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Abstract: General purpose visual programming languages (VPLs) promote the construction of programs that are
more comprehensible, robust, and maintainable by enabling programmers to directly observe and manipulate
algorithms and data. However, they usually do not exploit the visual representation of entities in the problem
domain, even if those entities and their interactions have obvious visual representations, as is the case in the robot
control domain. We present a formal control model for autonomous robots, based on subsumption, and use it as the
basis for a VPL in which reactive behaviour is programmed via interactions with a simulation.
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1. Introduction

Many problem domains consist of entities that have com-
monly accepted visual representations. An example in the
realm of software application development, is graphical
user interfaces (GUIs), which were originally pro-
grammed by writing code in standard textual program-
ming languages. Because interface elements have
standardised, well understood visual representations and
behaviours, an obvious step was to create tools with
which GUIs could be built by directly assembling inter-
face elements, and even programming some of their inter-
actions and behaviours by demonstration (Myers, B. &
Buxton, W. (1986): Wolber, D. (1997)), or drawing various
kinds of connecting lines (Carrel-Billiard, M. & Akerley, J.
(1998)). GUIs are now almost exclusively built using such
direct-manipulation tools.

Another such ‘concrete’ domain, populated with entities
with obvious visual representations and observable
behaviours, is robot programming. A robot control pro-
gram consists of algorithms built on the primitive actions
the robot can perform, at least some of which are physi-
cally observable, such as changes in position or colour,
grasping, pushing and so forth. Just as the concreteness of
GUIs led to the development of GUI builders, the con-
creteness of the robot world has motivated researchers
and practitioners to search for ways to program robots by
direct manipulation. A simple application of this idea is
the training of industrial robots to perform repetitive
tasks in a completely known environment by simply
recording the actions of an experienced operator doing
the task, painting car panels on an assembly line for
example. In recent years, many aspects of this promising
paradigm have received close attention (Billard, A. &
Dillmann, R. (2004): Billard, A. & Siegwart, R. (2004)),
such as training a robot by interacting with a simulation
rather than with the actual robot (Aleotti, J.; Caselli, S. &
Reggiani, M. (2004)), improving task performance
through practice (Bentivegna, D.C.; Atkeson C.G. &
Cheng, G. (2004)), and optimisation of imitative learning

(Billard, A.; Epars, Y.; Calinon, S.; Schaal S. & Cheng, G.
(2004): Chella, A.; Dindo, H. & Infantino, 1. (2006)).
Programming by Demonstration (PBD) is viewed by many
as an elegant way to create behaviour by directly manipu-
lating domain entities, as in the worlds of graphical user
interfaces and robots (Cypher, A. (Ed.) (1993)). PBD entails
the use of examples to teach an agent how to behave in
situations analogous to those of the examples. A PBD sys-
tem records the actions of the trainer and constructs a
control program to govern the behaviour of the agent.
Frequently, generalisation plays a part in this construc-
tion. Some systems infer more general rules of behavour
from the examples provided (St. Amant, R.; Lieberman,
H.; Potter, R. & Zettlemoyer, L. (2000): Lau, T. (2001):
Myers, B. & McDaniel, R. (2001)). Some provide the user
with tools to manually generalise examples (Kahn, K.
(2000): Michail, A. (1998)). In others, because of the nature
of the underlying model, a rule generated from an exam-
ple applies to a class of similar situations (Smith, D.C.;
Cypher, A. & Spohrer, J. (1994)). The applicability of PBD
to many problem domains has been examined (St. Amant,
R.; Lieberman, H.; Potter, R. & Zettlemoyer, L. (2000): Lie-
berman, H.; Nardi, B. & Wright, D. (1999): Smith, D.C,;
Cypher, A. & Spohrer, J. (1994)). For example, there has
been substantial work done on developing animated and
cartoon-like programming environments to increase chil-
dren’s interest in programming, or to provide them with
simple, interactive yet powerful educational tools (Gin-
dling, J.; Ionnidou, A.; Loh, J.; Lokkebo O. & Repenning,
A. (1995): Kahn, K. (2000): Repenning, A. (1995): Smith,
D.C.; Cypher, A. & Spohrer, J. (1994)).

Although PBD can be applied to domains in which the
concepts are abstract (Lieberman, H. (1993)), it seems to
have a natural fit with problems of a more concrete
nature, as illustrated above. This notion of “concreteness”
is also one of the main principles behind visual program-
ming languages (VPLs). It was named “closeness of map-
ping” by Green and Petre (Green, T.R.G. & Petre, M.
(1996)), who observed that the more directly a language
represents entities, structures and interactions of the



problem domain, the more useful, productive or efficient
the language will be. Various studies support this obser-
vation. For example, a survey by Whitley and Blackwell of
users of LabVIEW, a language for engineers in which con-
trol programs are represented as wiring diagrams
(Johnson, G.W. (2006)), provides evidence that LabVIEW’s
close mapping between program and problem is advanta-
geous (Whitley, K.N. & Blackwell, A.F. (2001)).

Robot programming has recently caught the attention of
VPL researchers, prompted in part by a competition at the
1997 IEEE Symposium on Visual Languages, involving
the application of VPLs to mobile robot programming
(Ambler, A.L.; Green, T.; Kimura, T.D.; Repenning A. &
Smedley, T.J. (1997)), and inspired by an example of pro-
gramming a robot car using the rule-based mechanism of
AgentSheets (Gindling, J.; Ionnidou, A.; Loh, J.; Lokkebo
O. & Repenning, A. (1995)). Some examples giving the fla-
vour of the approaches taken are as follows.

Altaira (Pfeiffer, ].J. (1997)) and Isaac (Pfeiffer, ].J. (1999))
both implement rule-based models for robot control, rely-
ing respectively on a variant of Brooks’ subsumption
model for robot control (Brooks, R.A. (1986)), and a fuzzy
deductive system for geometric reasoning. Cocoa (Smith,
D.C.; Cypher, A. & Spohrer, J. (1994)) also implements a
rule-based model, and although not specifically designed
for robot control, with minor changes it can be used for
programming simple robots in a 2D environment. VBBL
(Cox, P.T,; Risley, C.C. & Smedley, T.J. (1998)) is a message
flow, domain-specific visual language based on subsump-
tion, and designed as an extension to the application
framework of Prograph cpPX (Steinman, S.B. & Carver,
K.G. (1995)). Altaira, Isaac and Cocoa allow representa-
tions of the robot to be included, but in all three, the cod-
ing of rules is a tedious task in which the robot
representations play a rather minor role. VBBL, on the
other hand is very general, but does not exploit any of the
features of the robot. None of these incorporate the direct
manipulation that is the cornerstone of PBD systems.

