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Abstract. A major application of visualisation is to the design of structured
objects such as buildings, machinery and electronic circuits, as in Computer-
Aided Design (CAD) systems. Complex designs are frequently parameterised so
that they represent families of objects rather than single artifacts, and building
them requires design environments that support both the concrete visualisation
and manipulation of components, and the abstract specification of how they are
related. CAD systems usually separate these two aspects, providing the abstract
programming capability via a textual programming language grafted on to a 3D
object editor and solid modeler.

A recently proposed design language merges these two activities by embedding
representations of solid objects in a visual logic programming language. A prac-
tical issue that arises is how to automatically generate a �sample look�, a reason-
able representation for a parameterised object which can be displayed during ex-
ecution (assembly) of a design. We present a solution to this problem based on
�factoring�, which separates the constraints on a solid object from its geometric
properties.

1 Introduction

The work reported here is part of a project originally  motivated by the
hypothesis that since both geometric objects and some of the operations
used for combining them can have concrete visual representations, a visual
design environment that provides programming capabilities via manipula-
tion of such representations would be a powerful tool for creating parame-
terised objects. Such a design environment would be an attractive
alternative to conventional CAD systems, where the algorithms used for the
parameterised design and the objects on which they operate have dissimilar
representations, one textual, the other pictorial.

This observation led to Language for Structured Design (LSD), a pro-
gramming language for parameterised design that provides a close mapping
between the programming domain and the design space. LSD also allows
designers to more easily solve certain problems within the design space, by
employing its declarative problem solving capabilities [3].
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The original LSD, as a simple exploration of the notion of design in a
visual language, had just one operation on solids. However, the selection of
operations required in a design language depends on the domain of applica-
tion, so LSD clearly needed to be extensible. As a basis for extensibility, a
very general notion of design space was required, providing just enough
detail to capture the essence of solids in logic. To meet this need, a formal
model for characterising objects in a design space was proposed in [6]. This
formalisation also defines the concept of an operation on solids, and selec-
tive interfaces that allow solids to declare what operations can be applied to
them. Based on this model, the required generalisation of LSD was made. It
is important to note that this formalisation characterises solids and opera-
tions only to the extent required by LSD, so does not address any of the prac-
tical details of solid modeling. Hence, an implementation of LSD needs to
utilise a capable solid modeling package in order to achieve its objectives.
By a �solid modeling package� we mean a solid modeling kernel extended
with additional capabilities to provide services suitable for LSD. For exam-
ple, the same way that Autodesk Inventor [1] extends the ACIS kernel from
Spatial Technologies [5,11], and SolidWorks [10] or Bentley Systems�
MicroStation [4] extend the Parasolid kernel [9] from Unigraphics.

In another thread, it was noted in [3]  that LSD, like any other Visual Pro-
gramming Language (VPL) would substantially benefit from being imple-
mented in a carefully designed environment. For example, an interactive
debugger which allows a programmer to observe and analyse the behaviour
of an LSD program at run-time through the use of features such as execution
pause and dynamic execution rollback, would be a valuable part of an LSD

implementation. Following this observation, a programming environment
with certain debugging features including an animated execution of pro-
grams was discussed in [3].

The major motivation for providing the formal model in [6] was to gen-
eralise LSD with the notion of a general operation rather than extending LSD

with an exhaustive list of operations. However, other requirements for the
solid modeler, were not addressed. In this paper, we will extend the solid
modeler to formally describe the notion of sample look for objects required
during the animated execution of an LSD program.We also make some small
but important adjustments to some of the definitions in [6] to better capture
the notion of invalid objects.

Since our solutions to the aforementioned problems involves an exten-
sion to the definitions given in [6], in the next section, we will briefly sum-
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marise the core concepts presented there, modifying some of the original
definitions to remove an anomaly in the way they dealt with invalid objects.
The reader is encouraged to consult [6] for a thorough discussion of the
original formal model. First, however, we define some notation.

If x and y are sequences, we denote the concatenation of x and y by x y.
For example, if x is x1,x2,�,xn and y is y1,y2,�,ym then x y means
x1,x2,�,xn,y1,y2,�,ym. If x is a sequence and y is not a sequence, for consis-
tency, by x y we mean x1,x2,�,xn,y and by y x we mean y,x1,x2,�,xn. We use
() to represent a sequence of length zero. If x is a sequence, we may also use
x to denote the set of elements in x.

If C is a formula, by var(C) we mean the set of all free variables of C. If
C is a formula, and a is a term, we use the standard notation Cx[a] for the
formula obtained from C by substituting a for every occurrence of x. We
extend this notation to sequences of variables and terms of the same length.
That is, if x1,x2,�,xn is a sequence of variables and a1,a2,�,an is a sequence
of terms, then Cx ,x ,�,x [a1,a2,�,an] is the formula obtained from C by
substituting ai for every occurrence of xi for each i (1  i n). We might also
combine single variables and sequences of variables in this notation. For
example, Cx,y[a,b] means that each of x and y is either a single variable or a
sequence, and each of a and b is either a single term or sequence of terms,
of the same length as x and y, respectively. Another example, is Cx�y[a]
which means that a is a sequence of terms such that |a| = |x�y|. Cx�y,z[a,b]
means that a is a sequence of terms such that |a|=|x�y|, and b is a sequence
of terms iff z is a sequence of variables of the same length as b.

We use a set of formulae as an alternate notation for a formula which is
the conjunction of the formulae in the set such that none of them are con-
junctions. The conjunctions of two or more sets of formulae is understood
to be the conjunction of the formulae in the sets. If C is a set of formulae
and x  var(C), by Cx we mean the set of formulae { E | E  C , x

var(E)=  }. If x is a variable, Cx has the obvious meaning C{x}.

