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Abstract
Step length adaptation is central to evolutionary algorithms in real-valued search
spaces. This paper contrasts several step length adaptation algorithms for evolution
strategies on a family of ridge functions. The algorithms considered are cumulative
step length adaptation, a variant of mutative self-adaptation, two-point adaptation,
and hierarchically organised strategies. In all cases, analytical results are derived that
yield insights into scaling properties of the algorithms. The influence of noise on adap-
tation behaviour is investigated. Similarities and differences between the adaptation
strategies are discussed.
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1 Introduction

Adaptation of the mutation strength is often a necessary requirement for successful
evolutionary optimisation in real-valued search spaces. Mutation strength adapta-
tion algorithms that have been proposed include cumulative step length adaptation
(Ostermeier et al., 1994), mutative self-adaptation (Rechenberg, 1973; Schwefel, 1981),
two-point adaptation (Salomon, 1998), and hierarchically organised strategies (Herdy,
1992; Rechenberg, 1994). Analytical knowledge with regard to properties of adaptation
mechanisms is sparse, and few comparisons between the different approaches have
been published. This paper analyses the behaviour of the aforementioned adaptation
strategies on a family of ridge functions, revealing similarities as well as important
differences.
The choice of ridge functions as a test bed for evaluating the performance of adap-

tation strategies has been made for two reasons. First, they are among the simplest
nontrivial test functions that can be considered. The mutation strength of adaptive
evolution strategies on a ridge converges to zero, diverges, or assumes a state that is
characterised by a stationary probability distribution. Due to the symmetries inher-
ent in the problem, that state is described by a small number of parameters analytical
approximations to which can be readily obtained. The equations that are derived (ap-
proximately) hold for a wide range of parameter values and are thus more valuable
than experimental results obtained for particular parameter settings. Initialisation con-
ditions and termination criteria are irrelevant for the results obtained. And second, it
has been conjectured that ridge following is a recurring task in numerical optimisation.
(Whitley et al., 2004) state that while the difficulties of optimising ridges “are relatively
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well documented in the mathematical literature on derivative free minimization algo-
rithms [. . . ], there is little discussion of this problem in the heuristic search literature”.
Findings with regard to the suitability of adaptation strategies for ridge following can
thus be expected to be of practical significance.
The past decade has seen an increasing interest in an analytical understanding

of adaptation strategies. (Beyer, 1996) studies the performance of the (1, λ)-ES with
mutative self-adaptation for the sphere model. (Meyer-Nieberg and Beyer, 2005) con-
sider the more general (µ/µ, λ)-ES. (Hansen, 2006) shows that mutative self-adaptation
is not without problems on linear fitness functions. See (Meyer-Nieberg and Beyer,
2006) for pointers to further work on mutative self-adaptation, including convergence
results for spherically symmetric objective functions obtained using a Markov chain
approach. (Beyer and Arnold, 2003; Arnold and Beyer, 2004) study the performance
of the (µ/µ, λ)-ES with cumulative step length adaptation on the sphere model. The
performance of (non-adaptive) evolution strategies on parabolic ridges is analysed by
(Oyman et al., 1998; Oyman et al., 2000; Oyman and Beyer, 2000). The results are gen-
eralised for other ridge topologies by (Beyer, 2001a). Adaptive evolution strategies on
ridge functions have first been studied by (Herdy, 1992). In that reference, it is seen
in experiments that mutative self-adaptation performs unsatisfactorily on some ridges,
and hierarchically organised strategies are proposed as an alternative. A first analyt-
ical investigation of the behaviour of hierarchically organised evolution strategies on
parabolic ridges has recently been presented by (Arnold and MacLeod, 2006). Muta-
tive self-adaptation on sharp ridges is the subject of the analysis presented by (Beyer
and Meyer-Nieberg, 2006). Cumulative step length adaptation on parabolic ridges is
studied by (Arnold and Beyer, 2006) for different forms of noise present. That analysis
is generalised by (Arnold, 2006) for other ridge topologies.
The approach followed in this paper is similar to that pursued by (Beyer, 2001b)

and in other work in that the one-step behaviour of evolution strategies is described
by a set of nonlinear, stochastic difference equations. The goal of the analyses is to
find a stationary state that is characterised by the time-invariance of the variables that
describe the state of the system. Both the nonlinearity and the randomness in the evo-
lution equations make it impossible to obtain an exact solution without introducing
simplifications. Such simplifications include ignoring stochastic effects by replacing
variables with their expected values, and the assumption of high search space dimen-
sionality. Where the goals of simplicity and accuracy are conflicting, in this paper we
opt for the former. Better approximations could be derived, but they would likely act
to obscure the lessons learnt here. Computer experiments are used to provide a sense
of the accuracy of the predictions and to show that the qualitative characteristics of the
behaviour of the strategies is captured correctly in the analyses.
The remainder of this paper is organised as follows. Section 2 outlines single steps

of the basic strategy as well as the class of ridge functions considered. Previously ob-
tained results with regard to the performance of the strategy are summarised in as far as
they are relevant in the present context. Sections 3 through 6 consider, in order, cumu-
lative step length adaptation, a variant of mutative self-adaptation, two-point adap-
tation, and hierarchically organised strategies. In each case, a performance law that
describes the strategy’s behaviour is derived, and its accuracy is verified experimen-
tally. The analysis of the behaviour of cumulative step length adaptation generalises
that in (Arnold and Beyer, 2006) by including ridges other than parabolic ones, and it
generalises that in (Arnold, 2006) by including noise. The approach to the analyses of
mutative self-adaptation and two-point adaptation is new and will conceivably prove
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useful in other fitness environments in the future. The treatment of hierarchically or-
ganised evolution strategies generalises that in (Arnold and MacLeod, 2006) both by
considering ridges other than parabolic ones and by including the effects of noise. Sec-
tion 7 contrasts and compares the properties of the different adaptation algorithms, and
it concludes with suggestions for future work.

2 Preliminaries

This section first describes the (µ/µ, λ)-ES with isotropically distributed mutations as
the basic strategy used to generate single steps. Then, the ridge function class is intro-
duced, and previously derived results that form the basis of the computations in later
sections are summarised.

2.1 Basic Strategy

The (µ/µ, λ)-ES with isotropically distributed mutations is an evolution strategy used
for the optimisation of functions f : IRN → IR. It is popular both due to its good lo-
cal optimisation performance and its relative amenability to theoretical analysis. The
(µ/µ, λ)-ES is an instance of the more general (µ/ρ +, λ)-ES where ρ = µ (i.e., the en-
tire population is parent to every offspring candidate solution generated), and comma
selection is used (i.e., the life span of an individual cannot exceed a single generation).
See (Beyer and Schwefel, 2002) for a comprehensive introduction to evolution strategies
and the (µ/ρ +, λ)-notation.
In every time step the (µ/µ, λ)-ES updates a search point x ∈ IRN (the centroid of

its population) using the following four steps:

1. A set of λ offspring candidate solutions y(i) = x + σz
(i), i = 1, . . . , λ, is generated.

Mutation strength σ > 0 determines the step length and the mutation vectors z(i) ∈
IRN consist of independent, standard normally distributed components.

2. The objective function values f(y(i)) of the offspring candidate solutions are de-
termined.

3. Letting the index k; λ refer to the kth best (i.e., the kth largest if the task is maximi-
sation and the kth smallest if the task is minimisation) of the offspring candidate
solutions, the average

z
(avg) =

1

µ

µ
∑

k=1

z
(k;λ) (1)

of those µmutation vectors that correspond to the µ best offspring candidate solu-
tions is computed.

4. The search point is updated according to

x← x + σz
(avg) (2)

where “←” denotes the assignment operator.

Different mechanisms for the adaptation of the mutation strength σ will be considered
in Sections 3 through 6. Arguably the most significant limitation of the strategy out-
lined here is its reliance on isotropically distributed mutations. (Whitley et al., 2004)
point out that significantly improved performance on ridge functions can be achieved
if mutation vectors are generated using a general N -dimensional normal distribution
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Figure 1: Plots of two-dimensional ridges with topology parameter α = 1 (sharp ridge),
α = 2 (parabolic ridge), and α = 4.

with appropriately chosen variances and covariances. Adapting the N(N + 1)/2 pa-
rameters that constitute the covariance matrix is a more difficult task both to solve and
to analyse than adapting a single step length. While strategies such as the covariance
matrix adaptation evolution strategy (CMA-ES) proposed by (Hansen and Ostermeier,
2001) exist, the analysis of their performance remains as a task for future work. It is
conceivable that the analyses presented here are of significance even when using non-
isotropically distributed mutations as strategies such as the CMA-ES adapt their step
length separately from the covariance matrix.

