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Abstract

We show that computation of the subtree prune and regraft (SPR) distance between
unrooted binary phylogenetic trees is NP-Hard and fixed parameter tractable. Similar
results exist for the related tree bisection and reconnection (TBR) distance, as well as
the SPR distance between rooted trees but the complexity of the unrooted SPR case
has heretofore remained unknown.

1 Introduction

Binary phylogenetic trees are used to describe evolutionary relationships between organisms.
Typically, species represented by DNA or protein sequence information are associated with
the leaves of the tree and the internal nodes correspond to speciation events. In order to
model ancestor-descendant relationships on the tree, a direction must be associated with its
edges. This is achieved by rooting the tree with a vertex of degree 2, representing a common
ancestor to all species in the tree. Often, insufficient information exists to determine the
roots of trees and, as such, they are left unrooted. Unrooted trees still provide a notion of
evolutionary similarity between organisms even if the direction of descent remains unknown.

The phylogenetic tree representation has recently come under scrutiny with critics claim-
ing that it is too simple to properly represent microbial evolution, particularly in the pres-
ence of Lateral Gene Transfer (LGT) events [4]. An LGT is the transfer of genetic material
between species by other means than inheritance. Thus, LGT events cannot be represented
in a tree as they would form cycles. The prevalence of LGT events in microbial evolution can,
however, be studied using phylogenetic trees. Given a pair of trees of the same species, each
constructed using different sets of genes, an LGT event will correspond to a displacement of
a common subtree, referred to a subtree prune and regraft (SPR) operation. Determining
the minimum number of SPR operations that explain the topological differences between a
pair of trees thus yields the most parsimonious LGT scenario [2]. Computing this number
of SPR operations, known as the SPR distance, is thus key to the study of the prevalence
of LGT in bacterial evolution. In this paper, we investigate the computational complexity
of this problem for unrooted trees. The outline is as follows. Basic definitions are provided
in the remainder of this section. In Section 2 we show that SPR distance computation is
NP-Hard for unrooted trees and in Section 3 we show that it is fixed parameter tractable.
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Definition 1.1. (1) An unrooted binary phylogenetic tree T (or more briefly a phylogenetic
tree) is a tree whose leaves (degree 1 vertices) are labeled bijectively by a (species) set S,
and such that each non-leaf vertex is unlabeled and has degree three. (2) An edge of a
tree T incident with a leaf is a pendant edge, otherwise we say it is an internal edge. Let
L(T ) denote the leaf set of a tree T ; the other vertices are said to be internal. (3) A forced
contraction is an operation on a tree T in which we delete a vertex v of degree two and
replace the two edges incident to v by a single edge.

Definition 1.2. A subtree prune and regraft (SPR) operation on a phylogenetic tree T is
defined as cutting any edge and thereby pruning a subtree, t, and then regrafting the subtree
t by the same cut edge to a new vertex obtained by subdividing a preexisting-existing edge
in T . All vertices of degree 2 are then deleted using forced contractions.

Definition 1.3. A tree bisection and reconnection (TBR) operation on a phylogenetic tree
T is defined as removing any edge, giving two new subtrees, t1 and t2, which are then
reconnected by creating a new edge between the midpoints of any edge in t1 and any edge
in t2. Again forced contractions are applied to ensure the resulting tree is binary. In the
case that one of the subtrees is a single leaf, then the edge connecting t1 and t2 is incident
to the leaf.

Definition 1.4. An SPR path or TBR path between two trees T1 and T2 is a sequence of
SPR operations or TBR operations, respectively, that converts T1 into T2.

Definition 1.5. The SPR distance (∆SPR) and TBR distance (∆TBR) between two trees
T1 and T2 is the minimum number of SPR operations and TBR operations, respectively,
required to convert T1 into T2.