If  is a partial function from A to B, by scope( ) we mean the set {x

|  x   A and  is defined for x } and by the image of  we mean the set
{ (x) | x  scope( )}.

If C is a formula,  is a partial function, and x�y�u  var(C), (x�y�z)=[C]
(x�z�u) defines the partial function  such that a�b�c  scope( ) if there is

a unique d such that Cx,y,u[a,b,d] holds and a�c�d  scope( ). If the partial

1 2 n
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function  can be defined uniquely and unambiguously by an expression E,
then we can substitute E for  in the definition of .

2 Formal Model

Solids are modeled in a design space. The design space is a normal Euclid-
ean space augmented with an arbitrary but fixed finite number of real-
valued properties. A solid is a function that maps a list of parameter values to a
set of points in the design space constituting the volume of the solid. There-
fore, each solid in the design space represents a family of objects, each rea-
lised by a particular choice of parameter values. According to [6], if a
particular vector of values assigned to the variables over which a solid is
defined produce the empty set of points, this result is considered to be
invalid: that is, to correspond to an impossible object. However, the empty
set can also represent a valid solid, for example when a solid results from
computing the intersection of two non-intersecting objects. In order to rec-
tify this anomaly, we modify some of the definitions in [6]. Each definition
in this section is either the same as the corresponding definition in [6] and
is reproduced for completeness, possibly with notational changes, or has
been modified to deal with the anomaly. In the latter case, the modification
will be explained following the definition.

Definition 2.1: A design space in m dimensions over r properties for some inte-

gers m > 0 and r  0 is the set of all subsets of Rm Rr.

Definition 2.2: A solid in a design space D in n variables for some n 0 is a

partial function : Rn  D such that, if (v,p) and (v,q)  (y) for some y 

Rn, then p=q. A variable of  is an integer i such that 1  i  n. Symbolic
names may also be used to refer to the variables of a solid.

The intuition behind this definition is that something we normally think
of as a solid can be characterised by a set of points in space, where each
point has a unique value for each property associated with it. 

Definition 2.2 differs from that in [6] by defining a solid to be a partial
function instead of a function. This effectively makes the interpretation of
the empty set of points unambiguous, allowing us to consider every set of
points produced by such a function to correspond to a realisable object,
whether or not the set is empty.
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This definition also provides parameterisation of objects. The image of
a solid corresponds to a family of real-world objects, each created by the
partial function from a vector of variable values.

We will continue to refer to a partial function that defines a solid simply
as a �function� when the meaning is clear in context.

Definition 2.3: A solid  in D is valid iff the image of  is not empty.

Note that a solid can generate the empty set of points as one of the
members of the family that it defines. The image of a solid may even contain
just the empty set, although such solid would be of no practical significance.

Definition 2.4: If  and  are solids in a design space D,  and  are said
to be equivalent, denoted , iff they have identical images.

This definition recognises that a family of objects in a design space may
have more than one representation as a solid (partial function) and is sim-
pler than its counterpart in [6], since there is no longer any need to eliminate
invalid objects from the images of  and .

Consider a two dimensional design space over the three properties tem-

perature, colour, and material where temperature is determined by colour and mate-

rial, and colour is determined by temperature and material. A Square solid in
this space can obviously be defined by a function  of variables (b,c,l, ,tem-

perature,colour) or by another function of variables (b,c,d,e,material,colour),
where b, c, d, e, l and  are the geometric variables shown in Figure 1

Figure 1: A Square in the design space.

Example 2.5: To further illustrate the definition, let D be a design space in
2 dimensions over zero properties: then the partial function Disk is a solid
in three variables which characterises the family of disks with radius r and
centre at (b,c) defined as

Disk(b,c,r)= [ 0 r ] { (x,y) | x, y  R and (x�b)2+(y�c)2 r2 }.

(b,c)

(d,e)

l
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Definition 2.6: If D is a design space and n is a positive integer, an n-ary

operation in D is a quintuple ((a1,�,an),(z1 � zn),F,L,C) where

� a1,�,an and z1 � zn are sequences of distinct variables such that

for each i (1  i n), zi is a sequence of variables and a1,�,an and

z1 � zn are disjoint.

� F is a partial function from Dn to D such that x  scope(F), if
(e,g) and (e,h)  F(x), then g=h.

� L=(L1,�,Ln) is a sequence of formulae, called selectors, such that

var(Li)=ai zi. The integer |zi| is called the size of Li.

� C is an open formula, called the constraint of the operation, such
that var(C)=z1 � zn.

This definition differs from that in [6] in that the function F is now
defined as a partial function from Dn to D, allowing the scope of the solid
resulting from the application of an operation to its operand solids to be
expressed, among other things (see below), in terms of the scope of F.

Example 2.7: The Bonding operation in a 2D design space is defined by
((a1,a2),(p1,p2,p3,p4,p5,p6,p7,p8),fuse,{edge1,edge2},bond), where fuse(x,y)=[

x y=l ](x y), such that l is a line, bond={p1=p7 , p2=p8 , p3=p5 , p4=p6},

edge1=edgea,b,c,d,e[a1,p1,p2,p3,p4], edge2= edgea,b,c,d,e[a2,p5,p6,p7,p8], and

edge(a,b,c,d,e) is true iff (b,c) and (d,e) are points in a, every point on the line
between them is in a, every point to the right of this line is in a, and every
point to the left of this line is not in a.