2.2 The Ridge Function Class

The class of objective functions considered throughout this paper is

f(x) = x1 − d

(

N
∑

i=2

x2
i

)α/2

, x = 〈x1, . . . , xN 〉 ∈ IRN (3)

where d > 0 and α ≥ 1. The parameter α is referred to as the topology parameter.
Ridges with α = 1 and α = 2 are referred to as sharp and parabolic ridges, respectively.
Figure 1 shows plots of several two-dimensional ridges. The x1-axis is referred to as
the ridge axis. Notice that while in the definition used here the ridge axis is aligned
with an axis of the coordinate system and the objective function is thus separable, that
fact is irrelevant for a strategy that uses isotropically distributed mutations such as
those considered in the present paper. The coordinate system could be subjected to an
arbitrary rotation without affecting the strategies’ performance.
While ridge functions as defined in Eq. (3) have no finite maximum, maximisation

is still a meaningful task if increasing objective function values is considered the goal of
optimisation. Candidate solutions with superior fitness can be achieved in two differ-
ent ways: by making progress in the direction of the ridge axis (i.e., by increasing x1) or
by reducing the distance from the ridge axis. In the short term, the latter may be more
successful; however, in the long term, only the former is a viable possibility as the dis-
tance from the ridge axis is always nonnegative. Therefore, as in (Oyman et al., 1998)
and later work, the performance of evolution strategies on ridge functions is quantified
by the progress rate

ϕ = E
[

σz
(avg)
1

]

(4)

i.e., the expected progress of the search point in the direction of the ridge axis in a single
time step.
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Figure 2: Decomposition of vector z into its axial component z1, central component zA,
and lateral component zB for N = 3. The dashed lines indicate locations of constant
fitness.

Finally, real-world optimisation problems often suffer from noise present in the
process of evaluating the quality of candidate solutions. Such noise can be a conse-
quence of factors as varied as the use of Monte Carlo techniques, physical measurement
limitations, or human input in the selection process. Noise is most frequently modelled
by an additive Gaussian term with mean zero and with a standard deviation σε that is
referred to as the noise strength. The noisy fitness fε(y) = f(y) + σεzε of a candidate
solution y, where zε is a standard normally distributed random variate, is the fitness
observed upon evaluation of the fitness function. In order to investigate the robustness
of adaptation algorithms, we include noise of constant strength that is independent of
the location in search space in the analyses. See (Arnold and Beyer, 2006) for other
forms of noise that could be considered in future work.

2.3 Single Step Performance

For given mutation strength, after initialisation effects have faded the (µ/µ, λ)-ES as-
sumes a state in which the ridge is tracked at a distance that fluctuates, but the dis-
tribution of which is stationary. It can be observed that the relative magnitude of the
fluctuations decreaseswith increasing search space dimensionality. In the limitN →∞
an expression for the average distance at which the ridge is tracked can be obtained.
The following derivation generalises that in (Arnold and Beyer, 2006) by considering
ridges other than parabolic ones, and it extends that in (Arnold, 2006) by including the
effects of noise in the calculations.
Letting x2...N = 〈0, x2, . . . , xN 〉 denote the projection of the search point onto the

hyperplane with x1 = 0, throughout this paper R = ‖x2...N‖ denotes the distance
of the search point from the ridge axis. Central to the analysis of the performance of
evolution strategies on ridge functions is a decomposition of mutation and progress
vectors into three mutually orthogonal components z1, zA, and zB that has been em-
ployed in (Arnold and Beyer, 2006; Arnold, 2006) and that is illustrated in Fig. 2. Vector
z1 = 〈z1, 0, . . . , 0〉 points in the direction of the ridge axis and is referred to as the axial
component of z. Letting z2...N = 〈0, z2, . . . , zN〉, scalar quantity zA = −x2...N · z2...N/R
is the signed length of the central component zA = −zAx2...N/R of vector z that points
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from the search point toward the ridge axis. Vector zB equals z2...N −zA and is referred
to as the lateral component of z. Altogether, z = z1 + zA + zB .
Consider the noisy fitness of an offspring candidate solution y = x+σz. Using the

definitions of zA and z2...N , it follows from Eq. (3) that

fε(y) = x1 + σz1 − d

(

N
∑

i=2

(xi + σzi)
2

)α/2

+ σεzε

= x1 + σz1 − d
(

R2 − 2RσzA + σ2‖z2...N‖2
)α/2

+ σεzε. (5)

As z is a mutation vector, ‖z2...N‖2 is χ2
N−1-distributed and has mean N − 1 and vari-

ance 2(N − 1). Because the distribution of mutation vectors is isotropic, zA is standard
normally distributed. Let us assume that

R� σ
√

N. (6)

It will be seen below that for given mutation strength σ the resulting stationary dis-

tance R of the search point from the ridge axis is such that with increasing N , σ
√

N/R
tends to zero, thus providing an a posteriori justification for Eq. (6). Under the as-
sumption, the first term in the parentheses in Eq. (5) dominates the other two. The
power term can thus be expanded into a Taylor series with terms beyond the linear one
ignored, yielding

fε(y)
N→∞

= x1 + σz1 − d
(

Rα − α

2
Rα−2

(

2RσzA − σ2‖z2...N‖2
)

)

+ σεzε

= f(x) + σz1 + αdRα−1σzA −
αd

2
Rα−2σ2‖z2...N‖2 + σεzε. (7)

Again using the assumption Eq. (6), for large N the variance of the term involv-
ing ‖z2...N‖2 disappears relative to that of the term involving zA, and it is possible to
treat the former as a constant by replacing it with its expected value. The variable terms
(those involving z1, zA, and zε) are all normally distributed due to the way that muta-
tion vectors are generated and the assumption that noise is Gaussian. Selection ensures
that those µ candidate solutions with the largest values of σz1 +αdRα−1σzA +σεzε sur-
vive. The signed lengths z1 and zA of the axial and central components of the mutation
vectors are thus concomitants of the order statistics that result from ranking offspring
candidate solutions according to their noisy fitness. (See (David and Nagaraja, 1998)
for an introduction to concomitants of order statistics.) According to Eq. (1), the axial,

central, and lateral components z
(avg)
1 , z

(avg)
A , and z

(avg)
B of the progress vector are the

averages of the respective components of the selected mutation vectors. The following
lemma that has previously been used in (Arnold and Beyer, 2006; Arnold, 2006) is thus
immediately applicable:

Lemma 1 Let Xi = Yi + Zi for i = 1, . . . , λ, where the Yi are independently standard nor-
mally distributed and the Zi are independently normally distributed with mean zero and with
variance σ2

Z . Ordering the sample members by nondecreasing values of the X variates, the ex-
pected value of the arithmetic mean of those µ of the Yi with the largest associated values of Xi

is

E

[

1

µ

µ
∑

k=1

Yλ+1−k;λ

]

=
cµ/µ,λ
√

1 + σ2
Z

where Yj;λ denotes the concomitant of the jth order statistic and where cµ/µ,λ is the (µ/µ, λ)-
progress coefficient defined in (Beyer, 2001b).
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Specifically, with Y = z1 and Z = αdRα−1zA +ϑzε, where ϑ = σε/σ, it follows from the
lemma that

E
[

z
(avg)
1

]

N→∞

=
cµ/µ,λ

√

1 + ϑ2 + (αd)2R2(α−1)
(8)

Similarly, with Y = zA and Z = (z1 + ϑzε)/(αdRα−1), it follows that

E
[

z
(avg)
A

]

N→∞

=
αdRα−1cµ/µ,λ

√

1 + ϑ2 + (αd)2R2(α−1)
. (9)

Both equations are generalisations of the corresponding results for α = 2 obtained
in (Arnold and Beyer, 2006), and they generalise those in (Arnold, 2006) by including
the effects of noise. Finally, as noted above, the influence of ‖z2...N‖2 on the rank in the
population of the corresponding offspring disappears as N increases. (The variance of
the term involving ‖z2...N‖2 in Eq. (7) disappears compared to that involving zA.) For

N →∞, z(avg)B is thus the average of µ uncorrelated random vectors. As seen in (Beyer,
2001b), averaging µ uncorrelated random vectors reduces the squared length of the
vectors being averaged by a factor of 1/µ. Furthermore, the relative contribution of the

central component z
(avg)
A to ‖z(avg)2...N‖2 vanishes for largeN . As a result,

E

[

‖z(avg)2...N‖2
N

]

N→∞

=
1

µ
. (10)

Altogether, Eqs. (8), (9), and (10) provide a description of the progress vector that is suf-
ficient for obtaining a characterisation of the stationary state attained by an evolution
strategy with stationary step length when tracking a ridge.
According to Eq. (2), the squared distance of the next time step’s search point from

the ridge axis is

N
∑

i=2

(

xi + σz
(avg)
i

)2

= R2 − 2Rσz
(avg)
A + σ2‖z(avg)2...N‖2.

In order for stationarity to hold, the expected distance of the search point from the ridge
axis must not change, yielding condition

2RσE
[

z
(avg)
A

]

= σ2E
[

‖z(avg)2...N‖2
]

. (11)

Using Eqs. (9) and (10) and squaring both sides yields after some simple transforma-
tions condition

2αdRα =
Nσ

µcµ/µ,λ

√

1 + ϑ2 + (αd)2R2(α−1). (12)

For given mutation strength, Eq. (12) can be used to determine the resulting average
stationary distance of the search point from the ridge axis. For the sharp ridge with
α = 1, solving Eq. (12) yields

R =
Nσ

µcµ/µ,λ

√
1 + ϑ2 + d2

2d
.

For the parabolic ridge with α = 2 it follows

R =

√

√

√

√

1

8

(

Nσ

µcµ/µ,λ

)2

+

√

1

64

(

Nσ

µcµ/µ,λ

)4

+

(

Nσ

µcµ/µ,λ

)2
1 + ϑ2

16d2
.