2 SPR Distance Computation is NP-Hard for Unrooted Trees

Hein et al. [6] showed that determining if ∆SPR(T1, T2) is equal to some constant k is NP-
Complete by providing two polynomial time reductions. The first transforms an instance of
known NP-Complete problem Exact Cover by 3-Sets (X3C) into an instance of Maximum
Agreement Forest (MAF) size of two rooted phylogenetic trees. The second transforms MAF
size into SPR distance. This reduction from MAF to SPR is specified in Lemma 7 from [6]
which states that ∆SPR(T1, T2) = |MAF (T1, T2)| − 1 for any pair of rooted (or unrooted)
phylogenetic trees T1 and T2.

Allen and Steel [1], however, have since provided a counterexample to Lemma 7 in
[6], showing that the equation ∆SPR = |MAF | − 1 does not always hold for rooted and
unrooted trees, invalidating the NP-Hardness proof in Hein et al. [6]. Allen and Steel [1]
were able to show that the relationship holds for the TBR distance (∆TBR) of unrooted
trees. Bordewich and Semple use a revised definition of the MAF to show that SPR distance
computation is NP-hard for rooted trees [3]. However, the complexity of computing the
SPR distance between unrooted trees has, to the best of our knowledge, remained an open
problem.

The remainder of this section is devoted to proving that unrooted SPR is indeed NP-
Hard. We first review the reduction from X3C to MAF in [6] and verify that the trees used
in this reduction can be unrooted without altering the result. We then show that the SPR
distance of the tree instances used in this reduction is equal to their TBR distance, thus
showing that even though Lemma 7 from [6] is incorrect in the general case, it is valid for
the trees in the reduction from X3C.
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Definition 2.1. An agreement forest for two trees is any common forest that can be ob-
tained from both trees by cutting the same number of edges from each tree, applying forced
contractions after each cut. A maximum agreement forest (MAF) for two trees is an agree-
ment forest with a minimum number of components. [6]

Definition 2.2. The exact cover by 3-sets (X3C) problem is defined as follows [5]: Given a
set X with |X| = n = 3q and a collection C of m 3-element subsets of X. Does C contain
an exact cover for X, i.e., a sub-collection C ′ ⊆ C such that every element of X occurs in
exactly one member of C ′?

NOTE: Remains NP-Complete if no element occurs in more than three subsets. Also
note that this problem remains NP-Complete if each element occurs in exactly three subsets.
This second property is implied by [6] though never explicitly stated. A supplemental proof
is provided in Lemma A.1 of Appendix A.

2.1 Reduction from X3C to Rooted MAF

We now review the polynomial-time reduction from X3C to MAF for rooted trees provided
by Hein et. al. [6], clarifying their notation to reflect that each element of X belongs to
exactly three subsets in C, i.e. |X| = |C| = 3q = m = n, a fact implied but not clearly
stated in their paper.

An instance of X3C is transformed into two rooted phylogenetic trees shown in Figure 1.
Each element of X is represented by a triplet of the form {a, u, v} and each triplet appears
3 times in each tree, once for each occurrence in a subset in C.

Tree T1 is illustrated in Figure 1(a). Each subtree Ai ∈ T1, shown in Figure 1(b)
corresponds to a subset ci ∈ C. Each subtree of Ai induced by the triple {ai,j , ui,j , vi,j}
where j ∈ {1, 2, 3} corresponds to a single element of X.

Tree T2, shown in Figure 1(c), has the same leaf set as T1 but a different topology. Each
Di subtree of T2, as seen in Figure 1(e), corresponds to a subset in C except only the a-part
of each triplet is present. Each Bi subtree of T2, as seen in Figure 1(d), corresponds to
an element in X. Each such element x = {a, u, v} in the set X appears in three different
subsets of C: cj , ck, and cl. Without loss of generality, assume it consists of the first element
of cj , second element of ck, and third element of cl. The corresponding B tree would have
leaves {uj,j′ , uk,k′ , ul,l′ , vj,j′ , vk,k′ , vl,l′} where j′ = 1, k′ = 2, l′ = 3.

