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Abstract

Search in consumer-oriented databases is becoming increasingly important, as the computer
becomes a commonly used tool. Such databases are at the heart of e-mail managers, flight
booking, and other e-commerce systems. Key problems associated with such searches are the
structure and interface of the search query. The traditional solution for these problems involves
the use of a separate text field for each element of the query structure. However, the requirement
to support ever increasing numbers of inexperienced users, who require an efficient and user-
friendly interface, is not met by the traditional solution. We present Natural Search Queries
(NSQ), a simple and intuitive approach to the search of structured information. Our solution
combines the ideas of natural language database interfaces and operator based search; queries,
in simplified and intuitive natural language, are entered into a single text field. It is a front-end
search interface oriented towards the common user. Our aim is to allow as much freedom in
formulating queries as possible, while interpreting such queries as accurately as possible, to au-
tomatically extract the elements of the query structure. In our project, we address the problem
of e-mail databases, but the results may be applicable to other databases oriented towards con-
sumer users. The report introduces the grammar of Natural Search Queries and probabilistic
methods for recognizing the query structure (i.e., parsing, and Hidden Markov Model). In addi-
tion, we demonstrate a complete implementation of a system for processing NSQs and presenting
retrieved messages. Specific subproblems that were addressed are the deterministic recognition
of natural date constraints, and training of the models for query structure recognition. Tests
show promising results in processing a broad range of Natural Search Queries.

1 Introduction

Access to structured information is becoming one of the most important and demanded tasks, due
to increasing importance of databases in commerce, and new requirements for the World Wide
Web. Information contained in the databases has a structure because it models structured world.
Free-form data repositories are not able to reflect the world in a way that is easy to understand
and process. The trend now is to create structure for such repositories. It can be easily noticed
in the Web, where markup languages are used (e.g., XML), and researchers work on automatic or
semi-automatic text structuring [5, 13]. This shift in information representation forces us to look
for new processing methods. In the report we present a solution for one of the most common tasks
– search.
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In our project, we address the problem of search in consumer-oriented databases. The proposed
ideas can be used in domains like flight-booking, e-library or e-commerce systems. We selected a
specific type of database, electronic mail database, to create and evaluate a fully functional system
for it. The e-mail database contains few parts, the most important being: subject, sender, recipi-
ents, date, attachment and text. Search process in consumer-oriented databases has one standard
approach for the interface. Each part of the database has a corresponding control element (i.e.,
text field, list, radio buttons). This approach, with slight modifications, is known and commonly
used for years – we refer to it as the traditional solution. As an example, the traditional interface
from Oracle Ultra Search system is presented in Fig. 1. For non-experienced users the traditional
solution is:

complicated and hard to use – user needs to use mouse and keyboard at the same time to
move from one control element to another.

hard to access - a large number of text fields and other control elements are required, and often
have to be hidden, to reduce the complexity of the default interface.

unable to present date constraints in intuitive form – date constraints are an important el-
ement of many consumer oriented database interfaces (e.g., e-mails, flight-booking systems).
In traditional solutions the user is asked to choose a date from a calendar or specify date
borders in two fields before and after. This date representation is limited and does not take
into account date uncertainty. A more natural date description is desired (e.g., “three weeks
ago”, “between May and July”).

too rigid in retrieval and presentation of results – traditional systems are based on Boolean
search, only elements that fully match the query are retrieved. Users must create general
queries and manually browse through unranked results, and are presented with a “no results
found” message every time they misspell a word.

hard to connect with voice recognition – voice is increasingly becoming a standard input de-
vice. Traditional solutions are not well suited to voice input.

modified in different systems – search interfaces become more and more popular. A user look-
ing for the cheapest flight visits different travel web sites. Although the query stays the same,
there is no copy-paste possibility between sites.

The aim of the project is to create a simple and intuitive search interface that overcomes the
limitations presented above. We decided to imitate the natural way search queries are formulated.
Humans have already worked out a suitable solution for talking about structured information.
Two example sentences presented in Table 1 show the method of formulating search questions.
Looking closer into these questions, we discover that they were built from two types of words with
specific functions. Words like “from”, “to”, “about” point out the structure element for which
we want to specify constraints. We name these words descriptors. The constraints are specified
by the second type of words – keywords: “Boston”, “Miami”, “John”, “project”, “presentation”.
This pattern becomes more visible when we perform repeated searches and the sentences become
simplified. Probably the first question we ask would be polite and grammatically correct, but the
more questions we formulate the simpler they become, as presented in Table 1. This is a natural
way people communicate and we claim that it is the most intuitive solution for formulating search
queries in computer system. We named this approach Natural Search Queries.
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Figure 1: Oracle Ultra Search [4] – an example of traditional search system.

flight booking

What are the available flights from Boston to Miami few
days before Christmas?

Flights from New York to Detroit 3rd of July

Miami to Boston 10 days after New Year

e-mail search

Can you find me an e-mail I received from John five months
ago, the e-mail is about project presentation?

about project presentation received from Mike last year

group meeting from Betty between May and July

Table 1: Example questions and corresponding Natural Search Queries. NSQ is a simplified and
natural way of inter-human communication, as it is used to interact with a computer system.

2 Related work

Similar problems were recognized and solved in two different areas of computer science. Our project
tries to combine the strengths of the two solutions.

Intuitive interfaces to databases, and among them, search in structured information have been
a popular topic of research since the idea of artificial intelligence was born. A good overview of
research area called Natural Language Interfaces to Databases is presented in [1]. NLIDBs are
widely used for building interfaces to Question Answering systems. This area of research has
been very active recently. Researchers concentrate on processing well-formulated and complicated
natural language. Table 2 presents examples from [11, 22, 23]. One group of these interfaces [17, 11,
12, 15, 20, 22] tries to understand complicated questions written in one sentence. These approaches
are mostly based on natural language parsers. Their authors focused on understanding complicated
questions assuming the sentence was parsed correctly. NLIDB presented in [15] is one of the systems
that consider words ambiguity – keywords may have multiple meanings. In this case, a statistical
approach, which uses comparison between vectors of n-grams, is used. Another group of QA
systems [2, 23] tries to create a human-computer dialog to receive and confirm all information
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needed to process the query. The process unfolds step-by-step by small easy to recognize sentences.
NLIDBs are very interesting, but natural language is still too complex to be successfully used in

commercial systems. In addition, we must consider if users really want to “talk” with a computer
in natural language through dialog and grammatically complete and correct sentences. This is still
an open question [21].

The problem of simplified textual access to structured information can be also solved without
complicated tools of natural language processing. A widely known commercial project shows the
problem from a different perspective. GMail1 is a commercial system that was created to change the
idea of managing e-mails. One of its main new features is “Google2 based” search. GMail designers
tried to overcome some of the limitations of traditional solutions. Users can search the body of
e-mail messages through one search text field available on the main webpage. Other parts of the
e-mail structure can be searched through a traditional search interface, accessible on a separate
page. Date constraints can be formulated more intuitively, but still the number of predefined
options is greatly limited. The designers probably considered easy access as the most important
element of the search system; the main search field introduces another possibility of formulating
structured queries – operators. Operators allow users to formulate textual representations of query
structure. Comparing to the idea of Natural Search Queries, the operator is a greatly limited
descriptor. Each structure part has one predefined operator. To define appropriate structure part
each keyword must be preceded by an operator and a colon to avoid ambiguities. The concept of
operators, called labels, is also used in XSEarch [6]. Here labels are not obligatory, however if the
label is not specified the system will look for the keyword in all database structure parts.

Operator based interfaces are deterministic and simple to implement. Their drawback is the
limitation it places on the user. Queries must match a strict pattern to be processed. The queries
are limited (e.g., two operators for date constraints in GMail) and not intuitive.

By Natural Search Queries, we want to maintain or even increase the simplicity and intuitiveness
of NLIDBs while preserving the high accuracy of operator-based interfaces. We believe this goal is
achievable by addressing a limited and specific area of search in consumer-oriented databases.

Natural Language Interfaces to Databases

Chat-80 What is the capital of each country bordering the Baltic?

Jupiter Can you tell me what’s the weather like in Boston today?

NaLIX Return every director who has directed as many movies
as has Ron Howard.

Operator Based Search Interfaces

GMail from:John about:project

XSEarch +title: , author:Vianu

Natural Search Query Interfaces (possible use)

E-mails from John about project presentation five months ago

Tickets from Boston to Miami few days before Christmas

Table 2: Natural Search Queries connects simplicity and intuitiveness of NLIDBs with high accuracy
of operator based interfaces.

1http://mail.google.com/mail/help/intl/en/about.html
2http://www.google.com/intl/en/about.html
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3 Formal definitions

In the introduction, we presented the general idea and examples of Natural Search Queries. Here
we state the formal definitions.

Definition 1 (Natural Search Query (NSQ)) Natural Search Query is a sentence of plain text
that describes an entity of a structured model (e.g., message from an e-mail database). NSQ is built
from query parts. The number of query parts and their order is chosen by the user. NSQ is natural
to construct, and not required to be syntactically correct – queries do not have to follow natural
language grammar.

Definition 2 (Query part) The expression of some part of the structured model (e.g., sender
part in e-mail model) in a search query is called query part. It is made of two types of words:
descriptors, and keywords. Query part is built according to a descriptors-keywords pattern. A part
can be used in a query only once.