7



D. V. Arnold and A. MacLeod

For other values of α, Eq. (12) needs to be solved numerically. After having obtained
the distance R from the ridge axis, the progress rate can be computed as

ϕ
N→∞

=
σcµ/µ,λ

√

1 + ϑ2 + (αd)2R2(α−1)
(13)

as can be inferred from Eqs. (4) and (8).
Finally, it remains to establish that the assumption Eq. (6) that has been used in

several places in the calculations holds. It follows from rearranging terms in Eq. (12)
that

√
Nσ

R
≤ 2µcµ/µ,λ√

N

αdRα−1

√

1 + ϑ2 + (αd)2R2(α−1)

<
2µcµ/µ,λ√

N
.

For given population size parameters µ and λ, the limit case of high search space di-

mensionality implies 2µcµ/µ,λ �
√

N , and Eq. (6) thus holds. It can be observed in
experiments that the results derived in this section are reasonably accurate even for
moderate finite values of N .

2.4 Normalisations

For α > 1, the equations thus derived can be simplified by writing them in terms of
normalised quantities

σ∗ =
σN(αd)1/(α−1)

µcµ/µ,λ
ϕ∗ =

ϕN(αd)1/(α−1)

µc2
µ/µ,λ

σ∗

ε =
σεN(αd)1/(α−1)

µcµ/µ,λ
% = R(αd)1/(α−1).

(14)

In particular, stationarity condition Eq. (12) becomes

2%α = σ∗

√

1 + ϑ2 + %2(α−1) (15)

where ϑ = σε/σ = σ∗

ε /σ∗. Solving for the normalised mutation strength yields

σ∗ =

√

4%2α − σ∗

ε
2

1 + %2(α−1)
. (16)

Similarly, Eq. (13) reads in terms of normalised quantities

ϕ∗ N→∞

=
σ∗

√

1 + ϑ2 + %2(α−1)
. (17)

Notice that as a result of using normalised quantities these equations are independent
of parameters N , µ, λ, and d. It can be observed in experiments (not shown here) that
larger values of µ and λ generally require larger values of N in order for the approxi-
mations to hold with the same accuracy, and that the accuracy of the approximations
is independent of d. Also notice that the sharp ridge with α = 1 is not described by
Eqs. (15) and (17) unless d = 1 as the normalisations in Eq. (14) are not applicable. If
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results are to be derived for the sharp ridge with d 6= 1, Eqs. (12) and (13) must be
used instead. For simplicity, in the remainder of this paper whenever the sharp ridge
is considered d = 1 is assumed.
Figure 3 compares predictions from Eqs. (15) and (17) with measurements from

runs of evolution strategies. Shown are results for α ∈ {1, 2, 4} and for three differ-
ent noise strengths. The measurements have been made with the search point of the
evolution strategy initialised to lie on the ridge axis. The simulations have been run
for 40N time steps in order to reach the state where the distance from the ridge axis is
stationary on average. Then, % and ϕ∗ have been averaged over a period of 40000 time
steps. It can be seen from the figure that the quality of the predictions is quite good and
that it improves with increasingN . The most severe discrepancies between theory and
experiment can be observed for the progress rate in the case that α = 4, but those, too,
disappear with increasingN .
It can be seen from Fig. 3 that independent of the topology parameter α, the dis-

tance from the ridge axis generally increases with both increasing mutation and noise
strengths. Little surprisingly, the progress rate of the evolution strategy decreases with
increasing noise strength. However, as noted by (Beyer, 2001a), the form of dependency
of the progress rate on the mutation strength qualitatively depends on the topology pa-
rameter α. For α = 1 (and indeed for any α < 2) the progress rate increases indefinitely
as the mutation strength increases. For ridges with α > 2, tracking the ridge at too
great a distance is ineffective and the progress rate peaks at a finite mutation strength.
The parabolic ridge with α = 2 lies in between those two cases. The progress rate of the
evolution strategy on parabolic ridges increases with increasing mutation strength, but
it tends to a finite limit value rather than increasing indefinitely. Consequently, a mu-
tation strength adaptation algorithm should ideally generate mutation strengths in the
vicinity of the progress rate maximum for α > 2, and it should increase the mutation
strength indefinitely for α ≤ 2.

2.5 Optimal Performance

Interestingly, in the absence of noise, optimal settings of the mutation strength and
the resulting progress rate can be determined analytically even though Eq. (15) can
generally only be solved numerically. Using Eq. (16) to eliminate σ∗ in Eq. (17) yields
for σ∗

ε = 0

ϕ∗ =
2%α

1 + %2(α−1)
.

Computing the derivative

dϕ∗

d%
=

2α%α−1(1 + %2(α−1))− 4(α− 1)%3(α−1)

(1 + %2(α−1))2

and demanding that it be zero yields condition

α
(

1 + %2(α−1)
)

= 2(α− 1)%2(α−1)

that must hold for maximal progress. Solving for % yields

% =

√

α

α− 2

1/(α−1)

(18)
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Figure 3: Normalised distance % from the ridge axis and normalised progress rate ϕ∗

plotted against normalised mutation strength σ∗ for ridges with α ∈ {1, 2, 4} and
σ∗

ε ∈ {0.0, 1.0, 2.0}. The points mark measurements made in runs of the (3/3, 10)-ES
for N = 40 (+) and N = 400 (×). The lines represent predictions obtained by numeri-
cally solving Eq. (15) for % and using Eq. (17) to compute ϕ∗.
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for the optimal normalised stationary distance from the ridge axis. Using Eqs. (15)
and (17), the corresponding normalised mutation strength and progress rate are

σ∗ =

√

2

α− 1

(

αα

α− 2

)1/(α−1)

(19)

and

ϕ∗ =

√

αα(α− 2)α−2
1/(α−1)

α− 1
(20)

respectively. Eqs. (18), (19), and (20) confirm the observationsmade in Section 2.4. From
Eq. (18), only for α > 2 does a nonnegative solution exist for %. For α ≤ 2 the optimal
mutation strength is infinite, and the stationary distance of the search point from the
ridge axis diverges. For α < 2 the resulting progress rate increases indefinitely with
increasing mutation strength as can be seen in Fig. 3 for the special case that α = 1.
Also seen in that figure, for α = 2 a limit value of ϕ∗ = 2 is approached as σ∗ increases.
For α > 2, the optimal mutation strength is finite and results in a finite progress rate as
witnessed by the curves for α = 4 in Fig. 3. The same findings, albeit without analytical
expressions for the optimal parameter settings, have been made by (Beyer, 2001a) for
the special case of the (1, λ)-ES.

3 Cumulative Step Length Adaptation

Cumulative step length adaptation has been proposed by (Ostermeier et al., 1994) and
is the standard step length adaptationmethod used in CMA-ES as described in (Hansen
and Ostermeier, 2001). Its performance on the sphere model is analysed in (Arnold,
2002; Arnold and Beyer, 2004). The performance on the parabolic ridge is investigated
for several forms of noise in (Arnold and Beyer, 2006) and on other ridges in the ab-
sence of noise in (Arnold, 2006). This section extends the work in those references by
including the non-parabolic, noisy case.

3.1 Algorithm

Cumulative step length adaptation relies on the proposition that ideally, consecutive
steps of the strategy should be uncorrelated. Positive correlations in the sequence of
steps are taken to indicate that a larger step length should be used. Negative correla-
tions suggest that the strategy steps back and forth, and that the step length should be
reduced. In order to measure correlations, information about the most recently taken
steps is accumulated in a search path s ∈ IRN that is initialised to be zero and that is
updated in every step according to

s← (1 − c)s +
√

µc(2− c)z(avg). (21)

The coefficient that the progress vector is multiplied with is chosen such that after ini-
tialisation effects have faded, the search path’s components are standard normally dis-
tributed if selection is random (i.e., if the ranking of the candidate solutions in Sec-
tion 2.1 is random rather than based on fitness). The cumulation parameter c deter-
mines how fast information about past steps fades. It must be chosen large enough
in order not to hinder progress on functions such as the sphere model, and it must be
chosen small enough in order to be able to reliably detect correlations. (Hansen, 1998)

gives c ∈ Ω(1/N) and c ∈ O(1/
√

N) as conditions. In this paper, c = 1/
√

N is used.

11
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In the presence of noise, better performance can be achieved by choosing c smaller;
however, analytical results for c ∝ 1/N have not yet been obtained.
Finally, after the search path has been updated, the mutation strength is modified

according to1

σ ← σ exp

(‖s‖2 −N

2DN

)

. (22)

The damping factorD is set to 1/c. Recalling that the components of the search path are
standard normally distributed if selection is random, the squared length of that vector
is N if there are no correlations in the sequence of steps. Positive correlations increase
the length of the search path compared to the random case, negative correlations de-
crease it. Eq. (22) thus acts to increase the step length in case of positive correlations,
and it decreases the mutation strength if there are negative correlations.