In (Cox, PT. & Smedley, T.J. (1998)) it is noted that if a
visual PBD language for robots were to exploit the features
of the robot and environment by incorporating visual rep-
resentations of them, then such a language would neces-
sarily be limited to a specific robot in an environment
composed of specific objects. In an attempt to reconcile
concreteness with generality, a robot programming sys-
tem was proposed consisting of two modules. The first
part, the Hardware Definition Module (HDM), is a design
environment in which a robot and other objects are mod-
elled. The second part, the Software Definition Module
(SDM), uses a description produced by HDM to present an
environment in which the user programs a control system
by manipulating a simulation of the robot. A structure for
HDM was described in some detail, but SDM was
addressed only superficially. Subsequently, Banyasad fur-
ther developed the SDM concept (Banyasad, O. (2000)),
based on a rather more structured version of Brooks” sub-
sumption. A prototype programming environment was
built, partly based on the latter proposal (Banyasad, O.;
Cox, PT. & Young, J. (2000)). Experiences with this proto-
type led to the significant refinement of the control model
and improvement of the interface proposed in (Banyasad,
O. (2000)), reported here.

In the following we provide a formal, subsumption-based
definition for a control model for autonomous robots,

suitable for the kind of visual programming-by-demon-
stration suggested in (Cox, P.T. & Smedley, T.J. (1998)), fol-
lowed by a proposal for SDM, presented via an extended
example.

2. Robots and Control Models

A robot is a programmable machine equipped with at least
one actuator and at least one sensor. An actuator is a
device that can release non-mechanical energy in its sur-
rounding environment, such as light or other electromag-
netic waves, or can mechanically change its environment,
including itself. A sensor is a device that can detect or
measure a specific kind of energy in its operating domain,
for example, an infrared sensor, or a touch sensor. The
sensors and actuators of a robot are connected by some
structural parts collectively called the body, which has no
significance for control or programming purposes except
for the geometric relationships it imposes on sensors and
actuators. Such robots are intended to operate in an envi-
ronment which is at least partly unknown, in such a way
that they can react sensibly when they encounter objects
or otherwise detect changes. We are not, therefore, inter-
ested in robots that perform fully defined, repetitive tasks
in a completely known environment such as an assembly
line. Programs controlling robots must compute values
for actuators based on the values of sensors. A robot’s
level of autonomy is the degree to which it can respond to
environmental changes in a logical fashion as if it were
being controlled by an operator. Examples of mobile
autonomous robots are the Mars Rover (NASA Jet Pro-
pulsion Laboratory (2007): St. Amant, R.; Lieberman, H.;
Potter, R. & Zettlemoyer, L. (2000)), autonomous under-
water vehicles (Jackson, E. & Eddy, D. (1999): Zheng, X.
(1992)) and mobile office assistants (Simmons, R.; Good-
win, R.; Haigh, K.Z.; Koenig S. & O'Sullivan, J. (1997)).

Of the many control models for programming robots, the
subsumption architecture due to Brooks is among the
simpler ones. Since the control model we propose is based
on this architecture, we give an overview of it below. A
thorough discussion can be found elsewhere (Brooks,
R.A. (1986)).

2.1  Brooks’ Subsumption Architecture

The traditional method for designing a control system for
a robot is to decompose the problem of computing actua-
tor values from sensor inputs into subproblems to be
solved in sequence. A control system then consists of a
sequence of functional units for solving these subprob-
lems. Input signals are produced by the robot’s sensors,
and processed by a perception module, the first unit in
the sequence, which passes its results to the next func-
tional unit. Each unit receives its inputs from the previous
unit in the sequence, processes the data and passes results
to the next unit. The final unit produces values which are
applied to the actuators to achieve the required response.
To motivate subsumption, Brooks cites several drawbacks
of this traditional structure (Brooks, R.A. (1986)). For
example, a robot control system cannot be tested unless
all its constituent units have been built, since all are
required to compute actuator commands. Information
received from the sensors is therefore meaningful only to
the first unit of the model and meaningless to the rest.
Clearly, making changes to a unit of such a control system



is problematic. Changes must either be made in a way
that avoids altering the interfaces to adjacent units, or if
that is not possible, the effects of a change must be propa-
gated to the adjacent units, changing their interfaces and
functionality, and possibly necessitating changes to other
units.

Another problem with the traditional sequential system is
the time required for a signal to pass through all the
stages from sensors to actuators. Changes in the robot’s
environment may happen more quickly than the robot
can process them.

To overcome these difficulties, Brooks proposed that,
instead of decomposing a control problem into subprob-
lems based on successive transformations of data, decom-
position should be based on “task achieving behaviours”.
In this model, behaviours ideally can run in parallel,
receiving sensor outputs and processing them to generate
values for the actuators. This leads naturally to another
issue: mediating between behaviours which are simulta-
neously trying to control the robot.

Brooks introduced a solution to this problem, called sub-
sumption, in which behaviours run in parallel, but those
which provide commands to a common set of actuators
are prioritised by suppressors and inhibitors, simple func-
tions each of which selects between two signals, a control
input c and a data input i, defined in Fig. 1. In the figure, n
is a special value indicating “no signal”. Suppose, for
example, that a control system for a robot consists of two
behaviours, “obstacle avoidance”, which causes the robot
to move around objects it encounters, and “move to A”,
which drives the robot towards a particular point. To
resolve potential conflicts, outputs of these behaviours
destined for the same actuator could be provided as c and
i inputs to a suppressor, and the suppressor output sent to
the actuator. When an obstacle is detected, the “obstacle
avoidance” output will take priority, ensuring that the
robot does not hit any object on its way to point A.

One of the advantages of subsumption is that, unlike the
traditional sequential control system, behaviours can be
directly connected to sensors, actuators and to other
behaviours. Since behaviours are not strongly tied to each
other, new behaviours can be added to existing ones to
create a higher level of autonomy.

c
ifc=
i out out = n
c otherwise
(a) Suppressor
c
ifc#
i out out = n
otherwise
(b) Inhibitor

Fig. 1. Suppressor and Inhibitor

In the Brooks’ architecture, a robot control system is con-
structed incrementally by building behaviours at increas-
ing levels of competence. First a level 0 system is built and
fully debugged. The level 0 system together with the
hardware robot is then considered to be a new robot,

more competent than the original. On top of this new
robot, a level 1 control layer is constructed. It may read
actuators, investigate data flowing in the level 0 system,
and via subsumption functions, interfere with actuator
output or data flowing in the level 0 system. When this
control layer is debugged, the entire layered structure
constitutes a level 1 system. This architecture is illustrated
in Fig. 2.

o}
4 Layer 2 A
4* Layer 1

Sensors ——ﬂ Layer 0 }—v—b Actuators

Fig. 2. Subsumption achitecture control model (diagram
adapted from (Brooks, R.A. (1986)))

Each control level consists of a set of behaviours, imple-
mented as a finite state transducer loosely modelled on
finite state machines. A behaviour has input and output
lines, and variables for data storage. Inputs may come
from actuators or other behaviours. Each input line is
buffered, making the most recently arrived message on a
line always available for inspection. Each module has a
special reset input, which switches the FSM to its start state
on receipt of a message. States of an FSM are classified as
Output, Side Effect, Conditional Dispatch, and Event Dis-
patch. When in an Output state, the FSM sends a message
on an output line and enters a new state. The output mes-
sage is a function of the inputs and variables. In a Side
Effect state, a new state is entered and one of the variables
is set to a new value computed as a function of the mod-
ule’s input buffers and variables. In a Conditional Dis-
patch state, one of two subsequent states is entered,
determined by a predicate on the variables and input
buffers. In an Event Dispatch state, a sequence of pairs of
conditions and states are continuously checked, and
when a condition becomes true the corresponding state is
entered.