Definition 3 (Query structure) A set of query parts forms the query structure. Query structure
of traditional search systems is explicit – each structure part is described separately. The Natural
Search Query structure is hidden in the plain text of the query.

Definition 4 (Descriptor) A word that indicates which part of structured model is referred to by
a query part is called descriptor. Query part can contain one descriptor (e.g., “from John”), or a
phrase of descriptors (e.g., “send by John”). Descriptors are not mandatory and can be omitted
from a query part.

Definition 5 (Keyword) A word that must be found in a specified part of an instance of struc-
tured model is called keyword. Query part must contain at least one keyword.

Definition 6 (Descriptors-keywords pattern) A model by which query parts are created is
called descriptors-keywords pattern. A part is created by 0, 1, or more descriptors followed by 1
or more keywords. The date part does not follow the descriptors-keywords pattern strictly. The
syntactic and semantic structure of naturally formulated date descriptions is more complicated.

The definitions describe the general idea of Natural Search Queries, which is independent of the
task it works on. To adapt NSQ to a specific database we have to define the query structure, which
mirrors the database structure, and the set of descriptors. In our system, we simplify the e-mail
structure and leave only four essential parts: “text” (subject and the body), “receivers”, “sender”,
“date”, for example Fig. 2. We define a descriptor set for each part. It is possible that a word is
present in more than one set (e.g., “from” – can be used to describe sender and date).

part: text part sender part receiver part date part 

label: text 
descriptor 

text 
keyword 

from 
descriptor

from 
keyword

to 
descriptor

to 
keyword 

date 
descriptor
operator

text 
keyword 

component
example: about project from Marek to John last month 

Figure 2: An example query. Contains four possible parts of e-mail structure. Each part has two
word functions – descriptors and keywords.
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4 Problem formulation

The aim of the system is to recognize the hidden structure of Natural Search Queries. After that,
we can associate keywords with the corresponding part of the database structure, and interpret
date constraints. At this point, the retrieval process becomes as simple as for the traditional
queries, where query structure is explicit. The proposed process is shown in Fig. 3. The problem
of structure recognition is similar to part-of-speech tagging done for natural language [9]. In both
cases, each word in a sentence has a hidden function. In part-of-speech tagging, these functions are
described by POS tags (e.g., “noun”, “preposition”). In the problem of NSQ recognition, we define
labels that describe the role of each word in the hidden structure (Fig. 2). Both POS tagging
and NSQ recognition need some additional information – rules by which the sentence is created;
the rules together create a grammar. The NSQ recognition grammar was created independently of
natural language grammar, based on specific features of search queries presented in section 3.

Comparison of Natural Search Queries and the traditional solution is not possible without cre-
ating a complete information retrieval system. Building such a system requires the solution to a
number of additional subproblems:

natural date description interpretation – NSQ allows the user to enter date constraints in
natural language (e.g., “3 months ago”, “between May and July”). Date constraints must be
translated to a form understandable by a computer program.

recognition of the correct structure – It is likely for the system to associate more than one
possible structure with a query. The system must then decide which of these structures are
most likely to be correct.

interface – The system uses simple “Google-like” interface, however some modifications are nec-
essary due to the ambiguity of structure recognition.

training process – The system is based on a number of probabilistic parameters. We used training
for setting up the parameters. Training can be also used while the system processes real users’
queries. Users tend to enter queries according to individual habits. Training is able to reveal
the pattern behind entered queries and tune the system to process these queries with higher
accuracy for individual users.

Figure 3: The aim of the system is to recognize the hidden structure of Natural Search Queries.
After that, the retrieval process can be as simple as in the traditional solutions.
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5 System Structure

System structure contains five steps. In the Individual Word Labeling step words are labeled
independently of their context, based on knowing that some labels are more likely for particular
words and patterns. Labels define the possible functions of the word in the NSQ structure. In the
Probabilistic Structure Recognition all possible query structures are revealed, based on the context
of words in the query. The Date Recognition step extracts a time window described by the user in
natural language (e.g., “between May and July”). The Results Ranking step decides which of the
recognized query structures are most likely to be correct, assuming that the answer to the query
should be present in the database. Finally, in the Retrieval step the recognized NSQ structures
and search results are presented to users.
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Figure 4: System structure. At each step we use different Natural Search Queries features to
process search further. The main task of the system is to recognize the hidden structure of Natural
Search Queries.

5.1 Individual Word Labeling (IWL)

Just like in the part-of-speech tagging problem, a given word may have different functions in
different sentences. For example, a name can be once used to point out the receiver of a message
“to John about project” or a sender of another message “from John about presentation”. In the
IWL step, the system finds all possible functions of word in a Natural Search Query; the functions
are described by labels (Fig. 2). This step is the equivalent of dictionary lookup step in POS
tagging problem [18]. Each word is processed individually and independently of other words in the
query. We designed a set of simple methods to check which labels are appropriate for a given word.
The methods look for a word in the lists of possible descriptors (see appendix A for the list of
descriptors for each part). Some methods look for the word in the database structure to check if it
can be a keyword. Finally some methods check if the word matches predefined keywords’ patterns
to catch dates (e.g., “21/01/2005”) or e-mail addresses (see appendix A for the complete list of
patterns, and Fig. 5 for the pseudocode of IWL step). Decisions made by different methods are
not equally likely (e.g., if a word was found in the senders’ group, and is also present in the text
of some e-mails, the “from keyword” label is more likely to be correct – the text word is probably
just a signature). Each function has a likelihood value, which reflects the probability of giving
a correct label. Setting and modifying the likelihood values is described later together with the
training process. After the labels are attached to a word the likelihoods are normalized, and the
IWL step returns a label probability distribution for each word.
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Input: Query built from words: word1, word2, ..., wordn.
Output: Query tokens sequence.
Definitions:
token – a word with a set of possible labels with their likelihoods.
This character format indicates terms defined in the report’s text.

for each word
| create token from wordk;
| for each query part

| | if wordk exists in predefined set of descriptors
| | | add proper descriptor label to token;
| | | label.likelihood := DescriptorLikelihood;
| | if wordk exists in part of the database
| | | add proper keyword label to token;
| | | label.likelihood := KeywordLikelihood;
| | for each keywords’ pattern

| | | if wordk matches the pattern
| | | | add proper keyword label to token;
| | | | label.likelihood := PatternLikelihood;
| normalize labels likelihoods;

Figure 5: Pseudocode of Individual Word Labeling step.

5.2 Probabilistic Structure Recognition (PSR)

This step is the core of the system, as it reveals the hidden structure of Natural Search Queries.
The system decides what the functions of words in the query are. The query is treated as a whole
sentence, and the system is aware of the NSQ grammar, i.e., the rules that have created the query.
The labels given by the IWL step make the possible set of candidate structures smaller – for each
word the PSR step considers only functions pointed out by the labels. The number of candidate
structures is greatly reduced, although the queries can still be ambiguous (e.g., words from the
set of descriptors can be used as text keywords “pictures from party”). The ambiguity makes
the problem probabilistic in nature. The system does not have to answer the question “is there a
structure that may be represented by a given query?”; the real question is “which of many candidate
structures is correct?”. The PSR part does not answer this question definitively. Instead, it points
out all sensible candidate structures and their grammatical likelihoods.

To maintain high accuracy and the ability to process a broad range of queries the system
uses two complementary approaches. First, it needs to find all possible candidate structures that
fully match the grammar using a probabilistic parsing algorithm. The second approach is to relax
grammatical constraints, which decrease accuracy for well-defined queries, but allows the processing
of extraordinary and misformulated queries. A Hidden Markov Model is used for this approach to
the problem. Both subsystems work in parallel, and their results are later combined into one set
of candidate structures, which is ranked in the Results Ranking step. The pseudocode of the PSR
step is presented in Fig. 6.
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Input: Query tokens sequence (tokenSequence). NSQ context free grammar.
Output: All possible query candidate structures (queryStructureSet).
Definitions:
tokenSet – created in IWL step. Set of tokens, each token is a word
and its possible labels.
queryStructureSet – set of recognized query structures. Every query structure
is a set of tokens with the proposed structural functions of words.
HMMstructure – Query structure recognized using Hidden Markov Model
This character format indicates terms defined in the report’s text.

queryStructureSet := do CYK probabilistic parsing – tokenSet as terminal rules;
HMMstructure := do Viterbi algorithm – tokenSet as evidence values;
HMMstructure.likelihood := get median likelihood from queryStructureSet ;
add HMMstructure to queryStructureSet ;

Figure 6: Pseudocode of the Probabilistic Structure Recognition step.

5.2.1 Grammar

Although we do not know the hidden structure of Natural Search Query, we are able to reveal it
based on rules by which the query was created. The formal definition of NSQ was presented in
section 3. Here we present the general ideas of the grammar. The complete list of grammar rules is
presented in appendix B. NSQ grammar rules can be divided into three stages: start, intermediate
and terminal.

Start rules construct queries from different parts of the structure. At this stage, users have the
most freedom of choice. The number of parts and their order in a query are not predefined.
At the same time, each part can be used in the query only once. It makes the number of rules
combinatorial in the number of part types. This is nevertheless computationally feasible,
because the number of part types is small, and rules can be generated automatically.

“query − > from part, to part, text part, date part”
“query − > text part, from part”

Intermediate rules are based on descriptors-keywords pattern. The date part, as it is more
complicated, has to be processed separately at this stage. The first group of the intermediate
rules creates structure parts from descriptors and keywords. The second group connects words
of the same nature together.