3.2 Analysis

The analysis of the performance of cumulative step length relies on the same ideas used
for the analysis of the performance of the strategy with static step length above: the
behaviour of the algorithm is expressed by a set of difference equations, simplifications
are made by assuming large N and by replacing quantities with their expected values,
and a fixed point of the resulting simplified mapping is determined that serves as an
approximation for the average values of the state variables. In (Arnold and Beyer, 2006)

z
(avg)
1

2
+ z

(avg)
A

2
=

σ

R
z
(avg)
A ‖z(avg)2...N‖2 (23)

is derived as a stationarity condition for the parabolic case. The derivation is lengthy
and holds without any changes for the general case as well. Using the expected values

from Eqs. (8), (9), and (10) to replace z
(avg)
1 , z

(avg)
A , and ‖z(avg)2...N‖2 it follows after substitut-

ing normalised quantities for σ and R that

1 + %2(α−1) = %α−2
√

(

1 + %2(α−1)
)

σ∗2 + σ∗

ε
2.

Using Eq. (16) to eliminate the normalised mutation strength and solving the resulting
equation yields

% = 1 (24)

for the normalised distance from the ridge axis. Using this result in Eqs. (16) and (17)
yields

σ∗ =

√

2− σ∗

ε
2

2
(25)

for the normalised mutation strength generated by cumulative step length adaptation
and

ϕ∗ = 1− σ∗

ε
2

4
(26)

for the corresponding normalised progress rate.
Figure 4 compares predictions from Eqs. (24), (25) and (26) with measurements

made in runs of evolution strategies. The experimental setup is the same as that used

1Eq. (22) differs from the corresponding prescription used by (Ostermeier et al., 1994; Hansen, 1998) in
that there, the mutation strength is modified based on the length of the search path rather than based on its
squared length. The difference between the two update rules is insignificant for large enough values of N .
The prescription used here simplifies the theoretical analysis.
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Figure 4: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with cumulative step length adap-
tation plotted against the topology parameter α. The solid lines represent results from
Eqs. (24), (25), and (26). The dashed lines show the optimal values from Eqs. (18), (19),
and (20). The points mark measurements from runs of the strategy with µ = 3 and
λ = 10 in search spaces with N = 40 (+) and N = 400 (×).

to generate the data points in Fig. 3, except that now the mutation strength of the strat-
egy is subject to cumulative step length adaptation. The noise strength is zero. It can
be seen that while the behaviour of the strategy is quite well described by the analyti-
cal results for α > 2, substantial deviations between analytically obtained curves and
measurements exist for ridges near the sharp one unlessN is very large. In order to un-
derstand the behaviour of cumulative step length adaptation on sharp ridges, Eqs. (11)
and (23) with Eqs. (8), (9), and (10) can be used. Solving the equations shows that a
fixed point of the mapping that describes the one-step behaviour of the strategy exists
only for d = 1. Moreover, that fixed point is unstable. As a consequence, depending on
the value of d, cumulative step length adaptation on sharp ridges either drives the mu-
tation strength to zero or increases it indefinitely. In finite-dimensional search spaces,
that instability can be observed not only for perfectly sharp ridges but for values of α
in the vicinity of unity as well. A quantitative analysis of that behaviour would require
taking N -dependent terms into account and it not attempted here.
Altogether, it can be seen from Fig. 4 that the mutation strengths generated by cu-

mulative step length adaptation are generally smaller than optimal. With increasing
values of α, the discrepancy between optimal values and values generated by cumu-
lative step length adaptation decreases. As seen by (Arnold and Beyer, 2006), for the
parabolic ridge andN →∞ cumulative step length adaptation achieves half of the op-
timal progress rate. For α > 2 the fraction of the optimal progress rate that is achieved
is higher. For 1 < α ≤ 2 where infinite step lengths are optimal, the analytical re-
sults for N → ∞ indicate that cumulative step length adaptation generates finite step
lengths and thus achieves finite progress rates. However, for finite values of N the ex-
perimental measurements included in the figure show that the strategy performs better
than predicted.
Figure 5 examines the performance of cumulative step length adaptation in the

presence of noise. Included are results for the cases of α = 2 and α = 4. Data for the
sharp ridge are not shown as for finiteN the mutation strength of the strategy and with
it the progress rate grow indefinitely. From Eq. (26), the progress rate of the strategy is
positive up to a limit noise strength of

σ∗

ε = 2. (27)
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Figure 5: Normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with cumulative step length
adaptation plotted against the normalised noise strength σ∗

ε . The solid lines represent
results from Eq. (26). The dashed lines show values that would be achieved if the
mutation strength were adapted optimally and that have been obtained numerically.
The points mark measurements from runs of the strategy with µ = 3 and λ = 10 in
search spaces with N = 40 (+) and N = 400 (×).

Beyond that noise strength, cumulative step length adaptation drives the step length
to zero even though positive progress could be achieved by increasing the mutation
strength sufficiently. The figure shows that the behaviour of the strategy is predicted
quite accurately.

4 Mutative Self-Adaptation

The roots of mutative self-adaptation go back to the early work of (Rechenberg, 1973).
(Schwefel, 1981) developed the basic idea further and proposed to use it for adapting
the entire mutation covariance matrix. Analyses of the behaviour of mutative self-
adaptation, including proofs of convergence and the computation of the progress rate,
have so far largely been restricted to the sphere model. See (Meyer-Nieberg and Beyer,
2006) for an overview. A notable exception is a recent first analysis of mutative self-
adaptation on sharp ridge functions in (Beyer and Meyer-Nieberg, 2006). That analysis
is complementary to the one presented here in that it represents a more accurate ap-
proach that remains to be extended to multi-parent strategies and to ridge functions
beyond the sharp one.

4.1 Algorithm

The basic idea of mutative self-adaptation is to associate different step lengths with
different individuals. When generating an offspring candidate solution, first an indi-
vidual mutation strength is generated by applying recombination and mutation to the
mutation strengths of its parents. Then, the newly generated mutation strength is used
to generate the object component of the new candidate solution. The underlying propo-
sition is that better adapted mutation strengths are more likely to generate successful
offspring (i.e., offspring with high fitness) and therefore to survive selection.
Recombination of the parental mutation strengths can be either by arithmetic or

by geometric averaging. In this paper, only geometric recombination is considered.2

2See (Hansen, 2006) for a discussion of the choice of recombination operator. The geometric choice is
easier to handle analytically as like the mutation operator, it does not introduce a bias in the variation of
the logarithm of the mutation strength. Arithmetic averaging generally yields larger values than geometric
averaging. As the mutation strengths generated by mutative self-adaptation are smaller than optimal on
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Mutation operators for the mutation strength are usually multiplicative rather than
additive in that the mutation strength used to generate the object component of the ith
offspring candidate solution is computed as σ(i) = σ ·ξ(i), where σ is the result obtained
from recombining the parental mutation strengths and ξ(i) is a positive random variate.
According to (Rechenberg, 1994), common choices for the distribution of ξ(i) include:

log-normal: ξ(i) = exp(τN (0, 1)) where N (0, 1) denotes a standard normally dis-
tributed random variate

two-point: ξ(i) = β > 1with probability 0.5 and ξ(i) = 1/β otherwise

deterministic two-point: ξ(i) = β > 1 if 1 ≤ i ≤ λ/2 and ξ(i) = 1/β otherwise

Parameters τ (for log-normal) and β (for two-point and deterministic two-point) con-
trol the rate at which the mutation strength is varied and are constant throughout a
run of the strategy. As shown by (Beyer, 2001b) in the context of the sphere model, the
log-normal and two-point operators can bemade to behave very similarly if the param-
eters τ and β are chosen appropriately. In this paper, only the deterministic two-point
operator is considered.
The purpose of mutation is to introduce variation that results in meaningful in-

formation for selection. Generally, larger values of τ or β afford more information in
that the fitness values of the resulting candidate solutions tend to vary more widely.
However, choosing τ or β too large leads to fluctuations in the mutation strength that
are detrimental to the performance of the strategy. In order to reap the benefits of large
variationwithout suffering from excessive fluctuations, (Rechenberg, 1994; Beyer, 1998)
propose to dampen the update of the mutation strength using the update rule

σ ← σ ·
(

µ
∏

k=1

ξ(k;λ)

)1/(µκ)

(28)

that incorporates the effects of both (geometric) recombination and selection. As in Sec-
tion 2.1, index k; λ refers to the offspring candidate solution with the kth best fitness.
The update rule Eq. (28) serves to compute a single value, referred to as the popula-
tion’s mutation strength, from which the individual mutation strengths are computed
(using log-normal, two-point, or deterministic two-point mutations). For κ = 1, the
population’s mutation strength is the geometric mean of the mutation strengths of the µ
candidate solutions that form the population. Using κ > 1 introduces damping and al-
lows control over the speed with which the population’s mutation strength is adapted.
It is important for κ not to grow faster than linearly in N as otherwise linear conver-
gence on functions such as the sphere model would not be possible.