Definition 2.8: If  is a solid in n variables and L is a selector of size k of
some operation, where var(L)=a z and |z|=k, then an L-interface to  is a

partial function :Rn Rk such that (u)=[ u scope( ) , La,z[ (u),y)] ] y,

and u,v  scope( ), if (u)= (v) then (u)= (v).

This definition modifies its counterpart in [6] to account for our revised
notion of validity of solids.

Example 2.9: Let Disk be as in Example 2.5. Since no two points in a disk
satisfy the edge selector from Example 2.7, no edge-interface to Disk can
be defined. Therefore, Disk cannot be an operand for the Bonding opera-
tion.

Definition 2.10: Let =((a1,�,an),(z1 � zn),F,L,C) be an n-ary operation;

where L = (L1,�,Ln), and for each i (1 i n) let i be a solid in ni vari-
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ables, and i be an Li-interface to i. A solid in t=  variables,

called the application of  to 1,�, n via 1,�, n is defined as follows. If y 

Rt denote by y1 the first n1 elements of y, denote by y2 the next n2 elements

of y and so forth, then (y) is defined as

(y)=[ Cz ,�,z [ 1(y1),�, n(yn)] ] F( 1(y1),�, n(yn)).

This definition modifies its counterpart in [6] by properly accounting
for the validity of a generated solid. The solid generated by an operation is
defined for a particular selection of values for its variables provided that the
constraint of the operation is satisfied by those values, each of the operand
solids is defined for that selection of values, and the list of subsets of D is
in the scope of F. This condition, implicit in the definition, is made explicit
in following lemma.

Lemma 2.11: If  is the solid defined in Definition 2.10 and u 
scope( ), then ui  scope( i) for each i (1 i n), and ( 1(u1),�, n(un))

 scope(F).

Proof. Since u  scope( ), it has to be in the scope of the partial function
defined by the expression F( 1(u1),�, n(un)). Therefore, ui  scope( i)

for each i (1 i n), and ( 1(u1),�, n(un))  scope(F). 

Example 2.12: Assume that we want to attach the two semi ring-shape
objects in Figure 2 using the Bonding operation. Although the constraint
of the Bonding operation is true, the two objects cannot simultaneously
satisfy  the Bonding condition and be in the scope of fuse as defined in
Example 2.7, and therefore the application of the Bonding operation to
these objects will always fail. By failing, we mean that the image of the solid
resulting from the application of Bonding to these objects is empty.

Figure 2: An unsuccessful application of Bonding.

ni
i 1=

n

1 n

x

y

(p1,p2)

(p3,p4)

(p7,p8)

(p5,p6)



8

In the next example, we show how the interfaces in the application of
an operation are handled.

Example 2.13: Let rectangle1(x1,y1,w1,h1)=Rectangle(x1,y1,w1,h1) and

rectangle2(x2,y2,w2,h2) = Rectangle(x2,y2,w2,h2) be two rectangle solids in a

2D design space over zero properties where

Rectangle(x,y,w,h)=[ 0 w, 0 h ] { (a,b) | x  a  x+w , y  b  y+h }.

Also let rightSide(x,y,w,h)=(x+w,y+h,x+w,y) and leftSide(x,y,w,h)=
(x,y,x,y+h) be edge-interfaces to rectangle1 and rectangle2, respectively.
The application of Bonding to rectangle1 and rectangle2 via rightSide

and leftSide is the solid

(x1,y1,w1,h1,x2,y2,w2,h2) 

= [ bondp ,�,p [ x1+w1, y1+h1, x1+w1, y1, x2, y2, x2, y2+h2 ] ]

fuse(Rectangle(x1,y1,w1,h1),Rectangle(x2,y2,w2,h2)) 

= [ x1+w1=x2 , y1+h1=y2+h2 , y1=y2 ]

fuse(Rectangle(x1,y1,w1,h1),Rectangle(x2,y2,w2,h2)).

Figure 3: Application of Bonding to two rectangles

The values required for the constraint of an operation are computed
from the operand solids by the interfaces. For instance, in Example 2.7,
edge-interfaces rightSide and leftSide are used to compute the bonding
edges of the two rectangles used by the operation for fusing the two rectan-
gles together. However, it would be easier if the solids explicitly provided
the information required by the constraint of an operation. That is, an inter-

1 8

x

y

(x1,y1)

(x2,y2)

h2

h1

w1

w2

(p1,p2)

(p3,p4)

(p7,p8)

(p5,p6)
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face is a simple mapping of the vector values used for the creation of the
solid on to a selection of those values. When the definition of a solid
includes all the variables required by an interface of an operation in the list
of its input values, the solid is said to expose that interface, captured by the
following definition modified from its counterpart in [6] to account prop-
erly for validity.

Definition 2.14: If  is a solid in n variables, L is a selector of size k of
some operation, and  is an L-interface to ,  is said to expose  iff there
exists a sequence p1,�,pk of variables of , such that for every y 

scope( ), for all i (1  i  k) (y)i=yp . Each of the variables pi is said to be

required by . The variables p1,�,pk are not necessarily distinct, and the

sequence p1,�,pk is not necessarily unique.

3 Sample Look

As we discussed earlier, one of the solid modeler�s requirements arising
from the LSD debugger is support for a sample look for a solid: that is, a
visual representation of some member of the solid's image. Providing a
sample look for a predefined component can be achieved by assigning
sample values to the variables that define the geometry and appearance of
the corresponding solid; for example, size, position, orientation, colour, and
possibly material. These values can then be used by the solid modeler to
instantiate the designated member of the family of objects corresponding
to the solid, capturing the essential visual aspects of the family. The sample
look for a family of objects is only a visual aid for tracing the execution of
an LSD assembly when it is executed in LSD�s debugger environment. Note
that the sample values chosen are of no logical significance.