“from part − > from descriptors, from keywords”
“from part − > from keywords”
“to keywords − > to keywords, to keyword”
“to keywords − > to keyword”

Terminal rules constructed from labels, represent the connection between a single word and its
function in the query. These rules are created individually for every query. Each word in a
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particular query has only one function, however it may not be easy to choose from the few
possible options. This is the reason why even for the particular query a word can be a product
of more than one terminal rule. For example the query word “about” in the following two
terminal rules:

“text descriptor − > [about]”
“text keyword − > [about]”

5.2.2 Parsing – CYK

The Cocke-Younger-Kasami (CYK) algorithm [19] verifies if a sentence can be generated by a given
context-free grammar, and returns the grammar rules used in the generation process in the form
of a parse tree. An example tree is shown in Fig. 7. The grammar of Natural Search Queries is
deterministic. The non-determinism is caused only by multiple word labels. The labels become
leaves in the parse tree. The tree chooses one label for each word. These labels are connected
according to the NSQ grammar rules – they represent an integral query structure. Because of the
labeling ambiguity, it is likely that a query can have many sensible structures. For example the
query “Jan about meeting” can represent three different structures: Jan, abbreviation of January,
can be an element of the date part, it can also be a person’s first name used in sender or receiver
part. After simple modifications, CYK is able to create a forest of all possible parse trees. In the
NSQ recognition problem, the forest represents possible structures hidden in the query sentence.

 
to 

desc.
to 

 key. 
text 

desc.
text 
 key. 

date key. 
/number

relative time 
window

text part absolute time 
window/ 
date part 

to part 

query 

text 
 key. 

to 
descri-
ptors 

to 
 key-
words 

text 
descri-
ptors

text 
keywords 

date key. 
/relative 

time 
window 

date desc.
/operator 

to 
desc.

Figure 7: Sample parse tree for e-mail NSQ grammar. Connected leaves represent an integral query
structure. At the intermediate stage date part is processed separately.

The parsing algorithm is able to recognize the structure only if the query strictly follows the
grammar. This contradicts the need of processing a broad range of queries. The solution for
processing misformulated or extraordinary queries (e.g., “GMail-like” queries) is to add a large
number of additional rules to account for all possible misformulated queries. In this case, the
system would finish with a large group of additional senseless structures. We decided to use
another approach, a Hidden Markov Model, to process the extraordinary queries.
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5.2.3 Hidden Markov Model

Hidden Markov Model [9, 16] has been successfully used in POS tagging [7]. Recognizing the
NSQ structure is a similar problem, and we can presume that HMM can be used by analogy in our
system.

HMM represents a group of unobservable states. The model switches from one state to another
producing a visible outcome – the evidence. In our problem, we have a query sentence, which
is a group of words. The task is to recognize the functions of given words. In the model, the
state represents a function of a word in a sentence. The states mirror word labels (the labels are
enumerated in Fig. 2). The word itself is the evidence. As the system scans two consecutive
words in the query, it also switches between two states. Although the states are hidden, we have
some probabilistic knowledge about them. We know how likely it is to switch from one state to
another (transition model), and how likely it is to get a particular evidence value from a given state
(evidence model). Model setting and tuning is described later, as part of the training process.

Creating the evidence model by collecting information about every possible word would not be
feasible. We are able to simplify the evidence space thanks to the labels produced in the IWL step.
The word is represented by its possible labels, which makes the evidence space equal to the state
space. The IWL step returns words with probability distribution of its possible labels. It causes the
extraordinary situation where a state can generate evidence with many different values. To handle
this situation we had to modify the Hidden Markov Model. In the standard HMM, each evidence
value is associated with the probability of its generation according to the evidence model. When we
have multiple values, we have to combine their probabilities to come up with the probability of the
evidence. The IWL step gives us the probability of label being correct. We use these probabilities
as weights while combining the probabilities from the evidence model. The modification allows us
to get one evidence probability value that corresponds to the uncertainty of the IWL step.

In the ideal situation, a state produces a word that has the same label. In reality, we have to face
word ambiguity, which makes the problem of function recognition more complicated. Based on the
sequence of outcomes and the two probabilistic models the system is able to find the most probable
sequence of states that produced the outcome using the Viterbi algorithm [8]. This sequence of
states is a ready-to-use NSQ structure recognition. The Hidden Markov Model works well for
queries with part descriptors (e.g., “from John about project presentation”). The model is too
simple to handle harder queries (e.g., “John project presentation”). It does not consider the query
as a whole sentence, because the transition model gives only the information about the most recent
state change. Although it may be considered as a disadvantage, this “short memory” allows HMM
to handle extraordinary queries. The most important group of such queries are “GMail-like” queries
(“from:John text:project text:presentation”). In this case the “descriptors-keywords” pattern is
not strictly followed.

5.3 Training

The presented algorithms are based on a large number of probabilistic parameters. The solution
for setting the parameters is to train them using a set of sample Natural Search Queries. Training
can be applied to three groups of parameters: the function likelihoods in the Individual Word
Labeling step; the rule probabilities for the parsing algorithm; the probabilistic models for the
Hidden Markov Model. The training process initializes the parameters. Training can also happen
on-line, while the system is processing real user queries. Then it offers the possibility to increase
the system accuracy for each individual user. Users tend to enter queries that follow a well-defined
pattern (i.e., queries that always contain a text part sometimes followed by a date part). Training
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allows the system to adapt to such patterns. To tune the system for an individual user we need
to receive feedback information about the recognition correctness. The solution for automatic
construction of feedback information is presented later together with the Retrieval step (section
5.6.2). Through feedback, the system is given the correct query structure, namely unambiguous
information about each word’s function.

Probabilistic parameters reflect the statistical knowledge of all processed NSQ. The knowledge,
as well as the parameters, must be updated after each query is processed (online training). The
system uses the same update method for all three groups of parameters. Training is based on
the intuition that, when an element (i.e., a function in IWL, a rule in parsing, or an element of
transition or evidence model in HMM) is successfully used during query processing, it becomes
more likely to be used in the future.

During the training process the system has access to the correct query structure. Each word is
connected to a label that represents its real function in the query. This information is sufficient to
find the labeling functions that have labeled the words correctly, to increase their likelihood. The
labels also allow the rebuilding of the parse tree that represents the structure, while probabilities of
rules used in the tree are also increased. Updating the parameters of the Hidden Markov Model is a
more complicated task. The models are hidden, which means we do not have access to the sequence
of states that have generated the outcome, and therefore no clues how to modify the models. In our
system the training of HMM is based on the correlation between a visible outcome (represented by
the labels) and a state that should have generated it in the ideal case. The correlation is described
in section 5.2.3. It allows the system to update the transition model knowing only the evidence
values. The training process is described in detail in appendix C.

5.4 Date Recognition

The PSR step finds words that a user might have used to describe date constraints (e.g., “from John
3 months ago”). Date part contains a natural date description which cannot be processed simply
by using “descriptors-keywords” pattern. The description must be interpreted and translated to a
form, which is understandable to a computer program. We decided to translate each natural date
description to a time window (Fig. 8). The time window is a period presented on the time axis.
Finally, time windows are represented as probability distributions for retrieval purposes.

“between six months after 21.10.2005 and 3 weeks ago”

Figure 8: A sample date description in natural language and its representation as a time win-
dow. The Date Recognition step interprets natural date descriptions to time windows to make is
understandable for a computer system.

To interpret a natural date description we represent it as a group of components and operators.

Definition 1 (Component) A date description that can be represented on the time axis is called
component. Basic component is created from a single word of the natural date description (e.g.,
”2006-03-08”, ”January”). During the interpretation process components are connected and modi-
fied by operators. To represent all possible date descriptions we defined three types of components:
relative time window, relative time distance, and absolute time window.
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Definition 2 (Relative time window (RTW)) RTW describes the length of the time window,
but does not inform where is it placed on the time axis. For example expression “3 weeks” would
be represented as a RTW.

Definition 3 (Relative time distance (RTD)) RTD describes the distance from a particular
point on the time axis. For example expression “3 weeks after” would be represented as a RTD.

Definition 4 (Absolute time window (ATW)) AWT describes the interval on the time axis
between two points representing start date and end date. The final interpretation of natural date
description is presented in the ATW form. For example expressions “3 weeks after June”, and “3
weeks ago” would be represented as a ATW.

Definition 5 (Operator) A word that indicates a way components should be modified is called
operator (e.g., ”after”, ”last”). Each operator has an associated function, which defines how the
components should be processed.

We present the solution for recognizing the natural date descriptions in electronic mail search
problem. However, after modification of component and operator sets, the solution can be used
generally for other types of consumer-oriented databases.

5.4.1 Date part – processing

The interpretation of the natural date descriptions is done in two steps. First, we connect each
word from the natural date description with an appropriate basic component or operator function.
The next step is to process iteratively the components using the operator functions. Finally we
obtain a component that represents the given natural date description. The two main problems of
this process are defining the order of application of the operators, and connecting components with
the proper operator. We solved both problems by defining a grammar. Each operator is described
by a grammar rule that contains information about the order and type of components that can be
processed by operator’s function. Additionally, the grammar rule informs what component type
will be returned by the operator’s function. Sample rules are presented in Table 3. The parse tree,
created by the CYK algorithm, indicates the order by which the operators should be used (Fig.
9). The complete list of grammar rules and the example of natural date description interpreting is
presented in appendix D.