The goal of this architecture is to allow control systems to
be made up of independent layers that can run in parallel,
and incrementally improved as described above. Each
layer, however, can monitor data flowing in lower levels
and interfere with the flow of data between behaviours in
lower levels by suppressing or inhibiting. This means that
although the lower levels are unaware of the existence of
the higher layers and can control the robot independently,
a higher layer cannot be unaware of the structure of lower
levels, unless its inputs and outputs are limited to sensors
and actuators. The form of data monitoring, suppression
and inhibition in subsumption prevents us from looking
at each layer of behaviours as a “black box”, so that
although the degree of autonomy of the control system
increases with the addition of higher layers, the overall
system must still be viewed as a distributed one, made up
of many small processing modules. The final block dia-
gram of a control system constructed according to Brooks’
architecture must include the internal connections
between layers, where one layer monitors or interferes



with the internal flow of data in another. Consequently,
such a diagram cannot, in fact, have the neatly layered
structure suggested in Fig. 2. This can impede the under-
standing of the control system by other designers, compli-
cating the process of editing and maintaining such
systems.

Another characteristic of the subsumption architecture is
that suppression is applied only to inputs of a behaviour
and inhibition to outputs. Considering that the output of
each module is connected to the input of another module,
except if directly communicating with the hardware,
inhibiting an output is equivalent to suppressing the
input of the succeeding module. The same argument
holds true for suppression. This means that in practical
terms, inhibition and suppression can affect both the
input and the output of a module, although in cases
where there are both suppressors and inhibitors on a line
from an output to an input, their order is significant.

In the architecture proposed by Brooks, although the
overall control system is decomposed according to the
desired behaviours of the robot, one might argue that
each layer must still be decomposed in the traditional
manner, and must therefore be complete before the
expanded control system can execute.

Published descriptions of the subsumption architecture
outline an implemented control system, rather than a gen-
eral formalism for control systems. For example, the
nature of the messages sent from sensors or generated by
behaviours is not clearly specified. They are sometimes
referred to as “signals”, giving the impression that they
are continuous. Elsewhere, there are references to boolean
operations applied to messages, and to variables contain-
ing Lisp data structures.

3. Subsumption for Programming Robots by Direct
Manipulation (SPRD)

In order to design a well defined, visual programming-
by-demonstration system, we need a precisely specified
control model as a foundation; a “structured program-
ming” equivalent to Brooks” “Fortran”. To that end, in this
section we propose a simpler, more streamlined sub-
sumption model, SPRD, which is functionally equivalent to
Brooks’ architecture. In the SPRD model, each layer con-
sists of a single behaviour, defined as a Finite State
Machine which is likely to be more complex than the
transducers comprising the modules in Brooks” model.
Layers cannot monitor or interfere with the internal data
flow of other layers since there is only one FSM in each
layer. However, a higher layer can read output from a
lower layer in order to monitor its activity, and may
inhibit or suppress the inputs and outputs of the layers
below it.

3.1 Behaviours

Behaviours in SPRD are implemented as Moore Machines,
a well known class of finite state transducers, which we
will define here for completeness. A Moore Machine is a 5-
tuple (Q, %, A, 8, A, qp) where Q is a finite set of states, X is a
finite input alphabet, A is a finite output alphabet, qy € Q is
the initial state, and § is a function from Q x X toQ called
the transition function, and A is a function from Q to A
called the output function.

A robot behaviour must process values from several dif-
ferent input lines rather than just one, so in order to use
Moore Machines to implement behaviours, we must com-
bine several input alphabets. Consequently, to realise a
behaviour with n inputs from alphabets Aq, A, ... A, we
can define a Moore Machine with input alphabet X = A; x
Ay x ... x A,,. Similarly, if the behaviour has several out-
puts, the output alphabet of the machine will be the Car-
tesian product of output alphabets of the behaviour.

A Moore Machine, like an FsM, can be depicted as a state
diagram, a directed graph in which input values label
edges, and vertices are labelled with both state names and
outputs.

Although Moore Machines are adequate for implement-
ing simple behaviours, the implementation they provide
may be rather clumsy for more complex ones. Consider,
for example, the situation in which an autonomous
mobile vehicle detects a pedestrian in its path. The sensor
values signifying this event will cause a transition from
the current state of the machine to some new state which
outputs appropriate commands to actuators, in particular,
signals sent to brakes. The degree of braking force to be
applied should be a function of the speed and the distance
from the pedestrian. The only way to implement such a
function in a standard Moore Machine, however, is to
provide one target state for each value of braking force,
with a corresponding transition from the current state,
taken in response to a particular combination of speed
and distance values. Essentially, the function is explicitly
defined in tabular form. Clearly, this can lead to large and
repetitous machines.

This example illustrates a further inadequacy of ordinary
Moore Machines, namely, that their input and output
alphabets are finite. Although the speed of the robot in
our example may be bounded, the set of speed values is
not finite. The same can be said for braking force and dis-
tance. One could always partition such sets into a large
but finite set of subsets, but that would exacerbate the first
problem mentioned above. We define Extended Moore
Machines to overcome these difficulties. An Extended
Moore Machine (EMM) is a six-tuple (Q, Z, A, §, A, qp) where
Q, §, and g are as defined above, £ and A are alphabets
which are not necessarily finite, A is a function from Q to
I where I is the set of all functions from X to A, and A(g)
is a constant function.

3.2 The SPRD Control Model

An SPRD control system is constructed by starting with a
hardware robot with no control program and recursively
adding behaviours, each implemented as an EMM. A
higher level behaviour can monitor the data generated by
lower level behaviours by reading their outputs. Outputs
from a higher level behaviour can subsume or inhibit the
inputs to and outputs from lower level behaviours but not
vice versa.

The structure of the SPRD model is recursively defined by
the diagrams in Fig. 3. In this figure, the grey rectanglar
icons represent sequences of distinct items: in particular

the icons [] represent empty sequences. The arrowed
lines represent busses carrying vectors of values. The
width of a bus incident on a sequence of items is equal to

the size of the sequence, and the ith wire in the bus carries
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AS(X) = set of hardware sensors

AA(X) = set of hardware actuators
FS(X)= AS(X)

FA(X)= AA(X)
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Behaviour

Platform

___________ S

AS(X) = AS(Platform(X)) U
{ x | x is an output of Behaviour(X) }
AA(X)= AA(Platform(X)) LU
{ x I x is an input of Behaviour(X) }
FS(X) = FS(Platform(X)) — Sensors(X) U
{ x | x is an output of Behaviour(X) and
x does not contribute to either of the
busses out of Behaviour(X) }
FA(X) = EA(Platform(X)) — Actuators(X) U
{ x | x is an input of Behaviour(X) and
x does not receive a value from the bus
into Behaviour(X) }

If x is an element of Sensors(X)
then x € AS(Platform(X))
If x is an element of Actuators(X)
then x € FA(Platform(X))
Sub(X) is a subsumption function.
Behaviour(X) is an EMM.
Platform(X) is an SPRD control system.