Hein et. al. show that |MAF (T1, T2)| = 20q +1 if and only if C contains an exact cover
of X.

2.2 Reduction from X3C to Unrooted SPR

We begin by verifying that the reduction from X3C to rooted MAF from [6] described above
can be trivially applied to the unrooted case.

Lemma 2.1. Given an instance of X3C where |X| = |C| = 3q,

|MAF (T1, T2)| = |MAF (U1, U2)|

where T1 and T2 are the trees obtained by the reduction in [6] (Figure 1) and U1 and U2

are unrooted versions of T1 and T2 displayed in Figure 2. Accordingly, the instance of
X3C has a solution if and only if |MAF (U1, U2)| = 20q + 1 as this equality was shown for
|MAF (T1, T2)| in [6].
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Figure 1: Reduction of an instance of X3C to |MAF (T1, T2)| from [6]. Each element of
X corresponds to an {a, u, v} triplet. The instance of X3C has a solution if and only if
|MAF (T1, T2)| = 20q + 1 (where n = 3q).
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Figure 2: Unrooted version of T1 and T2 from Figure 1. The unrootedness does not affect
the number of components in the MAF.

Proof. Trees T1 and T2 can be unrooted by adding a leaf z as a pendant to the root, creating
trees U1 and U2 shown in Figure 2. Recall from [6] that MAF (T1, T2) contains a component
consisting of the chain x1, ...x2n, y1, ..., y2n. Observe that |MAF (U1, U2)| ≤ |MAF (T1, T2)|
as an agreement forest for U1 and U2 can be created from MAF (T1, T2) by adding z to the
xy chain. Furthermore, |MAF (U1, U2)| ≥ |MAF (T1, T2)| as, for the same reasons outlined
in the proof of Lemma 3.2, adding a leaf to both trees cannot decrease their TBR distance.
It follows that |MAF (T1, T2)| = |MAF (U1, U2)|.

We now provide a transformation from X3C to unrooted SPR.

Lemma 2.2. For any instance of X3C where |X| = |C| = 3q,

∆SPR(U1, U2) = |MAF (U1, U2) − 1|

Where U1 and U2 are unrooted versions of the trees obtained using the reduction in [6] as
described above. Note that this is a very restricted version of Lemma 7 from [6].

Proof. It is sufficient to show that the inequality ∆SPR(U1, U2) ≤ |MAF (U1, U2) − 1| is
true as ∆SPR(U1, U2) ≥ |MAF (U1, U2)− 1| follows from Lemma 2.7(b) and Theorem 2.13
from [1].

MAF (U1, U2) is formed by the cutting edges from Ai subtrees (and the corresponding
subtrees in U2) in either of two possible ways [6]:

1. Cut leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 and then prune the remaining subtree formed by
leaves {ai,1, ai,2, ai,3}. Such a procedure contributes 7 components to the MAF.

2. Cut the leaves ai,1, ai,2, ai,3 then cut each of the remaining two-leaf subtrees: {ui,1, vi,1},
{ui,2, vi,2}, and {ui,3, vi,3}. These operations contribute 6 components to the MAF
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We now show that given two trees U1 and U2 and their MAF, which was created using
the above cut operations, there exists |MAF | − 1 SPR operations that can transform U1

to U2. In particular, for each set of cut operations, there exists an equivalent set of SPR
operations.

1. Prune leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 from Ai and regraft them onto the chain, form-
ing Bi subtrees in the required positions. Prune the subtree {ai,1, ai,2, ai,3} and regraft
into the position of Di. In this case, 7 SPR operations are performed.

2. Prune the leaves ai,1, ai,2, ai,3 and regraft them onto the chain, forming a Di subtree
in the proper position. Prune the remaining two-leaf subtrees: {ui,1, vi,1}, {ui,2, vi,2},
and {ui,3, vi,3} and regraft them onto the chain, forming Bi subtree components in
the required position. 6 SPR operations are used.