Sample operator rules

AFTER OPR --> [after]

AFTER OPR --> [from]

ATW --> AFTER OPR ATW

RTD --> RTW AFTER OPR

Sample terminal rules, created independently for every query

ATW --> [03/21/2002]

ATW --> [January]

OPR stands for operator.

Table 3: Sample date recognition grammar rules.
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„between  six  months  after  21.10.2005  and   3   weeks  ago”
number relative time 

window 
keyword

relative time 
window 

absolute time 
window 

keywordnumber relative time 
window 

keyword 

relative time 
window 

absolute time 
window 

keyword date

absolute time 
window 

absolute 
time window 

relative time 
distance 

Figure 9: A sample parse tree for natural date description, shows the order by which the components
are processed.

5.4.2 Date part – retrieval

If the date description is correct and sensible, the system returns an absolute time window, which
represents date boundaries. Similar boundaries are explicitly defined by the user in the traditional
solutions (“before:”, “after:”). The date recognition grammar is deterministic, therefore only one
answer to given natural date description can be returned. Absolute time window can be represented
as a probability distribution where the probability of dates within the borders is uniform and greater
than zero, and probability of dates outside the borders is equal to zero. This representation can
be useful, however in many cases it is too rigid. The system needs more flexible constraints that
take into account user’s uncertainty. Intuitively, when a user wants to retrieve e-mails that were
sent for example 6 weeks ago, there is also a chance that the relevant message was sent 5 or 7
weeks ago. The farther off an absolute time window, the smaller is the chance that the relevant
e-mail can be found. Gaussian distribution is the intuitive choice to represent user’s uncertainty.
The uncertainty grows with time distance – a user is less certain of the date if the message was
sent long time ago. This problem is solved by increasing the distribution standard deviation with
the time distance growth. Both distributions, uniform and Gaussian, are important and should be
combined. More details about calculating the probability distribution are presented in Fig. 10.

5.5 Ranking the results

The Probabilistic Structure Recognition step produces all sensible candidate query structures. The
number of these structures is usually large because of the labeling ambiguities, therefore the system
must rank the results. The Results Ranking step is introduced to limit the number of candidate
structures presented to the user. The step returns the three candidates that are most likely to
be correct. In addition, at this step the ranking of e-mail messages, retrieved by candidate query
structures, is performed. We present the two score schemes used in the system. The e-mail relevance
score describes how well the e-mail matches the Natural Search Query. The structure recognition
score shows which NSQ candidate is most likely to be correct.
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Input: Set of recognized query structure candidates (queryStructureSet).
Output: Probability distributions corresponding to natural date descriptions made
from date tokens.
Definitions:
dateTokenSet – set of tokens that contain date operators or components used
in the translation process
TWB – time window beginning day. (integer number)
TWE – time window ending day. (integer number)
Today – today’s day. (integer number)
This character format indicates terms defined in the report’s text.

for each queryStructure that contains tokens that were recognized as date words
| for each token with date word
| | if date part descriptor token
| | | create token with appropriate operator;
| | else //date part keyword token
| | | create token with appropriate component;
| | add the token to dateTokenSet ;
| date parse tree := do CYK parsing – dateTokenSet as terminal rules;
| timeWindow := recursively solve date parse tree;
|
| uniformProbDist := set function 1

TWE−TWB
for days between TWB and TWE ;

|

| mean := TWE−TWB

2
;

| Std := 0.4 + 0.05 ∗ (Today − mean);
| gaussianProbDist := set function Gaussian(mean, Std);
|
| for each day in timeWindow
| | day.likelihood := uniformProbDist(day) + gaussianProbDist(day);
| scale day likelihoods so maximal value is 1.0;

Figure 10: Pseudocode of Date Recognition step.
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E-mail relevance score There are some factors, which may cause a relevant message not to fully
match the query. Misformulated or incorrectly recognized queries can still be useful if the mistakes
were minor. The system must also take into account date uncertainty. Boolean search, used in
traditional systems, retrieves only the documents that fully match the query. This approach is
too rigid. Our system retrieves messages that partially match the query. More flexible constraints
force the system to rank the messages before presenting them to the user. E-mail messages that
match the query better are more likely to be relevant – this is the basic idea for the ranking
scheme. E-mail relevance score is the sum of scores computed for each structure part (text, sender,
receiver, and date), where parts are equally weighted. The maximal score for a message that fully
matches the query is 100%. For the parts based on keyword search (text, sender, and receiver)
the score is simply the number of words from the query part that can be found in the responding
part of e-mail, divided by the total number of words in the query part. The date part must be
processed individually. The date constraints included in the NSQ are represented as a probability
distribution. The distribution is scaled – the maximal value is equal to 1.0 to achieve 100% score
for messages that fully match the query. The relevance score for the date part is simply the value
of scaled distribution for the given message date.

Structure recognition score The parsing algorithm returns a list of all possible candidate
structures with their likelihoods calculated from the probabilities of grammar rules. The likelihoods
are the first step of the structure candidates ranking. At this step the HMM result must be added
to the list returned by the parsing algorithm. As it was evaluated independently, there is no clue
how likely it is to be correct. We decided to add the HMM result to the list with the likelihood of
its median element.

The second step is based on the intuition that, the query structure is more likely to be correct if
it is able to retrieve valuable information. For example if one of the structures of the query: “Jan
about meeting”, presented in section 5.2.2, is able to retrieve messages that match it well, then
it is more likely to be correct. Retrieved e-mail messages give the system important information
about the recognition correctness. The system retrieves messages matching each NSQ candidate
structure, and computes a factor that represents the quality of retrieved messages based on the
automatically computed e-mail relevance scores as explained earlier. The factor is a combination
of the best e-mail relevance score, and the average e-mail relevance score of all retrieved messages.
The system modifies the grammatical likelihood produced by the parsing algorithm by a factor
computed from the relevance scores of retrieved e-mails.

The nature of the e-mail search makes the system sometimes incapable of choosing a single
correct structure. For example, a user exchanged a few e-mail messages about a project presentation
with a friend named John. The user tends not to use descriptors in NSQs. The query “John project
presentation 3 months ago” can address the messages either sent or received by John. In this case,
the system is unable to guess which messages should be retrieved. To deal with this type of problem
the system retrieves messages based on the three most probable NSQ structure candidates. The
structures as well as the messages are ranked. Combined scores of structure recognition and e-mail
relevance create the order of the final message list presented to the user. The next section presents
the process of creating the list.

5.6 Retrieval

The physical retrieval of e-mail messages has been performed in the previous step. The main task
for the Retrieval step is to present retrieved messages in the form that makes finding the relevant
message simple and intuitive. Another task for this step is to automatically prepare feedback
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Input: Set of possible candidate query structure(queryStructureSet).
Output: Maximally three query structure candidates that are most likely
to be correct.
Definitions:
This character format indicates terms defined in the report’s text.

for each candidate structure

| retrieve matching e-mails;
| for each e-mail
| | compute e-mail relevance score (ERS);
compute query structure score (QSS) //QSS = 0.8 ∗ Max(ERS) + 0.2 ∗ Mean(ERS);
normalize candidate structures likelihoods (QSL);
for each candidate structure

| update candidate structure likelihood //QSL = QSL + QSS − QSL ∗ QSS;
normalize updated candidate structure likelihoods;
choose three best solutions, or all candidate structures if less than three;

Figure 11: Pseudocode of Results ranking step.

information for system training.

5.6.1 User interface

The system uses a simple “Google-like” interface. However the problem of search results presen-
tation is more complicated here – results of three different top ranking candidate structures are
presented together. To make this possible, the e-mail relevance score is modified by the score of the
structure that retrieved it. The scores of messages retrieved by the most probable structure stay at
the same level, while the scores of other messages are reduced. This makes the results of the most
probable structure likely to be placed at the top of the list. It allows browsing the list without prior
interaction with the system, with a high probability that the relevant message is close to the top.
The user is allowed to turn the incorrect queries off to remove irrelevant messages from the list. If
the most probable query structure is turned off, the next active NSQ structure takes its place, and
the scores are rescaled.

5.6.2 Automatic feedback information

Feedback information allows the system to tune its parameters. For this to be possible, the system
must know which of the presented structures is correct. Asking the user to manually define the
correct structure recognition, after entering each query, is not feasible. The feedback must be
gathered in a way that is not annoying for the user. This is done by having the system examine
user behavior when browsing the retrieved messages list, i.e., tracking chosen NSQ structures and
messages. The system collects the user’s feedback automatically, in the case that the user did not
choose any of the three presented structures to train the system.

When the user does not make the decision manually, the system accepts the most probable NSQ
structure as the correct one. When the most probable structure is turned off by the user, using the
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Figure 12: System interface. E-mail relevance score and structure recognition score combined
together produce the order of the messages. The messages that match the most probable query
structure well are presented close to the top.

button on the left side of the query structure description, the next one on the list takes its place.
The automatic feedback information is processed only if the message is found (user clicks on the
message link). This method allows reducing the number of incorrect NSQ structures training the
system, at the expense of not accepting some correect structures during the training process.