(b) Compound

Fig. 3. SPRD control system

avalue to or from the i item in the sequence. Icons repre-
senting empty sequences, and busses of zero width are
included in Fig. 3 for completeness; however, in later fig-
ures illustrating control diagrams for particular control
systems, we will omit them. The E===3 icons indicate
concatenation or splitting of vectors in the direction of the
arrow. It is easy to prove by induction on the diagrams in
Fig. 3, that in the case of splitting, the points at which a
vector is divided are well defined.

In each of the diagrams in the figure, the labelled arrow-
heads on the dashed perimeter indicate connections
which are not part of the control system being defined,

but are necessary for it to function. For example, there is

an implicit bus from the A to the Yy on the dashed
perimeter in each diagram.

The figure defines two kinds of SPRD control systems, each
consisting of five components: a control diagram, and sets
AS, AA, FS and FA of available sensors, available actuators,
free sensors and free actuators, respectively. A basic control
system performs no computations, and does not interact
with the robot’s sensors or actuators, but provides the
base case for the recursive construction. A compound con-
trol system is obtained by combining a behaviour, imple-
mented as an EMM, with an existing control system Y in
such a way that the behaviour controls, and may override,
the actions of Y.

The item Sub in the control diagram of the compound con-
trol system in Fig. 3 is a subsumption function. A subsump-
tion function has two vector inputs I and € such that |I] >
|€| and produces an output vector of length [l|, such that

the ith component of the output is either the ith compo-
nent of the input vector I, or is generated by suppressing

the i component of I with some component of C, or is

generated by inhibiting the i" component of I with some
component of €, and every component of C is used to
inhibit or suppress some component of I. Inhibition and
suppression are the functions defined in Fig. 1.

If X is a compound SPRD control system, the elements of
AS(X) and AA(X) which are not hardware sensors or
hardware actuators respectively, are called software sensors
and software actuators. If X is an SPRD control system, we
define the level of X to be 0 if X is a basic control system,
and 1 plus the level of Platform(X) otherwise.

The intuition behind this definition is as follows. A hard-
ware robot is analogous to a car. It has sensors which, like
the gauges on the dashboard of a car, provide information
about current conditions, and actuators which, like the
controls of a car, can be given values that cause the robot
to perform various actions.

A hardware robot, together with an SPRD control system,
constitutes a robot R, with more capabilities than the bare
hardware robot: specifically, it has extra software sensors
and software actuators. In order to “run” robot R, we
directly connect corresponding output and input pins as
described above, whereupon the robot will exhibit the
behaviour defined by the control system in the absence of
input to the free actuators. We can observe values of sen-
sors, including software sensors, and input values to free
actuators, possibly affecting the behaviour.

To extend the capabilities of robot R, we add a processing
unit, in the form of an EMM, which takes over the function
of the human “driver”, reading some of the hardware or
software sensors provided by R, and writing values
directly to some of the free actuators of R. We can also
rewire the external connections between the output and
input pins of R, possibly modifying the sensor values that
R reads and the actuator values that R writes.

Note that because of the simple form of a level 0 control
system, a level 1 control system has the degenerate con-
trol diagram shown in Fig. 4, where Sensors and Actuators
consist of, respectively, the hardware sensors read by
Behaviour, and the hardware actuators controlled by Behav-
iour. We leave it to the reader to verify that the first level at
which the full generality of the model can be realised is 3.
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Fig. 4. Level 1 has a simple form

3.3 Conventions

In order to simplify the EMM examples we present later,
we introduce some notational conventions.

In a robot control system, an input or output line may or
may not carry a signal. The way that a signal or lack of a
signal is interpreted will depend on the hardware receiv-
ing it. For example, a signal value of 0 input to a motor
may have the same effect as no signal at all. In order to
support “no signal” values, we define a new no-value sym-
bol n which is included by default in all sets of symbols
which are components of input and output alphabets.
The remaining conventions are introduced in order that
Moore Machines can be specified in a more compact form,
where a single transition may be an abbreviation for a set
of transitions.

/ \ / \
[ 9 S »w\ a5 X
k\ X 77‘ 7" \
is equivalent to ( \ ! ( )
\\ a4 ) i ‘L qap
A
x}’l
Fig. 5. A transition with set label.
We define a transition labelled with a set S = {x, ..., x,,} as
an abbreviation for n transitions labelled xq, ..., x,, as

shown in Fig. 5.

A Cartesian product X;xXpx...xXy is abbreviated as
X1X5... Xy

If x is any symbol we will use x to mean {x} when this
meaning is clear in context.

The complement of a subset is denoted by an overbar. For
example, if the input alphabet of a Moore Machine is {1, 2,
10k xda kx4, Oy ) then{T 2, mfa
denotes the set {3, ..., 10} x {b, ..., z, n} x { ¥, Cyi ), nlWe
extend this complement notation by applying it to consec-
utive components of a Cartesian product. For example,
XX+ X X Xj Xjag oKy denotes the set {x1} x {x5} x ... x
{ogq) x (Xkaﬂ...X]» - {xkxk+1...x]~ 1 x {xj+1} x...x {x,} where
x; € X; for k <i <j. The usefulness or applicability of this
notation in a particular situations depends on how the
components of a Cartesian product are ordered.

If x is an n-tuple then we write x; to denote the i compo-
nent of x.

In an EMM, the output associated with each state is a func-
tion of the input value that caused the transition to the
state. We use ¢ to denote the input value that caused this
transition. For example, if the output of a state in an EMM
is the i component of the input value, we denote the out-
put by ¢;.

(a) Suppressor (left) and corresponding EMM (right)
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(b) Inhibitor (left) and corresponding EMM (right)

Fig. 6. EMMs implementing suppressor and inhibitor.

These notations are illustrated in Fig. 6 which depict
EMMs that implement suppression and inhibition. In this
figure, the alphabets of the ¢ and i inputs are C and I
respectively, and the input alphabet of both machines is
CI. The output alphabets of the suppression and inhibi-
tion EMMs are C U I and I respectively.