4.2 Analysis

The task of characterising the stationary state of strategies that employ mutative self-
adaptation is complicated by the fact that there is randomness on two levels. Ran-
dom variation on the object parameter level is influenced by the outcome of random
variation on the strategy parameter level. Selection on the strategy parameter level is
indirect in that it is those mutation strengths that have the best associated object com-
ponents that are selected. Nonetheless, for the simple case of geometric recombination

ridge functions, arithmetic averaging yields better performance. However, it can be observed in experiments
that the gain is relatively minor. An analytical investigation of arithmetic recombination of the mutation
strength on ridge functions remain as a task for future work.
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of mutation strengths in connection with the deterministic two-point operator for their
mutation, approximate results can be obtained quite easily on ridge functions. The ap-
proach presented here is similar in spirit to that proposed by (Lunacek and Whitley,
2006). It goes beyond that reference in that multi-parent strategies are considered and
analytical results are derived.
In the absence of selection, the expectation of the logarithm of the population’s

mutation strength is stationary due to the definitions of the recombination and muta-
tion operators that act on mutation strengths. With selection, assuming that λ is even
and using the deterministic two-point operator for generating mutation strengths, the
(logarithm of the) population’s mutation strength is unchanged if half of the offspring
that are selected to survive have a mutation strength of σ · β and the other half have
mutation strength σ/β. Consequently, (Lunacek and Whitley, 2006) propose to solve
for the value of σ for which the probability of an offspring candidate solution with mu-
tation strength σ · β to be selected is 0.5. Computing that probability and solving for
the stationary mutation strength is a difficult task that remains to be tackled in future
work. Instead, as a much easier to obtain approximation, we assume that µ is odd
and compute the value of σ such that the expected value of the (noisy) fitness of the
(µ + 1)/2th best of those λ/2 offspring generated with mutation strength σ · β is equal
to the expected value of the (noisy) fitness of the (µ + 1)/2th best of those λ/2 offspring
generated with mutation strength σ/β. As a result, the probability that the µth best of
the entire λ offspring candidate solutions generated is the (µ+1)/2th best of those with
mutation strength σ · β is roughly equal to the probability that it is the (µ + 1)/2th best
of the offspring generated with mutation strength σ/β. Either case is as close as pos-
sible to a balance between the two competing mutation strengths. Though crude, the
approximation will be seen to yield surprisingly accurate results that properly reflect
qualitative properties of the strategies under consideration.
According to Eq. (7) and the discussion in Section 2.3, the expected noisy fit-

ness value of the mth best of l offspring candidate solutions generated with mutation
strength σ · β is

Em,l(β)
N→∞

= f(x) +
µcµ/µ,λ

N(αd)1/(α−1)

·
(

√

σ∗2
(

1 + %2(α−1)
)

β2 + σ∗

ε
2em,l −

µcµ/µ,λ

2
%α−2σ∗2β2

)

(29)

where

em,l =
1√
2π

Γ(l + 1)

Γ(l −m + 1)Γ(m)

∫

∞

−∞

xe−x2/2 [Φ(x)]
l−m

[1− Φ(x)]
m−1

dx

denotes the expectation of the (l−m + 1)th order statistic of a sample of l independent
standard normally distributed random variables and Φ(·) is the cdf of the standard-
ised normal distribution (see (David and Nagaraja, 1998)). Demanding stationarity as
described above amounts to requiring that

E(µ+1)/2,λ/2(β) = E(µ+1)/2,λ/2(1/β).

Assuming that β is sufficiently close to unity in order to linearise, this condition trans-
lates into

dE(µ+1)/2,λ/2

dβ

∣

∣

∣

∣

β=1

= 0. (30)
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Figure 6: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with mutative self-adaptation and
λ = 10 plotted against population size µ. The solid and dashed lines represent results
from (31) with Eqs. (16) and Eqs. (17) for α = 2 and α = 4. The points mark measure-
ments from runs of the strategy in search spaces with N = 40 (+) and N = 400 (×).

Using Eq. (29) to compute the derivative and again assuming that β is close to unity
in order to be able to use Eq. (16) to eliminate the normalised mutation strength yields
after some simple transformations

(

1 + %2(α−1)
)

e(µ+1)/2,λ/2 = 2µcµ/µ,λ%2(α−1).

Finally, solving for the normalised distance from the ridge axis results in

% =

√

e(µ+1)/2,λ/2

2µcµ/µ,λ − e(µ+1)/2,λ/2

1/(α−1)

. (31)

The corresponding mutation strength and resulting progress rate can be obtained from
Eqs. (16) and (17).
It can be seen from Eq. (31) that in contrast to the strategy that uses cumulative step

length adaptation, the distance from the ridge axis (and thus the normalised mutation
strength and progress rate) of the strategy that employs mutative self-adaptation is not
independent of the population size parameters µ and λ. Figure 6 illustrates how the
performance of the strategy depends on the population size µ for λ = 10 and α ∈ {2, 4}.
Notice that normalised mutation strengths and progress rates for different values of µ
are not immediately comparable as the population size parameters enter the normali-
sation described by Eq. (14). The experimental values have been obtained with β = 1.3
and κ = N/4. However, the data points are largely insensitive to the setting of those
parameters as long as they are chosen in accordance with the criteria outlined in the
discussion above. Not included in the figure is the case of the sharp ridge for which
it will be seen below that mutative self-adaptation fails in that it drives the mutation
strength to zero, resulting in no progress being made. A number of observations can
be made from the figure. First, the accuracy of the analytically obtained predictions is
quite good despite the simplifying assumptions made in their derivation. In particu-
lar, while Eq. (31) was derived for odd integer µ, the accuracy for even µ is as good
as that for µ odd. Second, it can be seen that mutative self-adaptation fails to generate
useful mutation strengths for µ ≥ λ/2. The same result was found by (Hansen, 2006)
on linear fitness functions. If the selection pressure is too low, mutative self-adaptation
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Figure 7: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with mutative self-adaptation plot-
ted against the topology parameter α. The solid lines represent results from Eq. (31)
with Eqs. (16) and (17) for (1, 10)-ES and (3/3, 10)-ES. See the text for a discussion of
the normalisations. The dashed lines show the optimal values from Eqs. (18), (19),
and (20). The points mark measurements from runs of the strategies in search spaces
with N = 40 (+) and N = 400 (×).

systematically drives the step length to zero, resulting in stagnation. And third, it can
be confirmed from Eq. (17) with Eq. (31) that the highest progress rates are achieved
with µ = 1. Thus, when using geometric recombination in combination with mutative
self-adaptation on ridge functions, point based strategies are superior to population
based ones. As has also been pointed out by (Hansen, 2006), mutative self-adaptation
fails to make use of the opportunity of using larger mutation strengths afforded by
global intermediate recombination.
Figure 7 illustrates the dependence of the distance from the ridge axis, the muta-

tion strength, and the progress rate of the (µ/µ, λ)-ES with mutative self-adaptation on
the topology parameter α. Shown are results for the (3/3, 10)-ES both from Eq. (31)
with Eqs. (16) and (17) and from computer experiments as well as the corresponding
optimal values from Eqs. (18), (19), and (20). Also included in the figure are results for
the (1, 10)-ES as it is superior to the (3/3, 10)-ES if mutative self-adaptation is used. In
order to make it possible to immediately compare the performances of the two strate-
gies, the mutation strength and progress rate of the (1, 10)-ES have been normalised
using the same factors as those used for the (3/3, 10)-ES. It can be seen from the figure
that as for cumulative step length adaptation, the mutation strengths generated using
mutative self-adaptation are generally below their optimal values and that non-optimal
progress rates result. The performance of mutative self-adaptation is especially inade-
quate for ridges near the sharp one where both the mutation strength and the progress
rate are driven to zero. This deficiency of mutative self-adaptation has been observed
experimentally by (Herdy, 1992) and has led to the development of the hierarchically
organised strategies discussed in Section 6. A more complete discussion of the perfor-
mance of the (1, λ)-ES on sharp ridges (and in particular of its dependence on the ridge
parameter d) can be found in (Beyer and Meyer-Nieberg, 2006).
Finally, while the results derived above predict that the stationary mutation

strength generated by mutative self-adaptation is unaffected by the presence of noise,
it can be observed in experiments that in practice, noise leads to even smaller muta-
tion strengths than those observed in the noise free case. The attractor described by
Eq. (30) becomes increasingly unstable, and for small mutation strengths the pressure
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toward larger steps lengths is weak. As a consequence, the mutation strength performs
a random walk at small values for much of the time, resulting in long periods of near
stagnation. The present approach does not consider fluctuations and is unsuitable for
capturing this type of behaviour.

5 Two-Point Adaptation

Two-point adaptation (not to be confused with the two-point mutation operator from
Section 4) as described below is a simple variation of the standard step length adapta-
tion operator used in evolutionary gradient search as introduced in (Salomon, 1998). It
explicitly compares two steps with differing lengths in the same direction, and it settles
for the better of the two. Two-point adaptation is thus reminiscent of a rudimentary
line search.

5.1 Algorithm

Two-point adaptation performs steps 1 through 4 as described in Section 2.1. In addi-
tion to making a step of length σ, two steps of lengths σ · β and σ/β are tried, and σ is
updated according to

σ ←
{

σ · β1/κ if f(x + (σ · β)z(avg)) > f(x + (σ/β)z(avg))

σ/β1/κ otherwise
(32)

That is, the mutation strength is increased if the larger of the two steps is more suc-
cessful; it is decreased if the smaller step yields the better fitness value. Notice that
two-point adaptation requires two additional fitness function evaluations per time step,
bringing the total to λ + 2. Parameter β > 1must be chosen sufficiently different from
unity to ensure that the difference between the two fitness values is significant. Too
large a β is detrimental to the performance of the strategy. Parameter κ is as a damp-
ing parameter and helps avoid fluctuations of the mutation strength. As in mutative
self-adaptation, κ should not be chosen to grow faster than linearly in N as otherwise
linear convergence on the spheremodel would not be possible. The procedure outlined
here differs from that described by (Salomon, 1998) by virtue of the damping and by
considering only two points rather than three.