6 System evaluation

The project connects two areas of computer science – Artificial Intelligence and Human Computer
Interaction. We should evaluate it from both points of view. The measurement important from AI
perspective is system effectiveness, which is determined by the accuracy of recognizing the NSQ
structure. From the HCI perspective the aim is simpler to define but harder to measure – we have
to answer a general question ”do the users feel that the system helps them to search e-mail messages
simpler and faster?” While evaluating the system accuracy, we show the system results for the four
standard types of query formulations and the hardest realistic task for the system. In addition, we
present the design of a formal user study to evaluate the system from the HCI perspective.

6.1 Dataset

For testing purposes we use the Enron dataset [10]. In our tests we work on the dataset preprocessed
by Ron Bekkerman3 [3]. He cleaned the data and left only the seven largest user’s directories. We
have chosen one directory “lokay-m” to perform tests, since our system is meant to be an individual
user search assistant.

The set of queries on the Enron dataset, used to evaluate the system accuracy, is generated
automatically. We have designed and implemented the Random Query Generator (RQG), a stand-
alone system for the simulation of queries made by real users . The generator is an unlimited source

3www.cs.umass.edu/r̃onb/enron dataset.html Date of access: 2007-10-01
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of query data. Although it is unable to produce the full spectrum of possible queries, its flexibility
allows us to generate a broad range of queries.

Random Query Generator is a system that generates Natural Search Queries according to rules
presented in section 5.2.1. The rules are well defined, but there is still room for parameters, the
values of which must be defined or randomly assigned. The most significant are: the number of
parts; parts order; and probability of a descriptor being present. The last one makes the biggest
impact on recognition difficulty. An informal user study shows that users tend to forget about
descriptors while formulating the queries. These facts make the number of descriptors the key
feature of RQG. To generate a query, RQG randomly chooses an e-mail message from the database.
It then decides which parts of the message will be used in the query, and randomly chooses the
descriptors and keywords. The date part is an exception for this pattern. A natural date description
is generated based on predefined formulas, to keep it semantic sensible. The generator’s pseudocode
is available in appendix E.

Another much smaller set of queries was gathered from real users in an informal user study, and
it was used for manually tuning the system parameters, before the evaluation process.

6.2 Accuracy evaluation

System effectiveness is defined by the accuracy of the system’s core part, query structure recognition.
If words are associated with their functions correctly, the retrieval process becomes as simple as
in the traditional solution (Fig. 3).We have formulated four main tasks, corresponding to the
standard types of queries, to evaluate the system. In addition, we present the hardest realistic
task. Examples presented below were created by the Random Query Generator.

Well described queries – 100% probability that descriptors are present in each part. For
example, ”before 11 months ago about beverly author kimberly watson”. The query structure is
well described.

Queries with text keywords only – Queries are created from the text part only. Descriptors
are not used. For example, ”employee selected plays feedback”. Such queries should be especially
popular among users who are used to the pattern of keyword-based search engines (i.e. Google).

Queries with operators – ”GMail-like” – The query is built from pairs of descriptors and
keywords connected by a colon. For example, ”text:employee after:2005/3/19 before:2005/7/27
from:announcement”. These queries are popular among experienced users working with operator-
based database interfaces.

Most common pattern – We observed that users are likely to formulate the queries according
to a certain pattern that is individual for each user. The most common pattern is to begin the
query with the text part. After the text part users sometimes add date constraints, and/or sender’s
name, receiver name is added rarely. Users tend not to use descriptors. For example, ”resources
website michelle 1 year ago”.

Hardest task – To find out a lower bound on system accuracy, we created the hardest task,
which is still realistic. Queries contain the maximal number of randomly ordered parts. The parts
are entered without descriptors. To test how descriptors influence the accuracy we decided to
introduce the hardest task gradually. The evaluation procedure consists of four steps, in increasing
order of difficulty of the query. We start with a well-described query. At each step, we remove
descriptors from a randomly chosen part (not including date). Examples of the query changes while
going through the evaluation procedure:

”before 11 months ago author eric.gadd@enron.com about next duke eric sent to james”
”before 11 months ago author eric.gadd@enron.com about next duke eric james”
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”before 11 months ago eric.gadd@enron.com next about duke eric james”
”before 11 months ago eric.gadd@enron.com next duke eric james”

6.2.1 Test procedure and results

We investigate how the system is able to handle the five types of queries presented above. The
system was manually tuned based on the set of 50 real Natural Search Queries. During the tests
the system processed 1000 queries of each type created by the Random Query Generator.

The interface, described in section 5.6, presents to a user the three most probable NSQ structures.
We define two accuracy measures based on two different views of correctness. Query recognition is:

strictly correct if the most probable recognition (the first one on the list) is correct,

correct if one of the three presented recognitions is correct.

Evaluation results, i.e., the percentage of correctly recognized queries, are presented in Table 4.
We begin the evaluation with the queries created according to the well-described queries pattern.
The system is designed for this type of query, where high accuracy is a necessity. 100% probability
that the descriptor is present in the part makes the parts easily distinguishable. We observe that the
number of system mistakes is insignificant. They are mostly caused by including too many words
in the text part. Similar results are achieved for the queries with text keywords only. These queries
are simple and short which makes them easy for the system. The next investigated type is queries
with operators. This type of query does not strictly follow the grammar. In some cases, such queries
can be recognized only by the Hidden Markov Model. In this case, the most probable structure is
often not correct. However, the accuracy of the three most probable recognized structures is still
very high. CYK, the preferred approach that generally gives better results, makes a lot of mistakes
for this type of query. It is more amenable to the Hidden Markov Model, but its result is sometimes
not able to reach the top of the list in the Results Ranking step. Last of the four standard types
of queries is the most common pattern. This task is more difficult for the system. There are no
descriptors to help to distinguish the parts, which makes the keyword ambiguities more significant.
Although the score of 96.5% (78.7% – strictly correct) is worse than for the first two tasks, the
system is still practically usable. Finally we investigate how the system handles the hardest realistic
task. Results of the four test steps show that accuracy is strongly correlated with the number of
descriptors, as shown in Fig. 13. For queries without descriptors the accuracy drops to the level
of 37.9% (12.1% – strictly correct), which is definitely inadequate for a practical system. These
results show only that there are realistic, but unlikely, queries that the system cannot interpret.

Strictly correct Correct

Well described queries 98.7% 99.8%

Queries with text keywords only 99.8% 99.9%

Queries with operators ”GMail-like” 56.2% 98.0%

Most common pattern 78.7% 96.5%

Hardest task 12.1% 37.9%

Table 4: Accuracy results for the four standard tasks, and the hardest realistic task. The system
is able to process a broad range of queries with high accuracy.
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Figure 13: Desriptors significantly determine the query difficulty.

6.3 Training evaluation

The evaluation process becomes more complicated when online training is used. The order in which
queries are presented to the system is now important. Each query is recognized by the system that
is now already trained by each previously processed query. It is a simulation of a real situation
where user enters queries one-by-one. The key element of each test is a pattern by which the queries
were created. Training process allows the system to adapt to such patterns. To get unbiased results
we decided to start all training tests with plain models (all probabilities uniform). (See appendix
F for more information about training test procedure)

6.3.1 Training evaluation – results

By training evaluation, we want to answer two main questions: ”how strong must be the pattern
to be recognized?” and ”how much can the accuracy be increased?” We specify five tasks, which
allow us to describe training results from different perspectives. First, we check tasks for which
the training system should get best and worst results to define system’s abilities and limitations.
Then we process the main tasks presented in section 6.2.1 to check if the accuracy for the most
common patterns can be increased. Finally, we consider two problems that are likely to occur
while processing real user queries – pattern noise and pattern changes. Detailed training evaluation
description is given in appendix F; here we present the overall evaluation conclusions.

Training evaluation shows that the increase of accuracy is mostly dependent on the strength of
pattern. The pattern can be considered as strong if there is a large number of factors common in
all processed queries (e.g., each query has four, ordered parts). In extreme cases it can improve
accuracy from 37.9% (12.1% – strictly correct) to 97% (81.4% – strictly correct), when the pattern
is very strong. However, it is unlikely that real users will use this pattern. On the other hand, for
queries that simulate user input well the improvement is small. These query patterns are presented
and evaluated above, in section 6.2. In this case, the improvement is hard to achieve, because
the results for such patterns are high even without training. Two last evaluation tasks show that
training has some limitations. In real situations, it is likely that not all entered queries follow
one pattern. To simulate it, we noise the main pattern (80% of entered queries) with randomly
added queries that do not follow this pattern. The system is able to handle noised queries but the
accuracy of trained system is worse, and the training process takes more time. At the same, time
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the accuracy for queries that make the noise decrease. This shows the biggest drawback of training
– the system becomes more precise for a specific group of queries, when accuracy of other queries
is getting worse. The problem becomes clearer in the next task. The system is unable to handle
two patterns at the same time. When two patterns are processed simultaneously only the stronger
pattern can be learnt, and the quality of learning is low. Training is useable only for individual
users.

6.4 User study

The main objective of the formal user study for our project is the comparison of new system, based
on the idea of Natural Search Queries, and one of the traditional solutions. We want to test if,
thanks to improvements in formulating queries and presenting results, users are able to find relevant
messages easier and faster. The user study is in the last stage of preparation, and will be performed
soon.