4. Visual Programming for Robot Control using SPRD

In this section we show how the SPRD model described
above can be used as the underlying formalism for sDM,
the simulation environment suggested in (Cox, PT. &
Smedley, T.J. (1998)), in which the programmer creates
control programs by interacting with a simulation of a
robot and its environment. Although the aim of the pro-
gramming process is to generate an SPRD control system,
like other programming-by-demonstration systems, the
philosophy of SDM is to focus the programmer’s attention
on making the simulated robot behave properly, rather
than on the underlying abstraction. It is important to note
that “demonstrating” an action does not always mean
directly illustrating the result of the action. For example,
demonstrating how to make an automobile move forward
does not entail pushing the car. The demonstration
involves giving a value to a control (the accelerator
pedal), which will cause the driving wheels to turn,
achieving the required result. Similarly, in our proposed
PBD environment, the programmer demonstrates behav-
iour by setting values for the robot’s actuators via a panel.
To show how a complete SPRD control system would be
created in SDM, we use an example to illustrate the pro-
gramming steps. The SDM interface we present has not
been implemented. Although the interface and example
are two-dimensional, the underlying principles are not
limited to two dimensions. The example shows how to
program a robot car to traverse a maze defined on a rect-
angular grid. Each grid cell is occupied either by a tile
marked with a black cross in the centre, or an obstacle.
The car is equipped with two motors and driving wheels,



one at each side, and four infrared sensors mounted hori-
zontally at the front, right, left and back, for detecting
objects. Another infrared sensor, mounted underneath the
robot and slightly to the left, detects the black crosses, and
can determine when the car is in the middle of a cell.
Because of its left offset, it can also detect when a 90° rota-
tion to the right or left is complete.

Once Car, Tile, and Obstacle are modelled in HDM by a
process such as that outlined in (Cox, P.T. & Smedley, T.J.
(1998)), the resulting description is loaded into SDM,
which displays a workspace window named Car: 0, empty
except for an instance of the Car robot, together with a
palette of available environment objects. To create an
environment for simulation, instances of Tile and Obsta-
cle are created by dragging from the palette into the
workspace (Fig. 7), and arranging them into a maze. As
the cursor passes over a significant item, such as an actua-
tor or sensor, the name of the item appears, as shown in
the figure. After assembling an environment, we close the
object palette and begin the programming task. The Car: 0
workspace window is a representation of the basic control
system in Fig. 3(a).
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Fig. 7. Assembling the simulation environment

A simple maze-traversal algorithm that a human might
use in real mazes, involves walking forward while at all
times keeping one hand on a wall. To program the robot
with this algorithm, we start by building a useful low-
level behaviour which we will call Move, that will form
the level 1 behaviour of the control system, and provide a
small alphabet of commands that can be used by higher
layers to make the robot move forward or backward from
one grid position to another, or to rotate 90° clockwise or
counterclockwise. Once the Move behaviour has been
defined, we will build higher levels to address the maze-
traversal task.

4.1  Programming level 1

To define the Move behaviour, we build a level 1 SPRD
control system according to the diagram in Fig. 4. First,
we select a menu item New Behaviour, which renames
the workspace window Car:1, and opens a floating palette
as shown in Fig. 8, corresponding to the Behaviour block in
Fig. 4. This palette, used to define the inputs, outputs and
states of the EMM, contains an editable text box where we
name the behaviour Move. The name can be edited at any
time and has no logical significance, although as we shall
see, it is important for building higher level systems that
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Fig. 8. Programming at Level-1

behaviour names are intuitive and distinct from one
another.

The first step in programming the Move behaviour is to
define its initial state, which we name Idle as shown in
Fig. 9. The e in the name, indicating that this is the initial
state, cannot be deleted. Also, since every behaviour can
have only one initial state, only one state can have a name
starting with e.

The Move behaviour must generate appropriate outputs
for both the left and right motors in order to move or
rotate the car. To add an output we click the New button
for outputs, which adds an output panel, shown in the
bottom right corner of the Move palette in Fig. 9. This
panel contains an editable text box for the name of the
output, initially untitled, a pop-up menu for selecting the
type of the output, a function pop-up that specifies how
the output value is computed, a popup menu and box for
setting the output value, and a connection terminal repre-
sented by a small triangle attached to the right of the
panel. Since the output has no type to begin with, the
function popup is set to Constant, the value box displays n,
and the function popup, value popup and value box are
all disabled. Like the name of the behaviour itself, the
name of an output has no logical significance, but can be
chosen to improve the readability of the program. We
rename the output Left Motor as Fig. 9 shows.

Since this output will generate values for the left motor of
the car, we connect it to the left motor by clicking on the
terminal of Move:Left Motor and dragging, which creates a
“rubber band” connecting the terminal and the cursor. As
the cursor passes over any item in the environment to
which the terminal can be connected, the item is high-
lighted and its name appears as shown in Fig. 7. We
choose the left motor of the car and release the mouse but-
ton, connecting the terminal and left motor as shown in
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Fig. 9. Adding an output



Fig. 10. To relate this result to Fig. 4, we note that the
newly created connection establishes that the hardware
actuator Car:Left Motor is in the sequence Actuators, and that
the output Move:Left Motor is included in the bus from

Behaviour to A, and from Y to Actuators.
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Fig. 10. Connecting the Left Motor output to the left motor

As a consequence of creating this connection, the output
Move:Left Motor is assigned the type of Car:Left Motor, an
iconic type defined in HDM to be the set Motor = {T, l}, the
value box remains uneditable and the value and function
pop-ups are enabled. We can change the output value by
selecting a value from the pop-up; however, since we
want the car to remain stationary in the Idle state, we
leave n as the output value. In our example, the output
values displayed are simply the constant outputs defined
for the Idle state. In general, however, the output values
are computed by functions, as described in Section 3.1.

Once an output has been defined and connected, we can
hide its details in order to reduce the size of the behaviour
palette, by clicking thess icon beside the name of the out-
put. When an output (or input) is reduced, its name is dis-
played whenever the cursor passes over its terminal, as
shown in Fig. 11. Next we define a second output named
Right Motor and connect it to Car:Right Motor in a similar way.
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Fig. 11. Reducing an output

In the Idle state of the Move behaviour, the car should
remain still, waiting for a command. To add the command
input that the car should observe while in the Idle state,
we click the New button for inputs. An input panel is
added, similar to an output panel except for the absence
of a function popup. We name it Command as shown in Fig.
12. The name of an input, like that of an output, has no
logical significance. The Command input will eventually
receive its values from higher levels of the control system:
during programming of the Move behaviour, however,
we will supply its value manually. Before a value other
than 1 can be assigned to this input, a type must be speci-

fied. In this case we choose New... from the type pop-up,
invoking a type editor, the details of which are beyond the
scope of this paper. With this editor we create an iconic

type Command = { 1, l, ( \v, ' }. Since we have specified an
iconic type, the value pop-up is enabled but the value box
remains uneditable.
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Fig. 12. Adding an input

By clicking the Run button on the behaviour palette, we
initiate simulation. Since the Idle state is completely
“untrained”, it cannot react to the n value for the Command
input, so the simulation stops and a window, called the
transition dialogue opens as shown in Fig. 13. The popup
menu from which to choose the next state is initially set to
the current state, Idle in this case. Clearly, this is the cor-
rect choice, so we click the Run button which dismisses
the dialogue, creates a transition from Idle to Idle under
the input value n, and restarts simulation, which contin-
ues to run, remaining in the Idle state. Since the outputs
for both motors are m, the car remains motionless. If we
had clicked the Cancel button, the dialogue would have
disappeared, but no transition would have been created
and the simulation would not have resumed. The Step
button is explained later.