5.2 Analysis

As in the previous sections on cumulative step length adaptation and mutative self-
adaptation, we strive to determine the value of σ for which the mutation strength up-
date rule of two-point adaptation affects no change in the mean. Letting E(β) denote
the expected value of the (noisy) fitness of a candidate solution generated by making
a step of length σ · β in the direction of the vector z(avg), it follows from Eq. (7) with
Eqs. (8), (9), and (10) and the normalisations from Eq. (14) that

E(β) = f(x) +
µcµ/µ,λ

N(αd)1/(α−1)

(

σ∗2(1 + %2(α−1))
√

σ∗2(1 + %2(α−1)) + σ∗

ε
2
β − %α−2σ∗2

2
β2

)

.

The mutation strength of the (µ/µ, λ)-ES employing two-point adaptation is stationary
if E(β) = E(1/β). Assuming that β is sufficiently close to unity in order to linearise,
this condition translates into

dE

dβ

∣

∣

∣

∣

β=1

= 0. (33)
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Figure 8: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with two-point adaptation plot-
ted against the topology parameter α. The solid lines represent results from Eq. (34)
with Eqs. (16) and (17). The dashed lines show the optimal values from Eqs. (18), (19),
and (20). The points mark measurements from runs of the strategy with µ = 3 and
λ = 10 in search spaces with N = 40 (+) and N = 400 (×).

Computing the derivative and rearranging terms yields

1 + %2(α−1) = %α−2
√

σ∗2(1 + %2(α−1)) + σ∗

ε
2.

Finally, using Eq. (16) to eliminate the normalised mutation strength results in

% = 1 (34)

for the normalised distance from the ridge axis. The corresponding mutation strength
and resulting progress rate can be obtained from Eqs. (16) and (17). Interestingly, a
comparison with Eq. (24) shows that in the limit of infinite search space dimension-
ality, two-point adaptation generates the same behaviour as cumulative step length
adaptation.
Figure 8 compares predictions from Eqs. (34), (16), and (17) with measurements

from runs of the (µ/µ, λ)-ES with two-point adaptation. Parameter settings β = 1.3
and κ = N/4 have been used in the experiments, but as for mutative self-adaptation,
the influence of the choice of those parameters is minor as long as the settings are rea-
sonable. It can be seen from the figure that the accuracy of the predictions is quite good
except for the smallest values of α. The mutation strength and progress rate generated
by two-point adaptation are consistently below optimal values, with optimal behaviour
being approached as the topology parameter α increases. Comparing Fig. 8 with Fig. 4
suggests that, at least for the population size parameter values considered, cumulative
step length adaptation performs somewhat better in finite-dimensional search spaces
that two-point adaptation does. For the sharp ridge, as formutative self-adaptation, the
fixed point described by Eq. (33) turns unstable and the present approach is unsuitable
for describing the strategy’s behaviour.
Finally, Fig. 9 examines the performance of two-point adaptation in the presence of

noise. Shown are results for α = 2 and α = 4. As for cumulative step length adaptation
the distance from the ridge axis is not influenced by the presence of noise and Eq. (34)
holds independently of σ∗

ε . As a result, the normalised mutation strength and the nor-
malised progress rate of the strategy that employs two-point adaptation are described
by Eqs. (25) and (26). The figure shows that the behaviour of the strategy is predicted
quite accurately.
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Figure 9: Normalised progress rate ϕ∗ of the (µ/µ, λ)-ES with two-point adaptation
plotted against the normalised noise strength σ∗

ε . The solid lines represent results from
Eq. (34) with Eqs. (16) and (17). The dashed lines show values that would be achieved
if the mutation strength were adapted optimally and that have been obtained numeri-
cally. The points mark measurements from runs of the strategy with µ = 3 and λ = 10
in search spaces with N = 40 (+) and N = 400 (×).

6 Hierarchically Organised Strategies

The idea of organising evolution strategies hierarchically was born out of the insight
that strategy parameter adaptation really is an optimisation problem, and that thus
evolutionary algorithms can be applied to solve it. See (Rechenberg, 1978; Herdy, 1992;
Rechenberg, 1994) for a motivation. Several populations (sometimes referred to as
species) with differing strategy parameter settings evolve in isolation of each other. Af-
ter some time, the amount of progress that has been made by the various populations is
compared. The strategy parameter settings of the most successful populations are sub-
jected to variation, and a new set of species is set up and run with those new strategy
parameter settings. Thus, evolutionary optimisation happens on two levels: the search
space of the lower level strategy is that of the optimisation problem at hand; that of the
upper level strategy is the strategy parameter space of the lower level strategies.
(Herdy, 1992) empirically compares the performance of hierarchically organised

strategies with that of strategies using mutative self-adaptation. Several objective func-
tions are considered, including the sphere model as well as sharp and parabolic ridges.
It is found that isolation can be detrimental to the performance of the strategies on the
sphere model where fast adaptation is required. The situation is different on ridges
where mutative self-adaptation often performs unsatisfactorily. Introducing isolation
decreases the likelihood of opportunistic individuals that make short steps being re-
warded. (Arnold and MacLeod, 2006) analytically study the performance of hierar-
chically organised strategies on parabolic ridges and derive expressions that describe
the dependence of the strategies’ performance on the length of the isolation periods.
The derivation presented here generalises those results by considering ridge topolo-
gies other than parabolic ones, and by including the effects of noise in the calculations.

6.1 Algorithm

The lower level strategy employed in this paper is the (µ/µ, λ)-ES described in Sec-
tion 2.1. The upper level strategy adapts the step length parameter σ of the lower level
strategy by proceeding as follows:

1. The search point x and the mutation strength σ are initialised.
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2. Parameter β is set to a value uniformly drawn from the interval [1.2, 1.4].

3. Two runs of the lower level strategy are conducted in parallel. The runs last for γ
generations each and both use x as their initial search point. One run uses mutation
strength σ · β, the other one uses σ/β.

4. The objective function values of the final search points generated in the two runs
are compared. The search point x of the upper level strategy is set to the better of
those two points; mutation strength σ is set to the mutation strength used in the
more successful of the two runs.

5. The process is terminated if a prescribed number of steps has been made or other-
wise continues with step 2.

Similar to mutative self-adaptation and two-point adaptation, the purpose of step 2 is
to generate two mutation strengths, one larger than the previous one and one smaller.
The two mutation strengths need to be sufficiently different to yield a reliable signal
for selection; they should not be too different as if σ is nearly optimal, then neither
σ · β nor σ/β are if β is too large. We have randomised the choice of β rather than
simply using β = 1.3 as that choice would result in the strategy being confined to
a discrete set of mutation strengths that would lead to artifacts in the performance
graphs below. Notice that in contrast to the strategies studied above, the hierarchically
organised strategy does not use damping as the use of isolation in combination with
damping would make it impossible to adapt the mutation strength sufficiently fast on
functions such as the sphere model.
In the notation introduced in (Herdy, 1992; Rechenberg, 1994), the overall strat-

egy thus described is a [1, 2(µ/µ, λ)γ ]-ES. It is thus an instance of the general [µ′/ρ′ +,
λ′(µ/ρ +, λ)γ ]-ES where the population size parameters of the upper level strategy are
µ′ = ρ′ = 1, and λ′ = 2 and where comma selection is used on both levels. The
choice of population size parameter settings has been made as it is sufficient for the
one-dimensional optimisation problem that the upper level strategy faces. Larger pop-
ulation sizes (i.e., a greater number of lower level strategies to be run) would be unnec-
essarily computationally expensive unless adequate parallel resources are available.
Notice that mutative self-adaptation as discussed in Section 4 can be interpreted

as a special (trivial) case of hierarchically organised evolution strategies where each
species consists of a single individual, and where isolation periods last for a single
generation. Also notice that adaptation by means of hierarchically organised strategies
is not limited to step lengths but can be applied to other strategy parameters as well.
(Herdy, 1993) considers the problem of adapting the number of offspring generated per
time step and demonstrates empirically that near optimal values can be obtained on the
hyperplane and sphere models.
Finally, realising that isolation periods of different lengths are optimal in different

environments, (Herdy, 1992) proposes adding yet another level to the hierarchy of evo-
lutionary strategies, with the goal of optimising the length of the isolation periods. He
shows empirically that in the long term (i.e., after many time steps), the strategy that
adapts the length of its isolation periods performs well on the sphere model as well as
on ridges. Of course, the process of adding higher levels with the goal of optimising
parameters of the strategy one level below could be continued indefinitely. Practically,
limitations on the number of objective function evaluations that can be performed be-
fore a result is expected typically lead to flat hierarchies being used. Throughout this
paper, only two-level hierarchies are considered.
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6.2 Analysis

Central to the analysis of the performance of hierarchically organised evolution strate-
gies is the need to characterise the cumulative effect of running the lower level strate-
gies for the duration of an isolation period. More specifically, given a search point x that
has been arrived at with a mutation strength of σ, the objective function value of the
search point x′ obtained after running the lower level strategy with a mutation strength
of ς (which is either σ · β or σ/β) for a further γ time steps needs to be estimated. The
respective values of f(x′) for the different populations that evolve in parallel deter-
mine the mutation strength used in the next iteration of the upper level strategy. It is
particularly easy to obtain such an estimate if the following two assumptions aremade.