Test procedure tries to simulate common situations when search system is used. A user is asked
to find a group of e-mail messages using one of the systems, working on a personal computer. While
designing the survey we had to eliminate irrelevant factors that could bias the results. The system
interfaces are as similar as possible; they both work in the same environment – an Internet browser.
We had to take into account three other elements: Indicators – what measurements should be used
to compare the systems; Input – how the messages should be represented to simulate the real
situation; Randomization - how to manipulate the variables to minimize the impact of irrelevant
factors.

6.4.1 Indicators

Time is the most important indicator when comparing both systems. We have to examine how fast
a user is able to find a message. We divide user’s interaction with the system into phases to better
record detailed time results. First, we must notice that search is likely to be an iterative procedure.
Users can modify search constraints and start the search process over many times (i.e. when the
constraints were entered incorrectly and no relevant results are found; or when the constraints were
too general and huge number of messages is returned). Time measurements for each iteration are
stored separately. In each iteration, we distinguish two phases and take independent measurements:

Time user needs to enter the query – measured from the moment user clicks on the “search”
link (traditional solution) or starts entering the query (new solution). Finished when the
“search” button is pressed.

Time user needs to find a message on the retrieved e-mails list – measured from the mo-
ment that the retrieved e-mail messages list appears on the screen. Finished when the user
clicks on the relevant message or starts the search process over (relevant message is not found).

Time measurements divided into small units allow us to test the impact of two search phases:
query formulation, and retrieved list browsing, on the time user needs to find a message. In addition,
we are able to check which system is more likely to give the correct answer in a smaller number of
iterations.

The second possibility to compare both systems is to ask about users’ opinions directly. After
they complete the test, users are asked to fill-in a self-report. It examines users’ background – their
experience with computers and e-mail search systems. Afterwards we ask questions about specific
features of both systems, and the overall impression.
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6.4.2 Input

In the real situations, users enter search constraints to find messages they have already seen. While
formulating the query they recall only pieces of information from the long-term memory. It is
impossible to simulate such situation during the test, and at the same time allow users to formulate
freely the queries. We decided to use two different input types:

Hard-copy of a full message – all information about the message is presented explicitly. User
is free to choose information that can be useful to find a message. This input type does not
simulate the real situation well. However, the freedom of choice is maximal.

Short paragraph describing the message – (i.e. “You received a message from your brother
(John Smith). He sent you his new work email address”) a user is asked to form the query
only from the given information. This input type simulates the real situation, but user is
forced to use predefined data.

We decided to run the tests for both input types independently. Each one of them can give
interesting information about the way and time in which queries are formulated.

6.4.3 Randomization

Randomization is a solution for removing the impact that irrelevant factors make on the results,
by reasonable test procedure preparation [14]. In our system, we have two main factors that can
be suppressed: interface learning and message learning. We are not able to remove or neglect these
features. By randomization, we can prepare the test in the way that irrelevant factors bias the
results equally for both systems.

While working with the system users are getting used to it. They learn the interface and are
likely to increase the work effectiveness. We can assume that if a user works on both systems one
after another the results for the second system will be better. The solution for this problem in our
studies is to randomly choose the first system for every user, and perform the test on the second
system after some period (next day).

Not all messages are equally hard to find. To compare both systems they have to work on the
same group of messages to ensure equal difficulty. At the same time, users learn about messages
and finding them in the second system should be much easier. We decided to create a small set of 20
test messages. Each user randomly draws six messages used in the test; only three of them are used
next day for the other system. This solution allows to simultaneously compare the systems while
searching for identical messages (bias because of learning) and different messages (bias because of
different difficulty). Both measurements should together give the full picture of systems’ efficiency.

7 Conclusions and future work

Natural language is the best way for humans to communicate. Many researchers have tried to use
it also for human computer interaction. In this technical report, we presented a natural language
interface for structured information search. Most of the previous approaches to this problem con-
centrate on processing complex natural language questions. Their designers try to make a computer
system that is able to act like a real interlocutor. It makes the problem too hard to be practically
solvable. In our project, we stressed different tasks of natural language interaction: simplicity and
intuitiveness. By addressing the well-defined and limited problem of search in consumer-oriented
databases, we were able to create a practically usable system for e-mail databases.
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The main contribution of our project is the concept of Natural Search Queries. NSQ represents
an intuitive way of creating search queries for structured information in simplified natural language.
A formal definition of NSQs allowed us to develop the grammar rules that describe the way queries
are created. The grammar is the starting point for solving the key problem of NSQ processing –
query structure recognition. We used two complementary methods. The CYK parsing algorithm
recognizes, with high accuracy, queries that strictly follow the grammar rules. The Hidden Markov
Model is able to process misformulated and extraordinary queries, however, its accuracy is lower.
Furthermore, we addressed the problem of interpreting date constraints from date descriptions
written in natural language.

We presented a complete system that retrieves messages from e-mail databases, using Natural
Search Queries. However, the presented ideas can be applied to other consumer-oriented databases.
The system successfully overcomes the limitations of the traditional form-filling search interfaces.
The intuitive interface of Natural Search Queries makes the system easily accessible for common
users without the need of training. The evaluation results demonstrate the potential of the system
in processing a broad range of e-mail search queries with high accuracy.

Future work involves extensive user studies. We want to run the formal user study presented
in section 6.4 to check if the system meets user expectations. The system has a modular structure
that makes modifications easy. For example, to avoid incorrect recognitions caused by misspelled
words we can update the IWL step to perform approximate search.

The general idea of Natural Search Queries can be extended to other consumer-oriented search
systems. Each specific implementation can shed new light on the problem. We plan to run the
system for flight connections database used in flight booking applications. Only few elements
have to be modified in order for the system to work on a different database. New descriptors
and grammar rules, representing the database structure, must be defined. The grammar for flight
database is more complicated, but less ambiguous, and it is likely to improve system’s accuracy.
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A Individual Word Labeling part

Text part descriptors

about; keyword; keywords; text; with; words; word

From part descriptors

author; by; from; received; send; sender; sent; written

To part descriptors

receiver; send; sent; to

Date part descriptors

-; after; ago; and; before; between; from; in; last; of; on; previous; to

Table 5: Sets of descriptors used in the e-mail search system.

From part/to part keywords’ patterns

Name pattern

[A-Z][a-z]*

Address pattern

[\w\’\.\-\&]+@([\w\’\-\&]+\.)+\w+

Date part keywords’ patterns

Date pattern

\d\d.\d\d.\d\d\d\d; \d\d/\d\d/\d\d... date is later verified.

Year pattern

200\d; 199\d...

Day name

Monday; Mon; Tuesday; Tue ...

Month name

January; Jan; February; Feb ...

Time length

day; days; week; weeks ...

Number

\d+; one; first; two; second ...

Table 6: Patterns used to recognize keywords. Patterns are presented as regular expressions, or as
a list of words.
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B NSQ grammar rules

We present a complete list of grammar rules used in the e-mail search system.

B.1 Start rules

Queries produced from one part:
QUERY 1 --> TEXT PART

QUERY 2 --> FROM PART

QUERY 3 --> TO PART

QUERY 4 --> DATE PART

There are four such rules.
Queries produced from two parts:
QUERY 1 2 --> QUERY 1 QUERY 2

QUERY 1 2 --> QUERY 2 QUERY 1

QUERY 1 3 --> QUERY 1 QUERY 3

QUERY 1 3 --> QUERY 3 QUERY 1

Other rules that produce queries from two parts are created analogically (there are 4*3 = 12 such
rules)
Queries produced from three parts:
QUERY 1 2 3 --> QUERY 1 QUERY 2 3

QUERY 1 2 4 --> QUERY 1 QUERY 2 4

QUERY 1 3 4 --> QUERY 1 QUERY 3 4

QUERY 1 2 3 --> QUERY 2 QUERY 1 3

QUERY 1 2 4 --> QUERY 2 QUERY 1 4

QUERY 2 3 4 --> QUERY 2 QUERY 3 4

Other rules that produce queries from three parts are created analogically (there are 4*3 = 12 such
rules)
Queries produced from four parts:
QUERY 1 2 3 4 --> QUERY 1 2 QUERY 3 4

QUERY 1 2 3 4 --> QUERY 1 3 QUERY 2 4

QUERY 1 2 3 4 --> QUERY 1 4 QUERY 2 3

QUERY 1 2 3 4 --> QUERY 2 3 QUERY 1 4

QUERY 1 2 3 4 --> QUERY 2 4 QUERY 1 3

QUERY 1 2 3 4 --> QUERY 3 4 QUERY 1 2

There are six such rules.

B.2 Intermediate rules

The rules that collects words of the same nature:
TEXT DESC PART --> TEXT DESC TEXT DESC PART

TEXT DESC PART --> TEXT DESC

FROM DESC PART --> FROM DESC FROM DESC PART

FROM DESC PART --> FROM DESC

TO DESC PART --> TO DESC TO DESC PART

TO DESC PART --> TO DESC

TEXT KEY PART --> TEXT KEY TEXT KEY PART

TEXT KEY PART --> TEXT KEY

FROM KEY PART --> FROM KEY FROM KEY PART
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FROM KEY PART --> FROM KEY

TO KEY PART --> TO KEY TO KEY PART

TO KEY PART --> TO KEY

DATE PART --> DATE WORD DATE PART

DATE PART --> DATE WORD

The group of rules based on ”descriptors-keywords” pattern:
FROM PART --> FROM DESC PART FROM KEY PART

FROM PART --> FROM KEY PART

TEXT PART --> TEXT DESC PART TEXT KEY PART

TEXT PART --> TEXT KEY PART

TO PART --> TO DESC PART TO KEY PART

TO PART --> TO KEY PART

Date part is processed individually at this level.