Now we select 1 from the value pop-up of the Command

input, placing 1 in the value box. Since the Idle state has
not been trained to react to this input, the simulation
stops again and the transition dialogue opens. We want to
create a new state in which the car will begin to move for-
ward, so we choose New state from the popup menu on
the dialogue and click Run. This time when the dialogue
disappears, a new state named untitled is created,
together with a transition to it from Idle, the simulation
follows this transition and stops in state untitled. The
state name in the behaviour palette changes to untitled.
We rename it Start Forward.
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Fig. 13. After simulation has halted



We want the Start Forward state to generate values for the
Move:Left Motor and Move:Right Motor outputs that will move
the car forward until the sensor Car:iLower IR changes
from 0 to 0, indicating that the car has moved off the cen-
tre of the square. Hence, we set Move:Left Motor and

Move:Right Motor to T, define a new input, Move:Lower IR and

connect it to Car:Lower IR. To relate this to Fig. 4, we note
that Car:Lower IR has been added to the sequence Sensors,

and included in the bus from Sensors to A, and from §
to Behaviour.

As soon as the connection between the Move:Lower IR input
and the Car:Lower IR sensor is established, the value of the
sensor, currently 0, appears in the value box of Move:Lower
IR. Move:Lower IR also inherits the type IR-Sensor. When in
the Start Forward state, the Move behaviour should
ignore any further changes in the Move:Command input
until it finishes executing 1. To indicate this, we click
thew icon in Move:Command, removing it from the behav-
iour palette. This defines Move:Command as insignificant for
the Start Forward state, so that whenever this state is
entered during simulation, the Move:Command input panel
will disappear. Fig. 14 shows the behaviour palette after
the MoveiLower IR input panel has been collapsed. The
Restore popup menu in the Inputs section of the palette
can be used to return a removed input to the set of active
inputs. Note that, even though Move:Lower IR gets its value
from Car:Lower IR, its value popup is still active, since in
certain situations the programmer needs to override the
supplied value, as illustrated later.
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Fig. 14. After defining the Start Forward state

As described above, when restarted, the simulation
immediately stops, and we confirm in the transition dia-
logue that, given the current input H, the control system
should remain in the Start Forward state. When started
again, the car moves forward in response to the T outputs
to both motors. The underneath sensor immediately
moves off the cross on the tile, causing its value to change
fromll to [, and the simulation stops. Since the task of
moving the car to the next tile is not complete, we create a
new state, name it Forward, and leave both Move:Left Motor
and Move:Right Motor set to 1.

When restarted, the car moves forward until the under-
neath sensor changes from[] to B, causing the simulation
to stop again. At this point the car has reached the next

tile, so processing of the T command is finished. Accord-
ingly, we set the next state to Idle. This time, instead of
clicking the Run button on the transition dialogue, we
click Step. This creates the transition from Forward to
Idle, and advances the simulation by one step to the Idle
state. If we had clicked Run rather than Step, the simula-
tion would have resumed after the creation of the new
transition, transferred to Idle and immediately begun
processing the T command again, driving the car through
the obstacle in its path. Next we set value of the Move:Com-
mand input to n and restart the simulation, which contin-
ues to run in the Idle state. At this point the workspace
appears as in Fig. 15. Note that while the simulation is
running, the Run button is renamed Stop, and the Step
button is inactive.
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Fig. 15. The state of the simulation after processing the t
command.

At any time during the process of programming a behav-
iour, we can select a menu item to open a window dis-
playing the state diagram of the EMM generated so far. For
example, Fig. 16 shows the state diagram after the Idle,
Start Forward, and Forward states have been defined. In
this diagram, (@) represents any value from an alphabet.
As the cursor passes over an input or output value, the
name of the corresponding input or output is displayed,
followed by the name of its alphabet, as illustrated in the
figure.

[0 =————Behaviour-: Move=——=01H8

Fig. 16. EMM state diagram for Move

To complete the programming of the Move behaviour, we
follow a sequence of steps analogous to the above for each



of the remaining command input values ( y, y ) and ¥,
generating states Start Right, Right, Start Left, Left, Start
Reverse and Reverse and the connecting transitions. To
clarify the function of the Restore popup on the behav-
iour palette, we note that when the state Start Right is cre-
ated, the only input on the behaviour palette is
Move:Command. We remove the Move:Command input by
clicking itsw icon, and select Lower IR from the Restore
menu.
At this point, the simulation runs without stopping,
responding appropriately to each of the four possible val-
ues for Move:Command. The behaviour we have pro-
grammed so far, however, is oblivious to obstacles and
sensitive only to the marks in the centre of grid positions.
Hence, if allowed to run continuously, it will respond
only to changes in Move:Command, perhaps driving the sim-
ulated car through obstacles.
To relate the control system developed in this section to
the structure defined in Section 3.2, we make the follow-
ing observations. Note that, as a convenience, we use the
name of the behaviour to also identify the control system
of which it is a component when the meaning is clear in
context.

e The control diagram of Move has the form shown

in Fig. 4.
® Sensors(Move) = [Car:Lower IR]
¢ Actuators(Move) = [Car:Left Motor, Car:Right Motor]

e AS(Move) = {Car:Left IR, CarRight IR, Car:Front IR,
Car:Back IR, Car:Lower IR, Move:Left Motor, Move:Right

Motor}

e AA(Move) = ({CariLeft Motor, CarRight Motor,
Move:Command}

e FS(Move) = {CarilLeft IR, CarRight IR, Car:Front IR,
Car:Back IR}

e FA(Move) = {Move:Command}

e software sensors of Move = {Moveileft Motor,

Move:Right Motor}
e software actuators of Move = {Move:Command}

4.2 Programming level 2

Next we build a level 2 control system by adding to level 1
a new behaviour Traverse, which drives the robot
through the maze. Instead of driving the motors directly,
the Traverse behaviour will send commands to the Move
behaviour.

To initiate this construction, we select the menu item New
Behaviour. The workspace window is renamed Car:2, the
Move behaviour palette and all its connections disappear,
a new behaviour palette is opened, representing the new
EMM, and two palettes named Sensors and Actuators
appear. Fig. 17 illustrates the workspace after we have
named the new behaviour Traverse, named its initial state
Gaze, and moved the robot back to the start of the maze.
The Sensors and Actuators palettes give access to all soft-
ware sensors and actuators provided by the platform on
which we are building the current behaviour, that is, the
Move control system in this example. The Actuators pal-
ette initially displays a list of the free software actuators of
the platform, represented by small circles. As the cursor
passes over each circle, the name of the actuator is dis-
played together with the name of the associated behav-
iour, as shown in Fig. 17. The palette also includes a
popup menu called More providing access to software
actuators of the platform which are not free. Selecting one
of these adds a corresponding circle to the palette. The
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Fig. 17. Creating the Traverse behaviour.

Sensors palette provides access to software sensors in a
similar fashion, initially displaying an icon for each free
software sensor provided by the platform. The rationale
behind this interface is that the software sensors and actu-
ators that are most likely to be of interest are those that
have not been used in the platform control system. Note
that the hardware sensors and actuators, both free and
used, are available directly on the simulated robot.