1. At the end of an isolation period, the lower level strategy is in the stationary limit
state described by Eq. (15). Moreover, that limit state is reached so early in the
isolation period that it can be assumed that all of the progress in the direction of
the ridge axis made during the isolation period is made in that limit state.

2. For the purpose of comparing fitness values of population centroids, it is sufficient
to consider their expected values; i.e., fluctuations can be ignored.

The first assumption requires that the length γ of the isolation periods be sufficiently
large, where what is sufficient depends on the mutation strengths σ and ς as well as on
the population size parameters µ and λ and the search space dimensionality N . The
more ς differs from σ, the larger γ needs to be in order for the assumption to hold with
a certain accuracy. As for the second assumption, it is generally valid if ς is sufficiently
different from σ. While again, quantifying what is sufficient is a difficult task and de-
pends on, among other things, the search space dimensionality, it will be seen that for
the choice of β described above the qualitative agreement of results derived under the
assumption with experimental measurements is good unless γ is too small.
Assuming that γ is sufficiently large, the population centroid is at a distance R(σ)

from the ridge axis at the beginning and at a distance R(ς) at the end of an isolation
period. From Eq. (3), the respective objective function values are f(x) = x1 − dRα(σ)
and f(x′) = x′

1−dRα(ς). The expected difference between the objective function values
of population centroids x and x

′ is thus

∆f = E [f(x′)− f(x)]

= γϕ(ς)− d (Rα(ς)−Rα(σ)) .

The first of the two terms on the right hand side is due to progress in the direction of the
ridge axis and is computed as the product of the expected progress per time step and
the number of stepsmade. (Recall that progress is assumed to bemade in the limit state
assumed at the end of the isolation period.) The second term on the right hand side is
due to the change in distance from the ridge axis that results from the altered mutation
strength. Using the normalisations fromEq. (14) and introducing the normalised length

γ∗ =
γµc2

µ/µ,λ

N
(35)

of the isolation periods, it thus follows

∆f(γ∗, σ∗, ς∗) =
1

(ααd)1/(α−1)
(αγ∗ϕ∗(ς∗)− %α(ς∗) + %α(σ∗)) (36)
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for the expected difference between the objective function values of x and x
′.

The [1, 2(µ/µ, λ)γ ]-ES described above evolves two populations in parallel, one
with mutation strength σ · β and one with mutation strength σ/β. After γ generations,
the objective function values of the centroids x′

1 and x
′

2 of the two populations are com-
pared. The population with the larger objective function value of its centroid passes on
its mutation strength to the next iteration of the upper level strategy. Letting

g(β) = (ααd)1/(α−1) (f(x′

1)− f(x′

2))

it is clear that the mutation strength used in the next iteration of the upper level strategy
is σ ·β (the mutation strength that led to x

′

1) if g(β) ≥ 0 and σ/β (the mutation strength
that led to x

′

2) otherwise. Function g(β) is referred to as the gain difference. With
Eq. (36) it follows that

g(β) = ∆f(γ∗, σ∗, σ∗ · β) −∆f(γ∗, σ∗, σ∗/β)

= αγ∗ϕ∗(σ∗ · β)− αγ∗ϕ∗(σ∗/β)− %α(σ∗ · β) + %α(σ∗/β)

=
αγ∗σ∗2 · β2

2%α(σ∗ · β)
− αγ∗σ∗2/β2

2%α(σ∗/β)
− %α(σ∗ · β) + %α(σ∗/β) (37)

where Eqs. (15) and (17) have been used in the last step.
As done above for mutative self-adaptation and two-point adaptation, we make

the assumption that β is sufficiently close to unity in order to linearise. It is clear from
Eq. (37) that g(1) = 0 independently of γ∗ and σ∗. For sufficiently small values of β, the
sign of g(β) in the vicinity of unity is determined by the derivative g′(1) = dg/dβ|β=1.
The mutation strength used in the next iteration of the upper level strategy is σ · β (i.e.,
it is increased) if g′(1) > 0 and it is σ/β (i.e., it is decreased) if g′(1) < 0. For g′(1) = 0,
there is no strong pressure to either increase or decrease the mutation strength, and
which one of σ · β and σ/β prevails is a matter of chance. Thus, the mutation strength
for which g′(1) = 0 can be used as an approximation for the average mutation strength
that the hierarchically organised strategy generates.
Computing the derivative of the gain difference from Eq. (37) results in

g′(1) =
αγ∗σ∗2

%α

(

2− ασ∗

%
%′(1)

)

− 2ασ∗%α−1%′(1).

Demanding that g′(1) = 0 thus yields condition

2γ∗σ∗% =
(

2%2α + αγ∗σ∗2
)

%′(1). (38)

The derivative %′(1) of the normalised distance from the ridge axis can be obtained by
squaring Eq. (15) and subsequently differentiating implicitly, resulting in

%′(1) =
σ∗(1 + %2(α−1))

4α%2α−1 − (α − 1)σ∗2%2α−3
.

Using this in Eq. (38) yields condition

2γ∗

(

4α%2α − (α − 1)σ∗2%2(α−1)
)

=
(

1 + %2(α−1)
)(

2%2α + αγ∗σ∗2
)

.
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Figure 10: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the hierarchically organised [1, 2(µ/µ, λ)γ ]-ES plot-
ted against the normalised length γ∗ of the isolation periods. The solid and dashed
lines represent results from Eq. (40) with Eqs. (16) and (17) for α ∈ {2, 4}. The points
mark measurements with µ = 3 and λ = 10 in search spaces with N = 40 (+) and
N = 400 (×).

Finally, using Eq. (16) in order to eliminate the normalised mutation strength yields
after several simple transformations

(

α + (3α− 2)%2(α−1)
)

γ∗σ∗

ε
2 =

2%2α
(

1− 2αγ∗ + 2(1 + (α− 2)γ∗)%2(α−1) + %4(α−1)
)

(39)

as a condition that determines the normalised distance from the ridge axis that the
[1, 2(µ/µ, λ)γ ]-ES tracks ridges at. The corresponding mutation strength and resulting
progress rate can be obtained from Eqs. (16) and (17).
In the absence of noise, Eq. (39) can be used to obtain a closed form solution for

the normalised distance from the ridge axis. For σ∗

ε = 0, dividing by %2α results in an
equation that is quadratic in %2(α−1). Solving it yields

%2(α−1) =
√

(α− 2)2γ∗2 + 4(α− 1)γ∗ − (1 + (α− 2)γ∗) . (40)

Figure 10 illustrates the dependence of the distance from the ridge axis, the mutation
strength, and the progress rate on the length of the isolation periods. While some devia-
tions between predictions and experimental measurements exist, the overall behaviour
of the strategies is captured quite well. For any value of γ∗, the [1, 2(µ/µ, λ)γ ]-ES as-
sumes a finite average mutation strength, and it consequently tracks ridges at a finite
distance. That distance as well as the mutation strength and the progress rate increase
monotonically with the length of the isolation periods. Moreover, limit values ap-
proached as γ∗ increases indefinitely can be obtained by Taylor expanding the square
root in Eq. (40), resulting in

%2(α−1) = (α− 2)γ∗

(
√

1 +
4(α− 1)

(α− 2)2γ∗
− 1− 1

(α− 2)γ∗

)

γ∗

→∞

= (α− 2)γ∗

(

1 +
2(α− 1)

(α− 2)2γ∗
− 1− 1

(α− 2)γ∗

)

=
α

α− 2
.
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Figure 11: Normalised distance % from the ridge axis, normalised mutation strength σ∗,
and normalised progress rate ϕ∗ of the hierarchically organised [1, 2(µ/µ, λ)γ ]-ES plot-
ted against the topology parameter α. The solid lines represent results for γ∗ = 1 and
γ∗ = 4 obtained from Eq. (40) with Eqs. (16) and (17). The dashed lines show the opti-
mal values from Eqs. (18), (19), and (20). The points mark measurements of the strategy
with µ = 3 and λ = 10 in search spaces with N = 40 (+) and N = 400 (×).