B.3 Terminal rules

Terminal rules are created individually for each query. Rules on this level are created directly from
word labels. Here we present two examples of terminal rules:
TEXT DESC --> [about]

TEXT KEY --> [about]

FROM DESC --> [from]

DATE DESC --> [from]

TEXT KEY --> [from]
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C Training

Update formula There are three parts of the system, where the probabilistic parameters are
used: the Individual Word Labeling step, the parsing algorithm, and the Hidden Markov Model. In
all these parts the parameter update is done using one update formula. Intuitively, the more often a
particular element (a function in IWL, a rule in parsing, an element of transition or evidence model
in HMM) was successfully used, the more probable it should become. To follow this intuition the
update formula is based on simple average (Fig. 14), the probabilistic parameters are normalized
after update. It is a simplified approach, more sophisticated update methods should be used in the
real system, however the basic mechanism of changing the parameters described below will remain.

pk+1 = kpk+α
k+1

k – number of times the parameter was changed
α ∈ [0, 1] allows the increase or decrease of the parameter value

Figure 14: Training update formula – the more often an element was successfully used the more
probable it should become.

Training in Individual Word Labeling step The labels are triggered by a set of functions, this
process is described in section 5.1. Training modifies the function likelihoods. Feedback information
(i.e., correct labels) allows the system to find functions that added the correct label to word and
increase their likelihoods (α = 1 in Fig. 14). At the same time likelihoods of functions that made
a mistake are decreased (α = 0 in Fig. 14).

Input: Processed query – words and their correct labels. Likelihood values
attached to labeling functions.
Output: Updated labeling function likelihood values.
Definitions:
kfunction – The number of times a certain labeling function was used.
lfunction – The likelihood of certain labeling function giving a correct label.
This character format indicates terms defined in the report’s text.

for each word
| get all labeling functions that produced a label for the word;
| for each labeling function that produced the correct label

| | lfunction :=
kfunction∗lfunction+1

kfunction+1
;

| for each labeling function that produced an incorrect correct label

| | lfunction :=
kfunction∗lfunction+0

kfunction+1
;

normalize labeling functions likelihoods;

Figure 15: Pseudocode of the Individual Word Labeling update function.
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Training for parsing algorithm Tuning the rule probabilities used in the parsing algorithm
is straightforward. Feedback information contains the correct structure, which defines the correct
parse tree and the rules used to build it. Training should increase the probability values of these
rules. The changes are applied only to the start and intermediate stages of grammar rules. The
probabilities of terminal rules are created according to the label probability distribution returned
by the IWL step. These probabilities are trained separately as presented above.

Input: Processed query – words and their correct labels (labelSet). Probability values
attached to grammar rules.
Output: Updated grammar rule probability values.
Definitions:
krule – The number of times a certain grammar rule was used.
prule – The probability of certain grammar rule.
queryStructureRules – The rules that have produced given structure.
This character format indicates terms defined in the report’s text.

queryStructureRules := do CYK probabilistic parsing – labelSet as terminal rules;
if CYK returned a structure
| for each rule from queryStructureRules

| | prule := krule∗prule+1

krule+1
;

normalize rule probabilities;

Figure 16: Pseudocode of the grammar rules update function.

Training for hidden Markov Model Generally, HMM training is a complicated task. The
model is hidden, which means we do not have access to the sequence of states that have generated
the outcome, and therefore no clues how to modify the models. In most cases, this problem is
solved by variations of the Baum-Welsh algorithm [9, 16]. The algorithm estimates the number
of states that were used to generate given sentences. We are able to use some specific features of
our problem to simplify the process of HMM training. In section 5.2.3 we show that both state
and evidence space mirror the space of possible word labels. We know that the word should have
been produced by its corresponding state. Although we do not know which states have actually
produced the evidence sequence, we know which ones should have done that in ideal situation,
given the correct label from the feedback. It makes updating the transition model straightforward,
because we have direct access to the state values. Evidence model is updated by the probabilities
of labels produced by IWL step. It is a natural process because IWL and evidence model answer
the same question: “how probable it is to get a particular label (evidence value) from a word (a
state hidden behind the word)?”
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Input: Processed query – words and their correct labels (labelSet). Transition and
evidence model from Hidden Markov Model.
Output: Updated HMM models.
Definitions:
kelement – The number of times a certain model element was used.
pelement – The probability of model element rule.
This character format indicates terms defined in the report’s text.

/*updating the evidence model*/
for each word
| for each label attached to the word
| | choose the element of the evidence model

| | that refers to the label;

| | pelement := kelement∗pelement+llabel

kelement+1
;

/*updating the transition model*/
for each pair of words
| | choose the element of the transition model that refers to the switch
| | between the pair of words;

| | pelement := kelement∗pelement+1

kelement+1
;

normalize models;

Figure 17: Pseudocode of the HMM models update function.
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D Date part processing

D.1 Grammar

We present the complete list of rules used in the Time Window Recognition system. To make the
list easier to understand we grouped rules and neglect the Chomsky normal form. All rules can be
easily transformed to CNF.

The rules are presented in two main groups. The first group shows how date operators, which
are represented by words previously recognized as date descriptors, transform components. The
second group presents how primal components are created from date keywords.
AFTER OPR --> [after]

AFTER OPR --> [from]

ATW --> AFTER OPR ATW / Function: afterAWT(AWT) /
RTD --> RTW AFTER OPR / Function: afterRTD(RTW) /
AGO OPR --> [ago]

AGO OPR --> [back]

ATW --> RTW AGO OPR / Function: agoATW(RTW) /
BETWEEN LEFT OPR --> [between]

BETWEEN LEFT OPR --> [from]

BETWEEN RIGHT OPR --> [and]

BETWEEN RIGHT OPR --> [to]

ATW --> BETWEEN LEFT OPR ATW BETWEEN RIGHT OPR ATW /Function: betweenATW(ATW, ATW)/
RTW --> BETWEEN LEFT OPR RTW BETWEEN RIGHT OPR RTW /Function: betweenATW(RTW, RTW)/
BEFORE OPR --> [before]

BEFORE OPR --> [to]

ATW --> BEFORE OPR ATW / Function: beforeAWT(AWT) /
RTD --> RTW BEFORE OPR / Function: beforeRTD(RTW) /
LAST OPR --> [last]

ATW --> LAST OPR ATW / Function: lastAWT(AWT) /
ATW --> LAST OPR RTW / Function: lastAWT(RWT) /
CONNECT OPR --> [and]

CONNECT OPR --> [-]

ATW --> AWT CONNECT OPR ATW / Function: connectAWT(AWT, AWT) /
ATW --> AWT ATW / Function: connectAWT(AWT, AWT) /
ATW --> RTD ATW / Function: RTDtoAWT(RTD, AWT) /

OPR stands for operator,
ATW stands for Absolute Time Window,
RTD stands for Relative Time Distance,
RTW stands for Relative Time Window.

Here we present how terminal rules are created from date keywords. Analogically as in Individ-
ual Word Labeling step (presented in section 5.1 of the report) these rules are created individually
for every query. More information about the character of date keywords can be found in Table
6 placed in appendix A. We distinguish six types of date keywords: date, day, month, year, time
length, number. They can create terminal rules:
ATW --> DATE / Function: dateAWT(DATE) /
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ATW --> DAY / Function: dayAWT(DAY) /
ATW --> MONTH / Function: dateAWT(DATE) /
ATW --> YEAR / Function: dateAWT(DATE) /
RTW --> TIME LENGTH / Function: createRTW(TIME LENGTH) /
RTW --> NUMBER TIME LENGTH / Function: createRTW(NUMBER, TIME LENGTH) /

D.2 Example recognition

In this section, we present how example date description written in natural language is processed
by the system. We process the query: ”after 2006/03/08 before 2006/05/16”. Based on the rules
presented above a parse tree is created (Fig. 18).

Figure 18: Parse tree of the example query “after 2006/03/08 before 2006/05/16”.

Following the parse tree, we can recursively transform components using given functions (Fig.
19).

dateATW(‘‘2006/03/08’’)

afterATW(dateATW)

Analogically for “before 2006/05/16”

connectATW(afterATW, beforeATW)

Figure 19: Processing of example query “after 2006/03/08 before 2006/05/16”.