The sample values for the variables of a predefined solid could be
assigned by the designer of the solid and later be overridden by the pro-
grammer in order to customise the look. This conveniently solves the
sample look problem for predefined solids and also gives the programmer
the option to change sample looks on a case-by-case basis. However, it is
not clear how such sample values should be selected or refined once an
operation is applied to operand solids. In other words, although the above
mentioned approach is useful for preassembled solids, it will not serve for
solids assembled during execution. For instance, when a variable is instan-
tiated to a value different from its sample value, or when a variable is unified
with or constrained to another variable, the predefined sample value must

i
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be invalidated. Consider an example where two planar solids are to be
attached with a bonding operation as illustrated in Figure 4(a). The first
operand is a solid in five variables defining a square with fixed size and
anchored in place defined as

Base(x1,y1,x2,y2,a)= [ x1= .4 , y1= .2 , a= .2 , x2=x1 , y2=y1+a ]

{ (x,y) | x,y  R , x1�a  x  x1 , y1  y  y1+a }.

Figure 4: Sample looks of two trapezoids.

In this definition, the formula anchors the reference point of the square
at (.4, .2) and fixes its size at .2 while the remainder defines a set of points
comprising a square. Note that Base is a very restricted solid which could
be expressed as a constant function. However, we find the above definition
useful to describe the sample look computation process. 

The second operand is a completely free right trapezoid defined by

RightTrapezoid(x3,y3,x4,y4,b1,b2,h)=[ x3=x4 , b1=y4�y3 , b1 < b2  2b1 , 0<h

]

{ (x,y) | x,y R , x3  x  x3+h , y3  y  line

}.

Note that the scope of RightTrapezoid is constrained such that the
long base of RightTrapezoid cannot be greater than twice the length of the
short base. In this definition, line is the expression representing the long leg
of the trapezoid defined by the line that passes through the points (x3,y3+b1)
and (x3+h,y3+b2), that is;

line=y3+b1+(x�x3)(b2�b1)/h

x

y

(a)

x

y

(b)

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

a

b2b1

h

0.2

0.2
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In Figure 4(a), Base is represented by its actual appearance, so its
sample values are x1= .4, y1= .2, x2= .4, y2= .4, and a= .2, while RightTrap-

ezoid is represented by a sample look defined by the sample values x3= .8,
y3= .4, x4= .8, y4= .8, b1= .4, b2= .6, and h= .2.

Clearly, after the application of the bonding operation to Base and
RightTrapezoid, the short base of RightTrapezoid will be constrained to
the size of Base which is .2, different from the original sample value of b1=
.4. Consequently the sample value of the long base, b2, of RightTrapezoid

is invalidated.

In this section, we consider the problem of computing values with
which to generate a sample look for an object resulting from the application
of an operation to its operands.

One solution is to prohibit the variables of a solid from being depen-
dant, thereby ensuring that changes in one variable will not affect the others.
Since the lack of dependencies between the variables of a solid means that
the scope of the solid is the cartesian product of subsets of R, one for each
variable of the solid, the sample value for a particular variable can be chosen
simply by selecting a value from the corresponding subset. However, this
would put a major limitation on the solid modeler, severely limiting the set
of representable objects. Instead, we introduce the notion of factoring to
provide for the automatic computation of a sample look. As we will show
later, factoring has other implications as well. For example, it can be used
to restructure the representation of a solid in LSD so that it exposes different
sets of interfaces.

4 Factoring

A geometric kernel that provides solid modeling for LSD, as part of its
functionality, rejects any list of values that would result in creating an
impossible object. Therefore, the definition of a solid as a partial function
is a reasonable reflection of how geometric kernels operate. Although this
responsibility for avoiding the creation of impossible objects could entirely
be achieved by a chosen geometric kernel, there are other reasons for know-
ing the dependencies between the values passed to the kernel:

� computing values for a sample look, as discussed above

� finding parameter sets, and

� finding equivalent solids which expose required interfaces.
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The example in the previous section required such information about
the dependencies between variables, and expressing the solids using the
notation used in Definition 2.10 made that information explicit.

In order to make the information about the dependencies between vari-
ables available, we extend the formal model of design space and solids so
that the generative aspects of the employed kernel can be separated from
the expression of the dependencies between values that are used by the
kernel for creating instances of objects. This concept, called factoring, is used
to express the dependencies between variables of a solid in a wrapper
around a solid modeling kernel.

Definition 4.1: If  is a solid in n variables over D, a factoring of  is a
quintuple (x,y,z,C, ) where

� x, y, and z are disjoint sequences of distinct variables of lengths n, m
and k, respectively, called the input, internal and geometric variables,
respectively. (a)

� C is a set of formulae, called the constraint, such that var(C)=x�y�z.

(b)

� s  z, s has only one occurrence in C and there exists a unique
equality E  C such that var(E)={s} or var(E)={s,l} and l  x y 
(c)

�  is a solid in k variables in D. (d)

� u  Rn, if u  scope( ), then  v Rm and  w Rk such that
Cx,y,z [u,v,w] is true. (validity)

� u  Rn, v  Rm, w  Rk, if Cx,y,z[u,v,w] is true, then u 

scope( ) iff w  scope( ). (conformity)

� u  Rn, v  Rm, w  Rk, if u  scope( ) and Cx,y,z[u,v,w] is

true, then (u)= (w). (identity)

The factoring is said to be perfect if the following condition also holds:

� u  Rn, v  Rm, w  Rk, if Cx,y,z[u,v,w] is true, then u 

scope( ). (perfection)

The intuition behind this definition is that values for the variables of a
solid are checked for consistency by the constraint. Once consistency is
ensured,  is applied to the values computed by the constraint for its vari-
ables to obtain the desired object. An important property of a perfect fac-
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toring is that if C approves of the values provided for the input variables,
corresponding values for the geometric variables are guaranteed to be
acceptable to the partial function .