Comparison with Eq. (18) shows that that distance is in fact optimal, and that the
[1, 2(µ/µ, λ)γ ]-ES thus generates near optimal step lengths on ridge functions provided
that the isolation periods are sufficiently long. As the second derivative of the nor-
malised progress rate (with respect to the length of the isolation periods) is negative,
the returns resulting from increasing the length of the isolation periods diminish with
increasing γ∗. In practice, isolation periods should not be chosen too long as progress
on objective functions that require fast adaptation of the step length, such as the sphere
model, would be slow.
Figure 11 illustrates the dependence of the distance from the ridge axis, the muta-

tion strength, and the progress rate on the topology parameter α for γ∗ = 1 and γ∗ = 4.
The experimental setup is the same as that used to generate the data points in previous
figures. Measurements from the first 100 isolation periods were discarded in order to
reach the stationary limit state. The data points represent values that have been aver-
aged over 10000 isolation periods. It can be seen that γ∗ = 1 is generally insufficient to
guarantee that the assumptions made in the calculations leading to Eq. (40) hold. The
deviations between predictions and experiments are considerable especially for α < 2,
and they do not decrease significantly with increasing N . In contrast, relatively good
agreement can be observed for γ∗ = 4. Interestingly, for γ∗ = 1, the analytically ob-
tained stationary limit state of the [1, 2(µ/µ, λ)γ ]-ES exactly agrees with that found for
both cumulative step length adaptation and two-point adaptation in Sections 3 and 5,
respectively. Increasing the length of the isolation periods improves both the accuracy
of the results and the performance of the strategy.
Finally, Fig. 12 examines the behaviour of the [1, 2(µ/µ, λ)γ ]-ES with γ∗ = 1 and

γ∗ = 4 in the presence of noise. Shown are results for α = 2 and α = 4. At least
for N = 400, the agreement of predictions and measurements is quite good unless
σ∗

ε is too large. As for mutative self-adaptation, for high noise strengths fluctuations
dominate the behaviour of the hierarchically organised strategy. In the face of low
mutation strengths, which one of the two populations is successful is influenced by
noise, and pressure toward larger mutation strengths is weak. For large σ∗

ε the strat-
egy repeatedly performs a near random walk at low mutation strengths, resulting in
low progress rates. Fluctuations of the mutation strength have not been considered in
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Figure 12: Normalised progress rate ϕ∗ of the [1, 2(µ/µ, λ)γ ]-ES plotted against the nor-
malised noise strength σ∗

ε . The solid lines represent results for γ∗ = 1 and γ∗ = 4
obtained by solving Eq. (39) and using Eqs. (16) and (17). The dashed lines show the
values that would be achieved if the mutation strength were adapted optimally. The
points mark measurements of the strategy with µ = 3 and λ = 10 in search spaces with
N = 40 (+) and N = 400 (×).

the calculations. Therefore, the accuracy of the predictions is not satisfactory for larger
values of σ∗

ε . However, the experimental results indicate that at least for large N , the
hierarchically organised strategy is capable of significant progress beyond σ∗

ε = 2. (Re-
call from Sections 3 and 5 that that value represents the noise strength beyond which
cumulative step length adaptation and two-point adaptation systematically drive their
step lengths to zero.) It is also clear both from Eq. (39) and from the measurements
represented in Fig. 12 that longer isolation periods help improve the robustness of the
hierarchically organised strategy in the presence of noise.

7 Summary and Conclusions

The previous sections have investigated the performance of several step length adap-
tation mechanisms on ridge functions. Equations have been derived that describe the
average mutation strength as well as the progress rate achieved by the strategies in the
limit N → ∞. Figure 13 graphically summarises the analytically obtained results. Of
the simplifications made in the analyses, the most significant are the assumption of infi-
nite search space dimensionality and the decision not to model fluctuations of the state
variables. Computer experiments in finite-dimensional search spaces have shown both
the relative accuracy of the predictions in some parameter ranges and the failure of the
simplified model underlying the analyses to accurately describe some of the strategies’
behaviour in others (notably in the vicinity of the sharp ridge and for high levels of
noise present). The main findings for the respective step length adaptation strategies
are as follows:

Cumulative step length adaptation achieves at least 50% of the optimal progress rate
for α ≥ 2, but generates finite step lengths (and thus achieves finite progress rates)
for 1 < α < 2. In the vicinity of the sharp ridge, the quality of the analytically ob-
tained predictions is not good unless the search space dimensionality is very high.
On finite-dimensional ridges near the sharp one cumulative step length adapta-
tion performs better than predicted. In the presence of noise, the step length is
systematically driven to zero for σ∗

ε ≥ 2.

Mutative self-adaptation is the worst performing of the step length adaptation mech-
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Figure 13: Comparison of adaptation strategies. The solid lines show theoretically ob-
tained results valid in the limit N → ∞ for strategies that use cumulative step length
adaptation (CSA-ES), mutative self-adaptation (MSA-ES), and two-point adaptation
(TPA-ES). Also represented is a hierarchically organised [1, 2(µ/µ, λ)γ ]-ES with γ∗ = 4
(HO-ES). For smaller values of γ∗ the curve of the hierarchically organised strategy
approaches those of CSA-ES and TPA-ES; for larger values of γ∗ it approaches the op-
timal curves that have been obtained from Eqs. (19) and (20) and that are represented
as dashed lines.

anisms considered. In contrast to the other strategies, it does not generate optimal
step lengths even for large values of α. Moreover, it is unable to make efficient use
of populations and performs best for µ = 1. As noted in previous research, in the
vicinity of the sharp ridge it may fail to generate useful step lengths altogether.

Two-point adaptation in theory generates step lengths that are identical for any value
of α to those generated by cumulative step length adaptation. The quality of the
approximation derived for two-point adaptation is better than that for cumulative
step length adaptation. On finite-dimensional ridges near the sharp one, cumu-
lative step length adaptation performs better than two-point adaptation. In the
presence of noise the performance of the two adaptation mechanisms is very sim-
ilar in that the step length is systematically driven to zero for σ∗

ε ≥ 2.

Hierarchically organised strategies offer the greatest potential on ridge functions of all
of the adaptation strategies considered. The performance of the other step length
adaptation mechanisms is matched for relatively small values of γ∗. With growing
length of the isolation periods, nearly optimal performance is achieved for any
value of α. In the presence of noise, too, do hierarchically organised strategies
prove to be more robust than the other approaches.

However, two caveats need to be kept in mind when deploying hierarchically organ-
ised strategies. First, on objective functions that require fast, continual adaptation of
the step length, long isolation periods are an impediment to progress. The realisation
that isolation periods of different lengths are optimal in different settings has led to the
suggestion made by (Herdy, 1992) to adapt γ by adding a third level to the hierarchy of
evolutionary optimisation strategies. However, unless sufficient parallel processing ca-
pability is available, the computational costs may be prohibitive. On the positive side, it
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may be possible to set the length of the isolation periods statically such that satisfactory
performance is achieved in a wide range of different settings. It has been seen above
that good performance on ridges is typically achieved with relatively small settings
of γ∗ (such as γ∗ = 4). According to Eq. (35), a constant value of γ∗ can be achieved by
choosing the length of the isolation periods proportional toN . Pending research on the
performance of hierarchically organised strategies on the sphere model, it seems likely
that that choice is such that it allows for linear convergence, opening up the possibility
that a universally useful setting for the length of the isolation periods may be found.
Moreover, Eq. (35) suggests that increasing the population size parameters µ and λ of
the lower level strategy makes it possible to shorten the length of the isolation periods
while at the same time maintaining the same value of γ∗.
The second caveat to be kept in mind are the higher computational costs of hi-

erarchically organised strategies compared to the other algorithms. Hierarchically or-
ganised strategies require running several populations in parallel. For example, the
[1, 2(µ/µ, λ)γ ]-ES has twice the computational costs per time step of a strategy that uses
cumulative step length adaptation if the same lower level population size parameters
are used. Unless adequate parallel computational resources are available, the benefit of
a better adapted step length needs to be weighed against the disadvantage of having
to terminate after fewer time steps.
Clearly, this paper is but one step toward an improved understanding of the ca-

pabilities of different step length adaptation mechanisms. Arguably, the task of step
length adaptation on ridge functions is a comparatively simple one. No continuous
adaptation is required as optimal step lengths do not change over time. Evaluating
the performance of step length adaptation mechanisms on ridge functions thus enables
one to test the ability of a strategy to generate good static step lengths. It does not test
the strategy’s ability to generate those step lengths quickly, and to follow a moving
target where optimal step lengths change as the optimisation progresses. That ability
can be evaluated in fitness environments such as the sphere model. Some results with
regard to mutative self-adaptation on the sphere model have been derived by (Beyer,
1996; Meyer-Nieberg and Beyer, 2005). Results for cumulative step length adaptation
can be found in (Arnold, 2002; Arnold and Beyer, 2004). The performance of two-point
adaptation and of hierarchically organised strategies on the sphere model remains to
be studied. Especially results for the latter are of great interest as it remains to the seen
whether the values for the length of the isolation periods that make the [1, 2(µ/µ, λ)γ ]-
ES perform well on ridges do not significantly impede its progress on the sphere.
A further task for future research is to improve the accuracy of the results in the

vicinity of the sharp ridge, where the agreement of theoretical predictions with experi-
mental measurements is often not good. Moreover, due to the normalisations adopted,
any results that have been obtained for the sharp ridge only hold for d = 1. (Beyer
and Meyer-Nieberg, 2006) have shown that for α = 1, the performance of mutative
self-adaptation depends qualitatively on the parameter d. The same can be found ex-
perimentally for other adaptation strategies. An analytically based explanation for
this behaviour would contribute substantially to the understanding of those adapta-
tion mechanisms.
It is furthermore desirable to extend the analyses to include N -dependent terms

and to model fluctuations of the state variables, such as the distance from the ridge
axis and the mutation strength. Modelling fluctuations would enable one to obtain
more accurate results with regard to be behaviour of hierarchically organised strategies
in the presence of noise. Considering N -dependent terms in the calculations would
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make it possible to infer recommendations with regard to the choice of population size
parameters and allow making a more accurate comparison of the behaviour of various
adaptation strategies in finite-dimensional search spaces.
Finally, it remains to study the behaviour of evolution strategies using nonisotrop-

ically distributed mutations, such as the CMA-ES. It has been pointed out by (Whitley
et al., 2004) that strategies like the CMA-ES are potentially much more effective on
ridge functions than those that use isotropically distributed mutations, and obtaining
a quantitative understanding of their capabilities and limitations remains as a task for
future work.
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