terms

P1 {(0, D1)} (x17) (x0, x1, x2)

D1 {P2, P3, P4} (x3, x4, x6, x7) (x16)

P2 ∅ (x5) ()

P3 ∅ (x4) (x4, x5)

P4 {(1, D2),
(not− 1, D3)}

(x16) (x4, x8, x6)

D2 {P5} (x9, x10, x11) (x12)

D3 ∅ (x13, x14, x15) (x15)

P5 ∅ (x12) (x9, x10, x11)

To illustrate the definition of execution, suppose opera-
tion P1 is provided with input array value [2, 3, 5] on ter-
minal x1 and 0 on terminal x2. We construct a sequence
K0,K1, . . . of executions, where K0 = (v0, E0), E0 is the
basic expansion (P1,∅), v0(x1) = [2, 3, 5], v0(x2) = 0
and v0(x) = ⊗ for x 6= x1, x 6= x2. In the following, φL

denotes the expansion function of LabVIEW. A full defini-



tion of φL is beyond the scope of this paper: however, the
applications of φL in the example should give the reader the
flavour of this definition.

In the following, to simplify the presentation, each
valuation maps to ⊗ all variables for which it is not
explicitly defined. Iteration, in this example, is controlled
by a special tunnel terminal, x1, which limits the iteration
count to the length of the array it receives as input. The
first iteration starts by replacing the expansion E0 for P1

with an expansion E1 for P1, the body of which contains
an expansion of D1. The new valuation sets the root x4 of
the diagram expansion to the value of array element 0, as
indicated by the identifier of the diagram expansion.

K1 = (v1, E1) where
φL(X -{x0, x1, x2, x17}, v0|{x0,x1,x2,x17}, E0) = (u1, E1)
E1 =
(P1, {(0, (x3, x4, x6, x7), (x16), {(P2,∅), (P3,∅), (P4,∅)})})
v1(x4) = u1(x4) = 2 (the array element at index 0)
v1(x6) = u1(x6) = v1(x2) = 0
v1(x7) = u1(x7) = 0 (identifier of diagram expansion)

Note that E1 is a replacement of E0 by E1 in E0, so
thatK1 is properly derived fromK0 according to Definition
22. We invite the reader to verify that each of the following
steps is a proper application of this definition.

As we remarked earlier, Definition 22 does not prescribe
the expansion to be replaced when generating a new
execution from an existing one since the choice is specific
to each language. In LabVIEW, operation P2 is executed
next. Accordingly, the next execution in the sequence is:

K2 = (v2, E2) where
φL(X − {x0, . . . , x8, x16, x17}, v1|{x5}, (P2,∅)) = (u2, (P2,∅))
E2 = E1

v2(x5) = u2(x5) = 2
v2(x) = v1(x) for x ∈ X − {x5}

In K2, the structure of the execution is unchanged,
but the valuation is extended to assign the value 2 to x5.
Odd elements are selected using modulo 2 calculated by
operation P3.

K3 = (v3, E3) where
φL(X − {x0, . . . , x8, x16, x17}, v2|{x4,x5,x8}, (P3,∅))
= (u3, (P3,∅))
E3 = E2

v3(x8) = u3(x8) = 0
v3(x) = v2(x) for x ∈ X − {x8}

Next, the output of P3 is used to choose the appropriate
diagram for P4. Accordingly, the expansion (P4,∅) in E3

is replaced by an expansion for P4, the body of which is an
expansion of D3.

K4 = (v4, E4) where
φL(X − {x0, . . . , x8, x16, x17}, v3|{x4,x6,x8,x16}, (P4,∅))
= (u4, F )
E4 =
(P1, {(0, (x3, x4, x6, x7), (x17), {(P2,∅), (P3,∅), F})})
F = (P4, {(0, (x15), (x13, x14, x15),∅)})
v4(x13) = u4(x13) = v3(x4) = 2
v4(x14) = u4(x14) = v3(x8) = 0
v4(x15) = u4(x15) = v3(x6) = 0
v4(x) = v3(x) for x ∈ X − {x13, x14, x15}

Since the body of D3 is empty, the next step simply
involves propagating the value of x15, as follows.

K5 = (v5, E5) where
φL(X − {x0, . . . , x8, x13, x14, x15, x17}, v4|{x4,x6,x8,x13,...,x16}, F )
= (u5, F )
E5 = E4

v5(x16) = u5(x16) = v4(x15) = 0
v5(x) = v4(x) for x ∈ X − {x13, x14, x15}

Since no unexecuted operations remain the first iteration
is complete.

The second iteration begins with replacing the current
expansion of P1 with a new expansion, the body of which
is an expansion of a variant of D1.

K6 = (v6, E6) where
φL(X − {x0, . . . , x8, x13, . . . , x17}, v0|{x0,...,x8,x16,x17}, E5)
= (u6, E6)
E6 =
(P1, {(1, (x′3, x′4, x′6, x′7), (x′16), {(P ′2,∅), (P ′3,∅), (P ′4,∅)})})
v6(x

′
4) = u6(x

′
4) = 3 (array element at index 1)

v6(x
′
6) = u6(x

′
6) = v5(x16) = 0 (looped variable)

v6(x
′
7) = u6(x

′
7) = 1 (identifier of the diagram expansion)

Execution continues in this way until the identifier of the
diagram expansion in the current expansion for P1 is 3, ex-
ceeding the allowable index for the input array.

3.2. Vivid: Exception Handling

The second example illustrates how we can model ex-
ception handling. The Vivid Framework [9] implements an
exception handling mechanism for CDLs in which an ex-
ception is handled by popping the call stack to find a han-
dler that matches the type thrown. In Vivid, an exception
handler is realised by a set of dataflow graphs executed in
place of the exception-generating dataflow graph, to supply
output values to allow execution to continue.