The four conditions validity, perfection, identity, and conformity are separated
in order to emphasise their roles in the definition of a factoring. The validity
condition indicates that if a vector of values is in the scope of a solid , then
this vector can be extended by adding values for the internal and geometric
variables of the factoring in such a way that the extended vector of values
satisfies C. This condition ensures that a factoring does not reject a legiti-
mate list of values. The perfection condition says that C can be used to
determine if a list of values is indeed in the scope of . This is the property
of a factoring that will help us to compute a sample look for an assembled
object. The identity condition ensures that a factoring of a solid corre-
sponds to the same family of objects as . An obvious consequence of the
identity condition is that the image of  is a subset of the image of . The
conformity condition indicates that once a vector of values satisfies C, the
lists of input and geometric values both are in the scopes of  and ,
respectively, or both are not. The practical implication of this condition is
that if a vector of values satisfies C, and  successfully generates an object,
the object is in fact in the image of .

A solid can have more than one factoring.

Example 4.2: Consider the solid  generated in Example 2.13, defined by

(x1,y1,w1,h1,x2,y2,w2,h2) = [ x1+w1=x2 , y1+h1=y2+h2 , y1=y2 ]

fuse(Rectangle(x1,y1,w1,h1),Rectangle(x2,y2,w2,h2)).

Clearly, ((x1,y1,w1,h1,x2,y2,w2,h2), (), (z1,�,z8), C, fuse(Rectangle(z1,z2,z3,z4),

Rectangle(z5,z6,z7,z8))) is a factoring of  where 

C = { x1+w1=x2 , y1+h1=y2+h2 , y1=y2 ,

 x1=z1 , y1=z2 , w1=z3 , h1=z4 , x2=z5 , y2=z6 , w2=z7 , h2=z8 }

and the last item in the tuple is an expression defining a partial function
which is a solid.

Another factoring of  is

((x1,y1,w1,h1,x2,y2,w2,h2),(),(z1,�,z8),X,fuse(Rectangle(z1,z2,z3,z4),Rect-

angle(z5,z6,z7,z8))) where

X = { x1+w1=x2 , y1+h1=y2+h2 , y1=y2 , 0 w1 , 0 h1 , 0 w2 , 0 h2 ,
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x1=z1 , y1=z2 , w1=z3 , h1=z4 , x2=z5 , y2=z6 , w2=z7 , h2=z8 }.

Note that the latter factoring includes some formulae that guarantee
that (x1,y1,w1,h1), (x2,y2,w2,h2)  scope(Rectangle), making this a perfect fac-
toring.

We now prove two useful results that relate factorings of solids and the
application of operations.

Lemma 4.3: If D is a design space, =((a1,�,an),(p1 � pn),F,L,C) is an n-

ary operation in D, 1,�, n are solids in D,  is the solid resulting from

the application of  to 1,�, n via interfaces 1,�, n , and (xi,yi,zi,Ci, i)

is a factoring of i for each i (1 i n), then (x,y,z,X, ) is a factoring of 

where x is x1���xn, y is y1���yn, z is z1���zn, and

� X = Cp ,�,p [ 1(x1),�, n(xn)]  C1  �  Cn , and

� (z) = F( 1(z1),�, n(zn))

Proof. We assume that for all i and j, where j ¦ i, var(Ci) and var(Cj) are dis-

joint.

Let t=|x|, m=|y|, and k=|z|. If u þRt, then u can be written as
u1 � un where |ui|=|xi| for each i (1 i n). Elements of Rm and Rk can
be similarly decomposed.

(a): Since for each i (1 i n), (xi,yi,zi,Ci, i) is a factoring of i, xi, yi,
and zi are disjoint sequences of distinct variables, therefore, because of the
above assumption, x, y, and z are disjoint sequences of distinct variables.

(b): Clearly var(X)=x�y�z.

(c): Suppose s  z, then s  zi for some i (1 i n). Because of the defi-
nition of factoring s xi and because of our assumption that var(Ci) and
var(Cj) are disjoint for all j ¦ i, s xj . Since the only variables that occur in
Cp ,�,p [ 1(x1),�, n(xn)] are those in x1,�,xn , s does not occur in
Cp ,�,p [ 1(x1),�, n(xn)]. Therefore, because of the definition of factoring,
each s z occurs in a unique equality E  X such that var(E)={s} or
var(E)={s,l} and l  x y.

(d):  is a partial function from Rk to D. Suppose that for some w

scope( ), (e,g),(e,h)  (w). Then wi  scope( i) for each i (1 i n),
( 1(w1),�, n(wn)) scope(F) and (e,g), (e,h) F( 1(w1),�, n(wn)) so by the
condition on F imposed by the definition of operation, g=h. Hence,  is a
solid in D.

1 n

1 n

1 n
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It remains to show that the validity, conformity and identity conditions
are satisfied.

(Validity): Suppose that u  Rt and u  scope( ), then according to
Definition 2.10, Cp ,�,p [ 1(u1),�, n(un)] is true, and according to Lemma
2.11, ui  scope( i) for each i (1 i n). Since (xi,yi,zi,Ci, i) is a factoring of

i, and ui  scope( i), by the validity condition we can conclude that there
exist vi and wi such that (Ci)x ,y ,z [ui,vi,wi] is true for each i (1 i n). There-
fore, Xx,y,z[u,v,w] is true where v is v1���vn, and w is w1���wn, proving that
the validity condition holds.