The function of the Gaze state is to determine what the
next action should be, depending on the values of the sen-
sors Car:Front IR and Car:Right IR. As we shall see, these sen-
sors are not monitored in other states of the Traverse
behaviour, which are concerned only with generating
commands for the Move:Command input, and monitoring
outputs of Move to determine when a command has been
performed.

For the Gaze state we define an output named Command
and, as described above, create a connection from it to the
Move:Command software actuator on the Actuators palette.
The Traverse:Command output inherits the iconic type Com-
mand from the Move:Command actuator. Its Value box and
Function popup are initially set to 1 and Constant, respec-
tively. As explained above, in the Gaze state we simply
want to observe the environment, not move the robot, so
we leave the value n. Next we add two inputs Front and
Right and connect them to the Car:Front IR and Car:Right IR
respectively. They inherit the types and values shown in
Fig. 18, which illustrates the workspace at this point.
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Fig. 18. Inputs and outputs for the Gaze state
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When we click the Run button to start simulation, the
transition dialogue opens, and we choose to create a new
state which we name Straight.

The Straight state is responsible for initiating forward
movement of the car, so we set the Traverse:Command out-
put to 1. The Straight state must know when the move-
ment has started, but need not be concerned with the
values of the two infrared sensors. Accordingly, we
remove the Traverse:Front and Traverse:Right inputs, and add
a new input called Working that reads the Move:Left Motor.
To connect it, we click on the terminal of the input and
drag, obtaining a rubber band as described previously.
This time, however, we drag the cursor over the More
menu of the Sensors palette, the menu expands, and we
choose Move: Left Motor as shown in Fig. 19. An icon repre-
senting the Move: Left Motor software sensor is added to the
Sensors palette with a connection to the Traverse:Working
input.
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Fig. 19. Connecting to a Software Sensor

When we start the simulation, the transition dialogue
immediately appears, and we choose Straight as the next
state given input value 1. As soon as the Move behaviour
begins outputting 1 to the motors, the left motor in partic-
ular, Traverse:Working receives the value 1 and simulation
stops. We create a new state Finish and set its value for
the Command output to m. On resuming simulation, we
confirm that, given input value 1, the next state is Finish.
The simulation now runs continuously until Move has
finished processing the 1 command. At this point the
Traverse:Working input receives the value 1, simulation
stops and we set the next state to Gaze. The car is now
positioned as shown in Fig. 20, so keeping in mind the
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Fig. 20. After processing the t command

maze-following algorithm described earlier, we train the
robot to turn right. The decision to turn right does not
depend on the value of Traverse:Front, but is based solely
on the fact that Traverse:Right has the value . We indicate

11

this by selecting@ (“don’t care”) from the Value popup
menu of the Traverse:Front input. If we did not override the
sensor value in this way, we would later have to train the
robot to turn right for the other applicable sensor combi-
nation.

Once all combinations of input values in the Gaze state
have been dealt with, the simulation will proceed without
stopping. The resulting EMM is shown in Fig. 21. Note that
not all possible transitions have been defined: for example
there is no transition out of the Straight state for any
value of Traverse:Working other than 1. A diagram may be
missing transitions for two reasons. First, it may not be
complete: that is, there are input combinations that have
not yet been encountered, but could arise. As with any
program that does not deal with all possible inputs, this
may lead to unpredictable behaviour in future. Second,
the diagram may be complete since certain input combi-
nations cannot occur. There are three ways this can arise.
An input alphabet may contain values that are never gen-
erated: for example, infrared sensors never generate 1.
Certain input combinations may be precluded by the
physical properties of the robot and environment: for
example, while the robot is moving forward, the horizon-
tal infrared sensors cannot all become W. Logical proper-
ties of the control program may make certain
combinations impossible, as in our example where the
value of Traverse:Working in state Straight is determined by
the output of Straight.
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Fig. 21. EMM state diagram for Traverse

To relate the control system developed so far to the struc-
ture defined in Section 3.2, we note the following.

* The control diagram of Traverse is as in Fig. 22.

® Sensors(Traverse) = [Car:Front IR, Car:Right IR, Move:Left
Motor]

® Actuators(Traverse) = [Move:Command]

e AS(Traverse) = {Car:Left IR, CarRRight IR, Car:Front IR,
Car:Back IR, Car:Lower IR, Move:Left Motor, Move:Right
Motor, Traverse:Command}

e AA(Traverse) = {Carleft Motor, Car:Right Motor,
Move:Command, Traverse:Front, Traverse:Right,
Traverse:Working}

e FS(Traverse) = {Car:Left IR, Car:Back IR}

FA(Traverse) = J

e software sensors of Traverse = {Move:Left Motor,
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Fig. 22. The control diagram of Traverse

Move:Right Motor, Traverse:Command}
e software actuators of Traverse = {Move:Command,
Traverse:Front, Traverse:Right, Traverse:Working}

4.3 Programming level 3: subsumption

To conclude our example, we add another level to the
control model to illustrate subsumption. This third level
implements a controller with which the user can pause
and resume the progress of the robot as it traverses the
maze. As described above, we create a new behaviour
called Controller, rename its initial state Pause, add an
input called Control with alphabet Status = {ll, P}, set its
value to ll, and add an output called Motors. Next, we con-
nect Controller:Motors to the Car:Left Motor. Since the output
Move:Left Motor is already connected to Car:Left Motor, we get
an indirect connection from Controller:Motors to Car:Left
Motor via a suppressor (see Fig. 6(a)), represented by the
arrowhead in Fig. 23.The line from Controller:Motors con-
nects to the ¢ input of the suppressor: the i input is pro-
vided by level 2 of the control system, specifically, the
output Move:Left Motor. As a consequence of this connec-
tion, the output Controller:Motors inherits the type Motor.
Replacing the level 2 signals to the motors is, however,
not what we need to do to make the robot pause: we
should simply inhibit the level 2 signals. Accordingly, we
double-click the suppressor to transform it into an inhibi-
tor. Controller:Motors reverts to being typeless since it no
longer provides a value to the left motor. We set its type to
Status, an arbitrary choice since all it needs is a non-empty
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Fig. 23. Creating a subsumption function
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Fig. 25. Diagram for Controller

alphabet. Finally, we connect Controller:Motors to Car:Right

Motor via another inhibitor, and set its value to Il. Fig. 24
illustrates the workspace at this point. Continuing in the
manner described in preceding sections, we construct the
EMM for Controller depicted in Fig. 25. Now when the
simulation is running, the robot will stop moving when-
ever we set Controller:Control to ll, and resume when we set
it to .

As in previous sections, we relate the control system
developed here to the structure defined in Section 3.2, as
follows.

* The control diagram of Controller is as in Fig. 26.

e Sub(Controller) consists of two inhibitors both
with control input Controller:Motors from bus 5, and
data inputs Move:Left Motor and Move:Right Motor
from bus 3. All other components of busses 1, 2
and 3 pass through to bus 4 unchanged.