A simple example is shown in Figure 2. Executing the
operation Save invokes its diagram D1, causing the execu-
tion of SaveNote which calls the AppendFile primitive to
append a string to a file. AppendFile throws a WriteEx ex-
ception upon write failure. This exception is caught by the
WriteEx alias attached to the left side of the SaveNote op-
eration. An alias is an operation that invokes an exception



Figure 2. Example: Vivid Exception Handler

Table 2. Part of the structure underlying the
Vivid code fragment in Figure 2

operation /
diagram

body roots terms

P0 {(1, D1)} () ()

D1 {P1, P2, P3} () ()

P2 {(1, D2),
(WriteEx1, D3)}

(x2) (x1)

D2 {P4, P5} (x3) (x6, x5)

P5 ∅ (x4, x3) (x6, x5)

D3 {P6, P7} (x8, x7) (x10)

handler when execution of the associated operation gener-
ates an exception of the type indicated by its label. The
WriteExHandler handler receives the WriteEx exception
on its first root (�), closes the offending file, and outputs an
error message which is transmitted to the show operation.

Table 2 shows part of the structure underlying the exam-
ple in Figure 2. Note that P5 has an implicit root, x6, not
part of the visual code, where the thrown exception appears,
and D2 has an implicit terminal x6.

Complete execution requires 10 steps, however, for the
sake of brevity, we will review only those that handle the
exception.

Starting with a basic expansion for the operation Save,
the execution proceeds with successive applications of φV ,
the Vivid expansion function, until operation AppendFile
throws a WriteEx exception, at which point, the execution
is as follows.

K = (v,E) where
E = (P0, {(1, (), (), {(P1,∅), E1, (P3,∅)})
E1 = (P2, {(1, (x3), (x6, x5), {(P4,∅), (P5,∅)})})
v(x1) = v(x3) =“Empty Trash”
v(x4) =“ /notes.txt”
v(x6) = 〈WriteEx〉 (an instance of WriteEx)

In accordance with Vivid exception handling semantics,
execution will now proceed with diagram D3 for the excep-
tion handler. To achieve this, the expansion function reacts
to the presence of the exception value on the terminal x6 of
D2, determining a new expansion for P2 as follows.

K′ = (v′, E′) where
E′ = (P0, {(1, (), (), {(P1,∅), E1, (P3,∅)})
φV (X − {x1, x2, x3, x4, x6}, v|{x1,x2,x3,x5,x6}, E1) = (u,E2)
E2 = (P2, {(WriteEx1, (x7, x8), (x10), {(P6,∅), (P7,∅)})})
v′(x1) = v(x1) =“Empty Trash”
v′(x8) = u(x8) = 〈WriteEx〉
v′(x7) = u(x7) =“Empty Trash”

After replacing the diagram expansion for D2 with one
for D3 the exception handler is executed to produce a sub-
stitute value for the output of P2 from x10 to x2 thus com-
pleting the handling of the exception.

4. Related Work

An early formalism for flow diagrams, reminiscent of
dataflow, was presented as early as 1966 by Bohm and Ja-
copini who give a normalisation method to show that com-
plex diagrams can be reduced by composition and iteration
of two and three simpler diagram forms [2]. Early clas-
sical dataflow formalisms [16] represent programs as di-
rected graphs where the nodes represent instructions and the
arcs represent dependencies of token flow [8], or unbounded
FIFO queues [15].

The semantics of pure dataflow diagrams is presented by
Burza and Weide who transform them into Petri nets, to
specify execution, and into finite automata, for expressing
semantics [3]. In a similar approach Kavi et al. [17] have
shown isomorphisms between dataflow graphs and Petri net
graphs. They cite the ability of dataflow graphs to model
parallel systems, their amenability to direct interpretation,
and notational compactness (as compared to Petri nets) as
benefits. More recently, using coloured Petri nets, Störrle
defined the semantics of dataflow control structures and ex-
ceptions in UML 2.0 Activity Diagram notation [22]. Pro-
cedural abstraction in dataflow graphs has also been defined
using networks of Petri nets [18].

Existing CDLs are described in a variety of ways, from
informal to precise, from “by-example” to rigorous. For
example, the semantics of Prograph are formally defined as
function evaluation [21]; the structure and operation of Lab-
VIEW are described in the informal but thorough language



of patents [20]; and the semantics of VPP are described al-
gorithmically [25]. Each such description is confined to a
particular language, providing no useful characterisation of
the common properties of CDLs.

5. Concluding Remarks

Many of the visual languages that have been proposed
or implemented are controlled dataflow languages, in which
acyclic dataflow diagrams are enclosed in control structures.
We have presented a formal definition of this useful class of
languages, capturing their common properties and provid-
ing a means for incorporating any control structures and any
execution ordering. We have presented simple examples
that show how the definitions capture iteration, conditional
branching, procedure calling and exception handling. Space
limitations preclude more complex examples that would il-
lustrate the more subtle details.

In the definitions we have presented, the semantics of all
control structures for a particular language are embodied in
the omniscient and monolithic expansion function for that
language. In future work, we will look at ways to modu-
larise this function, breaking it up into separate functions for
different control structures. This should allow us to factor
out more of the common features of CDLs, such as iterative
constructs.

Another useful consequence of the above definitions is
that we now have a basis for proving some common proper-
ties of CDLs, such as those mentioned in Section 2. Future
work will also be directed to realising language tools such
as a CDL implementation upon which to design, test, build,
and run new languages of this class.
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