(Conformity): Suppose that u  Rt, v  Rm, w  Rk, and Xx,y,z[u,v,w] is
true.

If u  scope( ), then according to Lemma 2.11, ui  scope( i) for each
i (1 i n), and ( 1(u1),�, n(un))  scope(F). Since Xx,y,z[u,v,w] is true,
then (Ci)x ,y ,z [ui,vi,wi] is true for each i (1 i n), and since ui  scope( i),
by the conformity condition, wi  scope( i) and by the identity condition

i(ui)= i(wi), for each i (1 i n). Since wi  scope( i) for each i (1 i n),
and ( 1(w1),�, n(wn))  scope(F), w  scope( ). 

If w  scope( ), then wi  scope( i) for each i (1 i n), and
( 1(w1),�, n(wn))  scope(F). Since (Ci)x ,y ,z [ui,vi,wi] is true and wi

scope( i) for each i (1 i n), by the conformity condition on the factoring
(xi,yi,zi,Ci, i) of i, ui  scope( i), and by the identity condition

i(ui)= i(wi), for each i (1 i n). Therefore, ( 1(u1),�, n(un))  scope(F).
Since ui  scope( i) for each i (1 i n), and ( 1(u1),�, n(un))  scope(F),
u is in the scope of the partial function defined by the expression
F( 1(x1),�, n(xn)). Since Cp ,�,p [ 1(u1),�, n(un)] is true, and u is in the
scope of the partial function defined by the expression F( 1(x1),�, n(xn)),
u  scope( ), establishing the conformity condition.

(Identity): Suppose that u  Rt, v  Rm, w  Rk, u  scope( ) and
Xx,y,z[u,v,w] is true. Since u  scope( ), then u is in the scope of the partial
function defined by the expression F( 1(u1),�, n(un)). Therefore, ui 
scope( i) for each i (1 i n). Since Xx�y�z[u�v�w] is true, (Ci)x ,y ,z [ui,vi,wi]
is true for each i (1 i n), and since (xi,yi,zi,Ci, i) is a factoring of i, and
ui  scope( i), by the conformity condition wi  scope( i) and by the iden-
tity condition i(ui)= i(wi) for each i (1 i n). Therefore,

(u) = F( 1(u1),�, n(un))

= F( 1(w1),�, n(wn))

1 n

i i i

i i i

i i i

1 n

i i i
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= (w)

establishing the identity condition. 

Lemma 4.4: If in Lemma 4.3, (xi,yi,zi,Ci, i) is a perfect factoring of i for

each i (1 i n), and Cp ,�,p [ 1(u1),�, n(un)] implies that

( 1(u1),�, n(un))  scope(F), then (x,y,z,X, ) is a perfect factoring of .

Proof. Since Xx,y,z[u,v,w] is true (Ci)x ,y ,z [ui,vi,wi] is true for each i

(1 i n), so for each i, ui  scope( i) since (xi,yi,zi,Ci, i) is a perfect fac-

toring of i, and i(ui)= i(wi) by the identity condition. Also, since

Xx,y,z[u,v,w] is true, Cp ,�,p [ 1(u1),�, n(un)] is true. Therefore,

( 1(u1),�, n(un))  scope(F), so that ( 1(w1),�, n(wn))  scope(F).

Hence w scope( ) and since Xx,y,z[u,v,w] is true, u scope( ) by the con-

formity condition. 

In practice , the solid inside a factoring could be a function call to a geo-
metric kernel for creating an object. The constraint in a factoring, realised
as a wrapper around the chosen kernel, reveals some of the dependencies
between the variables of the factored solid. If a factoring is perfect, the con-
straint of the factoring adds further restrictions to the scope of the solid
inside the factoring such that once a vector of values is consistent in the
constraint, then that vector is guaranteed to produce a valid object, facilitat-
ing the automatic generation of sample values for the sample look of a solid.

In Example 4.2, we showed how a factoring can be constructed for a
solid defined by a partial function. Now we will show how, given a factoring
for a solid, a partial function defining the factored solid can be constructed.
Let (x,y,z,C, ) be a factoring of , and k=|z|. Then according to the def-
inition of a factoring, for each i (1  i  k), zi occurs in a unique equality Ei

in C. If we rearrange Ei into the form ei=zi where ei is an expression, then 
can be expressed as (x)= [Cz] (e1,�,ek).

The sample values for the variables of predefined solids are chosen by
the designer as discussed earlier, and would be a solution to the constraint
of any perfect factoring of the corresponding solid. When an operation is
applied to factorings of its operand solids, a new set of sample values must
be computed for the sample look of the new solid, represented by the  fac-
toring computed as shown in the above lemmas, such that all the con-
straints in the factoring are satisfied. Note that the constraints may originate
from the factorings of operand solids or from the constraint of the opera-

1 n

i i i

1 n
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tion. Once a list of sample values are computed, they are passed to a ren-
derer for drawing. The sample value generation process will have no effect
on the internal state of the geometric kernel and does not force the kernel
to actually instantiate an object. Sample values are used only by a renderer
which could be completely independent from the kernel.

Clearly, an algorithm that determines new sample values for the vari-
ables will operate according to certain criteria. For example, one criterion
could be to keep the new values for the free variables as close as possible to
their original values. Hence, the problem of finding a sample look is reduced
to a constraint satisfaction problem.

An interesting property of a factoring with respect to sample values is
that only the geometric variables need be assigned sample values, as they are
the only values used by geometric kernels.