There is a one-to-one correspondence between cuts formed when creating the MAF and
SPR operations that can transform U1 to U2. Thus ∆SPR(U1, U2) ≤ |MAF (U1, U2)| −
1.

Theorem 2.3. SPR distance is NP-Hard for unrooted phylogenetic trees.

Proof. By Lemma 2.1, an instance of X3C with |X| = |C| = 3q can be reduced to a pair of
unrooted trees U1 and U2 such that X3C has a cover if and only if |MAF (U1, U2)| = 20q+1.
Lemma 2.2 shows that ∆SPR(U1, U2) = |MAF (U1, U2)|−1, completing the reduction from
X3C to SPR distance. Note that, in fact, we have actually showed that deciding if the SPR
distance between unrooted trees equals a given constant is NP-Complete. Since actually
finding the distance would solve this decision problem, SPR distance computation is NP-
Hard for unrooted trees.

3 SPR Distance Computation is Fixed-Parameter Tractable

for Unrooted Trees

We will now show that SPR distance computation for unrooted trees is fixed-parameter
tractable, where the parameter is the SPR distance. This was conjectured in [1] but could
not be proven so far.

We will re-use the kernelization for TBR distance calculation introduced by Allen and
Steel [1]. As they show, the repeated application of the following Rule 1 and Rule 2
operations to a set of two trees reduces their sizes to a linear function of their TBR distance
while preserving the TBR distance.

Definition 3.1. of RULE 1: Replace any pendant subtree that occurs in both trees by a
single leaf with a new label. See Figure 3(a).

Definition 3.2. of RULE 2: Replace any chain of pendant subtrees that occur identically
in both trees by three new leaves with new labels correctly oriented to preserve the direction.
See Figure 3(b).
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Figure 3: Rules 1 and 2 from Allen and Steel [1].

Allen and Steel [1] showed that Rule 1 also leaves the SPR distance unchanged. They
conjectured the same to be true for Rule 2.

Lemma 3.1. Rule 1 preserves SPR-Distance [1].

In the remainder of this section, we prove Allen and Steel’s conjecture that Rule 2
preserves SPR-Distance.

Lemma 3.2. If any single common leaf is pruned from both T1 and T2, their SPR distance
is either unaffected or reduced by 1.

Proof. If any single common leaf is pruned from both T1 and T2, the same SPR path still
converts T1 into T2. Hence, the SPR distance can not increase. Suppose that the SPR
distance decreases by 2 (or more). Take the SPR path for the reduced trees and add a
single SPR operation to handle the deleted leaf. This results in a SPR path between T1

and T2 that is shorter than their SPR distance, a contradiction.

We now introduce a new Rule 3. Its properties will be used to show that Rule 2 preserves
SPR distance.

Definition 3.3. of RULE 3: Replace any (non-empty) chain of pendant leaves of length n

that occur identically in both trees by a chain of n− 1 new leaves with new labels correctly
oriented to preserve the direction of the chain as shown in Figure 4(a).

Lemma 3.3. Successive applications of Rule 3 to common chains of length > 1 cannot
reduce the SPR-Distance by more than 2.

Proof. Let T1 and T2 be two phylogenetic trees sharing a common chain C = {c1, c2, ..., cn}
of length n > 1 whose SPR distance is k as shown in Figure 4(b). Repeatedly applying
Rule 3 to this chain n − 1 times yields T ′

1 and T ′
2 whose common chain contains a single

element and whose SPR distance is k′. We now show that k ≤ k′ +2. Let P be the pendant
subtree of T1 rooted at the vertex adjacent to c1 such that P ∩ C = ∅. Similarly, let Q be
the pendant subtree of T1 rooted at the vertex adjacent to cn such that Q ∩ C = ∅. Let R

and S be the subtrees of T2 analogous to P and Q respectively. Pruning P and regrafting to
the stem of Q and pruning Q and regrafting to the stem of R yields T ′′