The final absolute time window is a natural date description placed on the time axis. In the next
step, ATW is translated to two probability distributions: uniform and Gaussian. Both distributions
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are combined and then scaled so the maximal date likelihood is 1.0. The algorithm in a form of
pseudocode is presented in Fig. 10.
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E Random Query Generator

E.1 RQG pseudo-code

Require: User’s decisions about all parameters - set to defined value or randomized.
Ensure: A simulation of Natural Search Query.
Definitions:
date pattern - a pattern by which date part is created. Possible patterns
are presented in section E.2.
This character format indicates terms defined in section E.2.

choose query parts; /*query parts are chosen by user or randomly*/
/*possible parts: text part, from part, to part, date part*/
set query parts order; /* order is set by user or randomly*/
randomly choose a message from the e-mail database;

for each query part
| if query part describe date
| | randomly choose a pattern;
| | if AGO pattern

| | | noise message send date;
| | | /*small Gaussian noise to simulate real situation*/
| | | translate date to word description;
| | else
| | | randomly choose lower and/or upper limit;
| | | if pattern uses word descriptions to describe dates
| | | | translate dates to word descriptions;
| | fill-in date part according to chosen date pattern;
| else
| | decide if descriptors are used; /*randomly or decided by user*/
| | if use descriptors
| | | choose descriptors from part descriptors list;
| | randomly set number of keywords;
| | randomly choose keywords from the database;
| | /*words from defined message and part*/
| | fill-in the part using chosen descriptors and keywords;
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E.2 Patterns used to generate date part

AGO pattern

- with word description (i.e. “3 weeks ago”)
NUMBER WORD\_DESCRIPTION [ago]

AFTER pattern

- with DATE (i.e. “after 03/21/2002”)
[after]DATE

- with AGO pattern (i.e. “after 3 weeks ago”)
[after] AGO

BEFORE pattern

- with DATE (i.e. “before 03/21/2002”)
[before] DATE

- with AGO pattern (i.e. “before 3 weeks ago”)
[before] AGO

AFTER BEFORE pattern
/*with optional [and] between AFTER and BEFORE, the order can be inverted*/

- with DATE (i.e. “after 02/23/2000 before 03/21/2002”)
[after] DATE [before] DATE

- with AGO pattern (i.e. “after 5 months ago before 3 weeks ago”)
[after] AGO [before] AGO

BETWEEN AND pattern
/*with optional [from] and [to] keywords*/

- with DATE (i.e. “between 02/23/2000 and 03/21/2002”)
[between] DATE [and] DATE

- with NUMBER (i.e. “between 5 and 3 weeks ago”)
[between] NUMBER [and] NUMBER WORD_DESCRIPTION [ago]

- with NUMBER and word description (i.e. “between 5 months and 3 weeks ago”)
[between] NUMBER WORD_DESCRIPTION [and] NUMBER WORD_DESCRIPTION [ago]

- with AGO pattern (i.e. “between 5 months ago and 3 weeks ago”)
[between] AGO [and] AGO
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F Training evaluation

Training effectiveness is determined by the improvement in the accuracy of processing queries,
that can be reached by the system while learning the pattern. This makes the training evaluation
doable only by processing a very large number of queries. We use queries generated by the Random
Query Generator to evaluate training, analogically as in the system evaluation (section 6.1). We
have complete control over patterns processed by the system; it allows us to examine the training
system from different perspectives.

Training evaluation needs a complex procedure. Our objective is to simulate the real situation
as well as possible. A generated query is used to train the system only if it was previously correctly
recognized. This procedure tries to reflect the way that the real feedback is gathered – see section
5.6.2 of the report. In reality, the system should modify its parameters each time the query is
entered and correctly recognized. We use the same procedure during the tests. The queries are
learnt one-by-one. The objective of training is to tune the system probabilistic parameters. We
must define the base parameters, from which the tuning process is started. One solution is to use
the manually pretuned parameters, as it was done during the base system evaluation described
in section 6. The second possibility is to start the training process from plain models, where all
probabilities are equal. We decided to use the second solution to get unbiased results, and observe
the real abilities of training.

Training is a complicated process and needs complex evaluation. We decided to group the tests
into three stages. First, we check system’s abilities and limitations, processing the patterns that
are easiest and hardest to train. In the main part of the evaluation procedure, we train the system
by patterns that are likely to be used by real users. Finally, we examine how the training process
faces difficulties that can happen while processing real queries.

The objective of the first test stage is to determine training abilities and limitations. To achieve
it we process queries for which training should get best and worst results. The factor that indicates
training effectiveness is the increase in the accuracy of processing queries. Training is able to tune
the system to a given pattern better if the pattern is strong, which means that a large number of
factors (i.e., parts number, parts order, etc.) is common in all processed queries. We process two
groups of queries with a strong pattern, and one group that does not follow any pattern:

The hardest task for system without training - Each query has four, randomly ordered
parts. As presented in section 6.2.1 the accuracy for this type of queries is quite low (37.9% –
correct; 12.1% – strictly correct). Such queries have a strong pattern. Training allows the system
to expect keywords from every possible query part in each query.

The strongest pattern – In this test we remove the only weakness of the pattern presented
above – randomly ordered parts. We fix the order to see how it changes the effectiveness and
efficiency of training. This change is unobservable for the not trained system, but it should be a
significant facility for the trained system.

The weakest pattern – Number of parts and their order is randomized. Parts have no de-
scriptors to keep the queries hard to recognize. This test shows how training works when there is
no pattern to follow.

In the main part of the training evaluation, we test patterns that are most likely to be used in
real queries: “well described queries”, “text keywords only”, “most common pattern”
(for a detailed description of these patterns please refer to section 6.2.1). The results for this type
of queries indicates the real usability of training, because such queries are most likely to be entered
by real users.

The last tested group of patterns represents the problems that are likely to occur while processing
real queries. We cannot expect that users will enter queries that always follow a certain pattern.
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We simulate two situations:
Noised pattern. – We noise the strongest pattern (four ordered parts with no descriptors),

20% of processed queries is fully randomized. It is unlikely that a user will strictly follow one
pattern; we have to expect some off-pattern queries. Queries that do not match the main pattern
create noise for the training system. We test how the noise queries change system’s ability to learn.

Mixed patterns – When the number of noise queries is comparable with the number of pattern
queries we can consider input queries as a mixture of two patterns. We have mixed two query types:
a strong pattern presented above and “well described queries”. This test shows if a system can
be used by two users simultaneously. A modification of this test, where queries are entered to the
system in groups of 50, shows how already trained system handles the change of pattern.

F.1 Training evaluation – results

The first stage of training evaluation states the borders of the training system. Results for strong
patterns suppose to present the potential of the system. The hardest pattern for system without
training (four randomly ordered parts, without descriptors) shows that training can significantly
increase the accuracy. The accuracy is increased from 37.9% – correct (12.1% – strictly correct)
to about 64.7% (46.1% – strictly correct) (presented numbers are averaged accuracy for the last
100 queries in the test). Fig. 20 shows that training process is slow; the system needs over 100
queries to start increasing the accuracy. The system is trained only by the correctly recognized
queries. Their percentage at the beginning of training process is low, which is the reason for a
slow start. Accuracy and time system needs to learn the pattern are improved significantly when
processing the strongest pattern, where the parts order is fixed (Fig. 21). A stable score of 97%
(81.4% – strictly correct) allows the system to successfully process queries. On the other side, the
system parameters after training are very sharp, which makes the results high only for a specialized
group of queries. As we assumed, training is unable to capture weak patterns, i.e., queries where
all parameters are randomized. For this type of queries, system parameters are changed slightly
and no increase in accuracy is observed (Fig. 22).

The first group of tests proved that for some specialized patterns the accuracy of the system
can be increased by training. The next group of tests is supposed to present training abilities for
the most common patterns. The task is hard because all these patterns have very good results in
untrained system. Surprisingly training, in its early stage, can slightly decrease system accuracy –
it can be noticed in results for “well described queries” (Fig. 23). In this case, the queries pattern
is weak, so the system has problems with catching it, and the learning process is long. After
processing big number of queries in all cases the results are slightly improved, or, as for the “text
keywords only” queries – where all processed queries were strictly correct (Fig. 24), the accuracy
is not reduced. In the ideal cases, when all entered queries follow one pattern the training process
does not decrease system’s accuracy, however we should not expect significant improvement.

The third group of evaluated patterns simulates the situations that are likely to happen it the
real world. First, we process the noised queries. The system is still able to tune to the main pattern
however tuning is not as strict as for queries without noise. Training process takes more time and
gives worse results. After processing 400 queries, noised results 86.7% (64.9% – strictly correct)
are lower that accuracy for not noised pattern 97% (81.4% – strictly correct). The test shows
that training from noised queries is still feasible, although the accuracy is reduced for both pattern
and noise queries. In the next test, we mix a strong pattern that gives poor results, but can be
easily learnt, and a weak pattern with good results and no ability for training. The results (Fig.
27) show the biggest drawback of training – it gets specialized for the strongest pattern, accuracy
for other queries is reduced. Weak patterns are also able to abuse training process, which can be
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noticed when mixed patterns are entered to the system in groups of 50 queries. The graph (Fig.
28) shows that the system is unable to memorize parameters setting. Training process is started
over each time the pattern changes. The system is not able to handle two patterns simultaneously,
and should be used only for individual users.
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Figure 20: Hardest task for system without
training. System’s accuracy can be signifi-
cantly improved
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Figure 21: The strongest possible pattern
- four, ordered parts, and no descriptors.
Stronger pattern is easier to learn.
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Figure 22: The hardest task for training. Ran-
domized number and order of parts make the
pattern weak.
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Figure 23: Well described queries
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Figure 24: Text keywords only

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

A
cc

ur
ac

y 
(%

)

Number of processed queries

Correct
Strictly correct

Figure 25: Most common pattern

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

A
cc

ur
ac

y 
(%

)

Number of processed queries

Correct
Strictly correct

Figure 26: Strong pattern, noised.
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Figure 27: Two patterns, randomly mixed.

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

A
cc

ur
ac

y 
(%

)

Number of processed queries

Correct
Strictly correct

No training

Figure 28: Two patterns. Entered in groups of
50 queries.
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