Now, using the notion of factoring, we revisit the previous example of
bonding Base and RightTrapezoid. 

Base can be factored to (u1,v1,w1,C1, 1) where u1 is (x1,y1,x2,y2,a), v1 is (),
and w1 is (z1,z2,z3) and

C1 = { x2=x1 , y2=y1+a , x1= .4 , y1= .2 , a = .2 , z1=x1 , z2=y1 , z3=a } and

1(w1)= [ C1 ] { (x,y) | x,y  R , z1�z3  x  z1 , z2  y  z2+z3 }. The
sample values for Base are given as z1= .4, z2= .2, and z3= .2.

RightTrapezoid is factored to (u2,v2,w2,C2, 2) where u2 is
(x3,y3,x4,y4,b1,b2,h), v2 is (), and w2 is (z4,z5,z6,z7,z8) and

C2 = { x3=x4 , y4�y3=b1 , b1 < b2  2b1 , 0 < h ,

z4=x3 , z5=y3 , z6=b1 , z7=b2 , z8=h }

and

2(w2) = [ C2] { (x,y) | x,y  R , z4  x  z4+z8 ,

 z5  y  z5+z6+(x�z4)(z7�z6)/z8 } 

and the sample values are z4= .8, z5= .4, z6= .4, z7= .6, and z8= .2.

Recall that the Bonding operation in a 2D design space is defined by
((a1,a2),(p1,p2,p3,p4,p5,p6,p7,p8),fuse,{edge1,edge2},bond), where fuse(x,y)=[
x y=l ](x y), such that l is a line, bond={p1=p7 , p2=p8 , p3=p5 , p4=p6},
edge1=edgea,b,c,d,e[a1,p1,p2,p3,p4], edge2= edgea,b,c,d,e[a2,p5,p6,p7,p8], and
edge(a,b,c,d,e) is true iff (b,c) and (d,e) are points in a, every point on the line
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between them is in a, every point to the right of this line is in a, and every
point to the left of this line is not in a.

Also let squareSide(x1,y1,x2,y2,a)=(x2,y2,x1,y1) and trap-

Side(x3,y3,x4,y4,b1,b2,h)=(x3,y3,x4,y4) be edge-interfaces to Base and Right-

Trapezoid, respectively. Note that Base exposes squareSide and
RightTrapezoid exposes trapSide. The solid resulting from execution of
the Bonding operation can be factored to (x,y,z,X, ) where x=u1�u2,
y=v1�v2, z=w1�w2 and

X = C1  C2  bondp ,�,p [x2,y2,x1,y1,x3,y3,x4,y4]

    = { x2=x1 , y2=y1+a , x1= .4 , y1= .2 , a= .2 , z1=x1 , z2=y1 , z3=a,

x3=x4 , y4�y3=b1 , b1 < b2  2b1 , 0 < h ,

z4=x3 , z5=y3 , z6=b1 , z7=b2 , z8=h,

x2=x4 , y2=y4 , x1=x3 , y1=y3 } 

    = { x1=x2=x3=x4= .4 , y4=y2=y1+a , y3=y1= .2 , a= .2 , 

y4�y3=b1 , b1 < b2  2b1 , 0 < h ,

z1=x1 , z2=y1 , z3=a , z4=x3 , z5=y3 ,

z6=b1 , z7=b2 , z8=h }

and 

(z)= [ X ] fuse( 1(z1,z2,z3,z4), 2(z5,z6,z7,z8)).

Sample values for some of the geometric variables are fixed, that is z1=
.4, z2= .2, z3= .2, z4= .4, z5= .2, and z6= .2. The constraints involving the
remaining geometric variables simplify to two equalities z7=b2, and z8=h,
and three inequalities .2 < b2 .4, 0 < h. A new sample value for z7 can be
assigned depending on how the constraint solver operates. For example, if
the criterion for the assignment of new sample values is to keep them as
close as possible to the sample values they replace, the new sample value for
z7 would be .4. However, in the absence of this criterion any value for z7 in
the solution of X would do. Lastly, since neither z8 nor h depends on any
other variable in X, the previous sample value of z8 could be preserved. In
summary, the sample values for the sample look of the new solid are z1= .4,
z2= .2, z3= .2, z4= .4, z5= .2, z6= .2, z7= .4, and z8= .2, as illustrated in Figure
4 (b).

1 8
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Example 4.5: To further illustrate the computation of sample values for a
new solid, let (u,v,w,C, ) be a factoring of the solid Disk in Example 2.5
where u is (x1,y1,z1), v is (), w is (b1,c1,r1),

C = { 0 z1 , b1=x1 , c1=y1 , r1=z1 }, and

(b1,c1,r1) = [ 0 r1 ] { (x,y) | x,y R and (x�b1)
2+(y�c1)

2  r1
2 }.

Also let the sample values for the sample look of Disk be b1=0, c1=0,
and r1=1. An operation named Punch that punches a hole represented by
one Disk at the centre of another Disk is defined by
((a1,a2),(x1,y1,z1,x2,y2,z2),p�q ,{centre1,centre2},align) where align={ x1=x2

, y1=y2 , z2<z1 } and

centre1(a1,x1,y1,z1)=centrea,b,c,r[a1,x1,y1,z1],

centre2(a2,x2,y2,z2)=centrea,b,c,r[a2,x2,y2,z2], 

and centre(a,b,c,r) is true iff a is a Disk with centre (b,c) and radius r. The
solid resulting from the application of Punch to two disks Disk1 and Disk2

with similar factorings ((x1,y1,z1),(),(b1,c1,r1),C, ) and

((x2,y2,z2),(),(b2,c2,r2),C, ) and sample values b1=0, c1=0, r1=1 and b2=0,

c2=0, r2=1, respectively, called Ring, has a factoring

((x1,y1,z1,x2,y2,z2),(),(b1,c1,r1,b2,c2,r2),X, ) where

X={ 0 z1 , b1=x1 , c1=y1 , r1=z1 , 0 z2 , b2=x2 ,

 c2=y2 , r2=z2 , x1=x2 , y1=y2 , z2<z1 }

and

(b1,c1,r1,b2,c2,r2)=[ X ] (b1,c1,r1)� (b2,c2,r2).