1 and T ′′
2 respectively

as shown in Figure 4(b). Observe that C is now a common subtree of both T ′′
1 and T ′′

2 and
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thus, by Lemma 3.1, ∆SPR(T ′′
1 , T ′′

2 ) = ∆SPR(T ′
1, T

′
2) = k′ as C can be reduced via Rule 1

to a chain with a single leaf without affecting the distance. Thus, T1 can be transformed to
T2 by performing a single SPR to yield T ′′

1 , then k′ SPR’s to give T ′′
2 and then a single SPR

to transform T ′′
2 into T2. Therefore k ≤ k′ + 2. The above steps have shown that reducing

a chain of length n to a chain of length 1 using Rule 3 cannot decrease the SPR distance
by more than 2. It follows from Lemma 3.2 that using Rule 3 to reduce a chain of length n

to a chain of any length less than n cannot decrease the SPR distance by more than 2.
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Figure 4: A New Rule 3 and Illustration of Lemma 3.3.

Lemma 3.4. If Rule 3 preserves SPR distance on common chains of length n ≥ 1, then it
preserves distance for common chains of any length > n.

Proof. Suppose the two trees share the chain C = {c1, c2, ...., cn+1}. Note that these trees
also share a common subchain C ′ = {c1, c2, ...., cn}. If Rule 3 is SPR distance preserving
for chains of length n, then we can apply it to C ′ yielding a new common chain: D =
{d1, d2, ..., dn−1}. The only element left from C is cn+1 which follows dn in both trees. C

has thus been transformed into the common chain C ′′ = {d1, d2, ..., dn−1, cn+1}. There are
n elements in C ′′. C has been reduced from n + 1 to n elements. We have shown that if
Rule 3 is SPR distance preserving for chains of length n, then it is also distance preserving
for chains of length n+1. Thus, if Rule 3 is distance preserving for chains of length n, then
by induction it is distance preserving for chains of any length > n.

Lemma 3.5. Rule 2 preserves SPR-distance. (This was conjectured in [1].)

Proof. Rule 2 can be decomposed into applications of Rule 1 and Rule 3, the latter only on
chain lengths greater than 3. Thus, proving that Rule 3 is distance preserving on such chain
lengths is sufficient to prove that Rule 2 is always distance preserving. Let T1 and T2 be two
trees sharing a common chain C = {c1, c2, ..., cn}. We will use induction on chain length
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n to show that Rule 3 can be applied for any n > 3 without altering the SPR distance.
Lemma 3.4 has already proved the induction step so all that remains is to show that Rule
2 is distance preserving in the base case.

The base case will be when n = 4. Let ∆SPR = k in this case. Now suppose that
Rule 3 Does Not preserve the SPR distance when n = 4. Proof that this is a contradiction
follows. If Rule 3 is not distance preserving for n = 4 then it is not distance preserving
for 1 < n < 4. Otherwise it would contradict Lemma 3.4: Suppose that Rule 3 preserves
distance for some i, 1 < i < 4. Then Rule 3 must preserve distance for any n > i which
includes n = 4. This is a contradiction. Recall that if Rule 3 is not distance preserving
then by Lemma 3.2, its application will reduce the SPR distance by 1 whenever it is applied
to chains of length n > 1. Now back to our chain of length 4. We have shown that each
time we reduce the length of this chain with Rule 3, we decrease the SPR distance. That
is, for n = 4 with ∆SPR = k by applying Rule 3 we obtain n = 3 with ∆SPR = k − 1,
and by applying Rule 3 again we obtain n = 2 with ∆SPR = k − 2, and by applying Rule
3 a third time we obtain n = 1 with ∆SPR = k − 3. However, Lemma 3.3 states that
a difference in chain length can change ∆SPR by at most 2! Assuming that Rule 3 Does
Not preserve SPR distance for n = 4 is therefore a contradiction because it implies that
the SPR distance can be reduced by 3 using chain reductions. Thus, there must be some
chain length ≤ 4 such that application of Rule 3 does not affect the SPR distance. As a
consequence of Lemma 3.4, Rule 3 does not affect distance when n = 4 and the base case
is valid.