¢ Sensors(Controller) =] ]

e Actuators(Controller) = [ |

e AS(Controller) = {Car:Left IR, Car:Right IR, Car:Front IR,
Car:Back IR, Car:Lower IR, Move:Left Motor, Move:Right
Motor, Traverse:Command, Controller:Motors}

e AA(Controller) = {CariLeft Motor, Car:Right Motor,
Move:Command, Traverse:Front, Traverse:Right,
Traverse:Working, Controller:Control}

e FS(Controller) = {Car:Left IR, Car:Back IR}

e FA(Controller) = &

e software sensors of Traverse = {Move:Left Motor,
Move:Right Motor, Traverse:Command, Controller:Motors}

e software actuators of Traverse = {Move:Command,
Traverse:Front, Traverse:Right, Traverse:Working, Control-
ler:Control}

4.4 What the example does not show

As discussed in Section 3.1, Extended Moore Machines
allow for state outputs to be computed as functions of the
input values on incoming transitions in order to deal with
large, possibly infinite alphabets. However, to keep the
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Fig. 26. The control diagram of Controller

above presentation as straightforward as possible, we
have used a simple example in which the input and out-
put alphabets are small. Consequently, this example does
not lend itself to a realistic illustration of the use of func-
tions in computing the outputs of states. For the same rea-
son, the example does not demonstrate the construction
of transitions corresponding to subsets of input values.

The example also does not illustrate the situation in which
the programmer needs access to software sensors and
actuators defined at some level below that of the behav-
iour currently being programmed. Unlike software sen-
sors and actuators defined as outputs and inputs of the
current behaviour, these lower-level ones are not directly
available with the interface described above. To remedy
this deficiency, our proposed environment allows the pro-
grammer to create a control panel, a floating palette similar
in structure to a behaviour palette. Fig. 27 depicts a con-
trol panel imposed on the Traverse SPRD control system.
The structure and limitations of our example do not pro-
vide a basis for a reasonable use of the control panel, so
Fig. 27 simply illustrates the interface, not a meaningful
application of it. The control panel has inputs and outputs
like a behaviour palette, except that they are referred to as
“sensors” and “actuators”, and their names are inherited

from the items to which they are connected. A connection
from a control panel actuator to an actuator which is not
free will introduce a subsumption function, which will
have an explicit data input if the pre-existing connection
is visible; for example, the suppressor on the connection
from the control panel to Traverse:Front in Fig. 27 has a data
input from Car:Front IR.

In terms of the SPRD model, the control panel is a behav-
iour in a level above the one currently being simulated, its
functionality provided manually rather than by an EMM.
Clearly, this concept could be extended by providing a
library of realistic controls and gauges enabling the con-
struction of realistic control panels similar to the “front
panels” of LabVIEW (Johnson, G.W. (2006)).

5. Discussion

In previous sections we noted that Brooks’ subsumption
model, because of its modularisation of a control system
into independent behaviours, provides a foundation for
visual language environments for robot control program-
ming, and listed some examples. We also noted character-
istics of Brooks’ formulation that make it less than ideal
for this purpose, motivating the SPRD model presented in
Section 3. In particular, although the architecture is lay-
ered into increasing levels of competence, higher layers
can, and may need to, interfere with the flow of data in
lower layers, and must therefore be aware of the inner
structure of those layers. Hence the levels do not repre-
sent levels of abstraction in the software engineering
sense, each presenting a well defined interface but hiding
its implementation. Furthermore, the behaviours in each
layer are interdependent, so cannot be individually tested
and debugged. As a result, in order for a user to build a
control system in a programming environment based on
Brooks’ subsumption, he or she would have to be aware
of, and be able to directly edit, the underlying structures,
as in the VBBL language (Cox, P.T; Risley, C.C. & Smedley,
T.J. (1998)). This need to be aware of underlying structure
is at odds with the closeness-of-mapping principle, a
mainstay of PBD.

In contrast, the recursive structure of SPRD encourages the
programmer to view the programming task as extending
an existing robot that provides an interface consisting of
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Fig. 28. A level 0 control system (adapted from (Brooks,
R.A. (1986)) Fig. 5)

sensors and actuators, by adding one new behaviour and
defining further, higher-level sensors and actuators. Cer-
tain aspects of the SPRD control model still show through
in the interface we have proposed. While building a
behaviour, the programmer needs to be aware of the con-
cepts of “state” and “transition”: however, these are argu-
ably quite natural concepts in the context of a problem
that has a finite state solution. For example, a human
walking a maze will be aware of being in the state “walk-
ing straight ahead with right hand on wall”, and on
encountering a wall, will be aware of the need to start
doing something else. Although SPRD reduces the need
for the programmer to understand intricate wiring
details, he or she must still understand subsumption
functions, which are explicitly represented in the interface
described above. Because of the simpler structure of the
SPRD model, however, the application of subsumption is
limited to replacing or turning off a signal from a sensor
or a signal to an actuator in the “platform” robot, so is
possibly less daunting than subsumption in the Brooks
model.

A proof that the recursive structure of SPRD can capture
the functionality of the Brooks model is precluded by the
fact that Brooks’ architecture is not formally defined.
Instead we invite the reader to examine the diagram in
Fig. 28, depicting one level of a Brooks control system. In
this diagram, each node is a behaviour and the edges
indicate flows of data between behaviours and between
behaviours and the robot hardware.

To create an equivalent control system in SPRD, we would
create one of these behaviours first. For example, we may
decide to start with forward, which is described as follows:
“The Forward module commands the robot to move forward but
halts the robot if it receives a message on its halt input line dur-
ing the motion” (Brooks, R.A. (1986)). In our proposed
environment, we would create a level 1 behaviour For-
ward, similar to Move in Section 4.1, which reads hard-
ware sensors and writes hardware actuators as
appropriate to achieve the described behaviour, and
implements software actuators Forward:heading and For-
ward:halt, and a software sensor Forward:encoders. During the
development of this behaviour, we would manually sup-
ply values for the software sensor. We would add to the
functionality of this enhanced robot by building a level 2
system incorporating the behaviour Turn, corresponding
to the turn module in the diagram, which would write to
the software actuator Forward:heading, read the software
sensor Forward:encoders, and implement the software actua-
tor Turn:heading. Clearly, by continuing this process, we can

incrementally reproduce the functionality of the diagram
in Fig. 28.

The effectiveness of a control model and programming
environment such as that we have proposed ultimately
needs to be assessed by user testing. We believe, however,
that further investigation is necessary before expending
resources on implementing a prototype. For example, the
behaviours embedded in the recursive structure we have
described need not be finite state machines: in fact, other
models would be necessary in order to achieve behav-
iours beyond the simple reactive ones. Preliminary work
in this direction focusses on the use of neural networks for
implementing behaviours (Best S.M. & Cox P.T. (2004)).
Another possibility to consider is the feasibility of incor-
porating logic-based control systems to implement
deductive behaviours, and the extent to which these parts
of a hybrid system might be amenable to visual PBD
(Amir, E. & Maynard-Zhang, P. (2004): Lespérance, Y.;
Levesque, H.; Lin, F.; Marcu, D.; Reiter, R. & Scherl, R.B.
(1994): Poole, D. (1995)).
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