Since none of the variables in X are bound to constants, no immediate
conclusion about the new sample values for the variables can be made. For-
tunately in this case, most of the original sample values for the variables are
consistent with the constraints in C which yields the following new sample
values b1=0 , c1=0 , b2=0 , and c2=0. The original sample values for r1 and r2,
however, are not consistent with the inequality z2<z1. Again, the constraint
solver�s criteria will determine how two values for r1 and r2 are picked to sat-
isfy the constraints. A possible choice is r1=1 and r2= .5.

Finding new sample values for the sample look of a solid resulting from
the application of an operation is performed only when an LSD program
executed in Debug mode requires rendering of partially assembled objects
for the animation of an execution of a program, and for displaying solids
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resulting from geometric computations. In Run mode, sample look compu-
tation is required only at the very last step of the execution when any result-
ing free assembled object need to be rendered.

Relaxed Factoring

The intuition underlying Definition 4.1 is that if all the conditions that
constrain the variables of a solid are extracted from the geometric kernel, a
list of sample values computed by a constraint solver working in conjunc-
tion with LSD is guaranteed to generate a member of the image of the solid,
that is, an object that can be constructed in the design space. This is cap-
tured in Definition 4.1 by the perfection condition. However, in practice,
the perfection condition is too strong to be easily attainable. For example,
the bonding operation used for attaching right trapezoid and box in our ear-
lier example, is generic enough to be used to attach any two solids if they
expose the necessary interfaces. But the condition in the bonding operation
does not check that operand solids do not overlap somewhere other than
line along which they are bonded. Hence, although the two solids could be
bonded, the geometric kernel may still reject the resulting object as illus-
trated in Example 2.12.

A factoring which is not perfect, called a relaxed factoring, is still useful in
practice. For example, the solver and the geometric kernel might cooperate
to find a list of sample values on which they both can agree. When a list of
values consistent in C is not in the scope of , the geometric kernel could
report a failure back to the solver and request a different list of values. Such
a dialogue between the geometric kernel and the constraint solver would
ensure that the selected sample values are both consistent in C and in the
scope of . Several negotiations between the solver and the kernel might
be required.

Sample Value Assignment Criteria

As we have mentioned, different criteria may be used for the assignment
of sample values to the uninstantiated variables in the constraint store used
for the computation of sample values. The aim of a sample value assign-
ment criterion is to ensure that values selected for the uninstantiated vari-
ables in the constraint store are not only consistent, but also satisfy some
additional conditions. This is to ensure that the sample value assignment
process can account for certain cognitive factors that can be formulated in
the assignment algorithm. For example, the sample value assignment algo-
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rithm may introduce a new constraint for the assignment of values to a cyl-
inder to make sure that the ratio of radius to height of a visual
representation of a free cylinder are within some desired range. This may be
achieved by a weak constraint defined by the designer of a predefined solid
for the algorithm employed for the computation of its sample values. How-
ever, this should not in any way change the behaviour of an execution
involving the solid. Such weak constraints are used only by the constraint
solver computing sample values and do not imply any additional restrictions
on the solid itself. This mechanism gives the designer of solids more influ-
ence over how the sample value assignment algorithm works.

In practice, the sample value assignment algorithm is more critical than
it may appear at first. While the algorithm�s aim should be to capture and
reveal the essential and common visual aspects of a family of solids, this
should not be done arbitrarily. The choice of sample values and the transi-
tion from one set of values to another as the result of the application of an
operation should be made in such a way that the resulting visualisations do
not imply any extra semantics beyond those inherent in the program. In
other words, the algorithm should not mislead the user.

5 Summary

We have extended the formal model for solids proposed in [6]. We first
identified an ambiguity in the interpretation of the empty set in the previous
definitions noting that the empty set could signify either an invalid solid or
one which happens to include no points in the space. To rectify the prob-
lem, we defined a solid as a partial function.

We raised and investigated the issue of sample looks for solids in LSD

programs and defined the notion of factoring of a solid, applying it to the
automatic computation of a sample look for a partially free solid. The intu-
ition behind factoring is to extract the constraints that define how a solid
can be configured so that we can manipulate them in various ways, for
example to generate sample values for the parameters of a solid. We noted
that although this may be an ideal situation, it is difficult to achieve in prac-
tice. To make the notion of factoring more practical we introduced relaxed
factoring, in which some, but not necessarily all, constraints are identified.
In this case, selecting sample values that are consistent with the constraint
of the solid is likely to generate a valid sample look for the object, but this
is not guaranteed. We discussed how, in an implementation, the geometric



22

kernel and the constraint solver might engage in a dialogue to iterate
towards appropriate sample values.

 Another important use of factoring is for computing reduced solids, a
notion originally defined in [6] as a practical issue for simplifying solids. In
[2] we have introduced the notion of reduced sets for sets of equalities and
discussed some of their important properties. Then we applied this notion
to solids and demonstrated how a reduced set could be computed from a
factoring of that solid.
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