Theorem 3.6. SPR distance computation for unrooted trees is fixed-parameter tractable.

Proof. Lemmas 3.1 and 3.5 show that Rule 1 and Rule 2 preserve the SPR distance. What
remains to be shown is that the tree size after kernelization is bounded by a function of
the SPR distance only. This follows by applying two results from [1] for two unrooted
phylogenetic trees T1 and T2: ∆TBR(T1, T2) ≤ ∆SPR(T1, T2) ([1], Lemma 2.4) and n′ ≤
4c(∆TBR(T1, T2)−1) ([1], Theorem 3.8) where n′ is the size of the trees after kernelization
and c ≤ 7 is a constant. Combining these we obtain n′ ≤ 28(∆SPR(T1, T2) − 1) which
completes the proof.

4 Conclusion

We have shown that computing the SPR distance between two unrooted phylogenetic trees
is NP-Hard and FPT. These results are not altogether surprising given that the same
properties have been shown for the related TBR and rooted SPR metrics [1, 3], but solve
a long-standing open problem none the less. Presently, we are developing an algorithm for
unrooted SPR distance based on the FPT kernelization presented in Section 3 with the
intent of testing its performance on real data.
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Appendix

A X3C Clarification

Lemma A.1. X3C is NP-Complete if each element occurs in exactly three subsets.

Proof. Consider an instance of X3C in which no element occurs in more than three subsets.
We provide a polynomial time reduction from such an instance, known to be NP-Complete,
into an instance in which each element occurs in exactly three subsets. Let:

Y1 ⊆ X : Elements of X that appear in exactly one subset
Y2 ⊆ X : Elements of X that appear in exactly two subsets
Y3 ⊆ X : Elements of X that appear in exactly three subsets

So |Y1| + 2|Y2| + 3|Y3| = |X| = 3q

For each element to appear in exactly three subsets, we must add 2|Y1| + |Y2| elements to
subsets in C.

Let multiset Z = {z0, z1, . . . , z3p−1} = Y1 + Y1 + Y2 be these elements we have to add. Note
that |Z| = 3p where p = 2(q − |Y3|) − |Y2|.

Let X ′ = {x′
0, x

′
1, . . . , x

′
3p−1} be a set of new elements such that |X ′| = 3p and X ∩X ′ = ∅.

We now create a collection C ′ of new subsets out of Z and X ′ so that each element in X∪X ′

appears in a subset in C + C ′ exactly three times.

For each i = 0, 3, . . . , 3p − 1, we add four subsets to C ′:
c′4i = {x′

i, x′
i+1, x′

x+2}
c′4i+1 = {zi, x′

i, x′
i+1}

c′4i+2 = {zi+1, x′
i+1, x′

i+2}
c′4i+3 = {zi+2, x′

i+2, x′
i}

We now show that X ∪X ′ and C + C ′ form an instance of X3C such that every element of
X ∪ X ′ appears in 3 subsets in C + C ′ and X has a cover in C if and only if X ∪ X ′ has a
cover in C + C ′.
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(if): If X has a cover in C, then X ∪ X ′ has a cover in C + C ′: Let S ⊆ C be the cover of
X. Then S + c′0 + c′4 + c′8 + . . . + c′12p−1 is a cover X ∪ X ′.

(only if): If X ∪ X ′ has a cover in C + C ′, then X has a cover in C: Similar to above, the
only way to cover X ′ is with c′0 + c′4 + c′8 + . . . + c′12p−1 and no other elements of C ′ can
be part of an exact cover. This means that X is covered entirely by subsets in C so X is
exactly covered by C.

11


