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Abstract

Increasingly large text datasets and the high dimensionality associated with natural language
create a great challenge in text mining. In this research, a systematic study is conducted, in
which three Dimension Reduction Techniques (DRT) are applied on three different document
representation methods in the context of the text clustering problem. Several standard bench-
mark datasets are used. The dimension reduction methods considered include independent
component analysis (ICA), latent semantic indexing (LSI), and a technique based on Document
Frequency (DF). These three methods are applied on three Document representation methods
based on the vector space model; word, multi-word term, and character N-gram representa-
tions. Results are compared in terms of clustering performance, using the k-means clustering
algorithm. Experiments show that ICA and LSI are clearly better than DF on all datasets. For
word and N-gram representation, ICA generally gives better results compared with LSI. Exper-
iments also show that the word representation gives better clustering results compared to term
and N-gram representation. Finally, for the N-gram representation, it is shown that a profile
length of 2000 is enough to capture the information and in most cases, a 4-gram representation
gives better performance than 3-gram representation.

1 Introduction

Advances in information and communication technologies offer ubiquitous access to vast amounts
of information and are causing an exponential increase in the number of documents available online.
While more and more textual information is available electronically, effective retrieval and mining
is getting more and more difficult without the efficient organization, summarization, and indexing
of document content. Among different approaches used to tackle this problem, document clustering
is a principal one. In general, given a document collection, the task of text clustering is to group
documents together in such a way that the documents within each cluster are similar to each other.

The topic of clustering has been extensively studied in many scientific disciplines and over the last
years a variety of different algorithms have been developed. For a comprehensive summary of the
various applications and algorithms, one can refer to two recent surveys on the topic [13, 4].

The traditional representation of documents known as bag-of-words considers every document as a
vector in a very high-dimensional space; each element of this vector corresponds to one word (or,
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more generally, feature) in the document collection. This representation is based on the Vector Space
Model [23], where vector components represent certain feature weights. A detailed comparison of
various clustering algorithms applied to the Vector Space representation of documents is provided
in [27]. Bisecting K-means and regular K-means are demonstrated to outperform other clustering
methods, while they are significantly more efficient computationally, an important consideration
with large datasets of high dimensionality.
Representations that are not based on the Vector Space Model have been proposed. The information
bottleneck method focuses on the joint distribution of word clusters and documents, and first derives
word clusters that maximally preserve the mutual information about the documents, and then
document clusters, that preserve the information about word clusters [26]. Information-theoretic
co-clustering was inspired by the information bottleneck method [9]. Frequent term-based text
clustering uses frequent item (term) sets for clustering, derived using established algorithms for
association rule mining [3]. Frequent term sets are sets of terms that co-occur in a significant
percentage of documents in a collection.

Based on the Vector Space Model, some other representations have been proposed. The traditional
representation, as already mentioned, considers the components of vectors as unique words. Another
approach uses N-grams as the vector components. An N-gram is a sequence of symbols extracted
from a long string [7]. These symbols can be a byte, character, or word. Extracting character
N-grams from a document is like moving a n-character wide window across the document character
by character. The character N-gram representation has the advantage of being more robust and less
sensitive to grammatical and typographical errors, and it requires no linguistic preparation, making
it more language independent than other representations. Another approach for representing text
documents uses multi-word terms as vector components. These terms are usually extracted using
automatic term extraction algorithms. This representation is based on the idea that terms should
contain more semantic information than individual words. Another advantage of using terms for
representing a document is its lower dimensionality compared with the traditional word or N-gram
representation.

Using any one of these representations, it is not surprising to find thousands or tens of thousands
of different words, N-grams, or terms for even a relatively small sized text data collection of a few
thousand documents. Moreover, a very small subset of all terms that appear in a text collection
as a whole will appear in each individual document. This results in a very sparse, but also very
high-dimensional feature vector for describing a document.

Most learning algorithms use some kind of similarity measure to discriminate between two given
training vectors. In the case of document clustering, due to high dimensionality of the feature
vector, these similarity measures lose their discriminative power. In a sparse high-dimensional
space, feature vectors have almost equal distance to each other [5] that makes traditional similarity
measures meaningless. This is known as the “curse of dimensionality”.

Many researchers from different areas have tried to solve the high-dimensionality problem, and they
have proposed various dimension reduction techniques [10]. In a general view of dimension reduc-
tion, one can think of two types of dimension reduction methods, known as feature transformation
and feature selection [22].

Feature transformation techniques try to reduce dimensionality to a smaller number of new dimen-
sions, which are linear or non-linear combinations of the vector coordinates in the original dimen-
sions. In other words, the original high-dimensional space is projected to a lower-dimensional space.
These methods are believed to be very successful in uncovering the latent structure in datasets.
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Various feature transformation techniques have been proposed which include principal component
analysis, latent semantic analysis, independent component analysis, projection pursuit, and factor
analysis. The reader can refer to [10] for more details. In feature selection methods, the objective
is not constructing new features but rather removing features which seem irrelevant for modeling.
This problem is a combinatorial optimization problem [6].

The focus of this research is to evaluate the relative effectiveness of dimension reduction techniques
for the document clustering problem with various document representation methods. This paper
is organized as follows. Section 2 describes the three dimension reduction techniques used in this
research. Section 3 describes three different text representation methods used in the experiments.
Section 4 describes the general experimental procedure and evaluation methods, the characteristics
of the datasets used and the pre-processing procedure followed. It also presents and discusses our
experimental results and appropriate discussion notes. Finally, conclusions are drawn and future
research directions are identified in Section 5.

2 Dimension Reduction techniques

In mathematical terms, the problem of dimension reduction can be stated as follows: given the
p-dimensional random variable x = (x1, . . . , xp)

T , the objective is to find a representation of lower
dimensions, s = (s1, . . . , sk)

T with k < p, which preserves information content of the original data,
as much as possible, according to some criterion.

Feature selection techniques remove non-informative terms according to corpus statistics and use
a term-usefulness criterion threshold to eliminate some terms from the full vocabulary of the doc-
ument corpus. In an unsupervised framework, such criteria are document frequency and term
frequency variance.

If we assume that we have n data items, each being represented by a p-dimensional random variable
x = (x1, . . . , xp)

T , there are two kinds of feature transformation techniques: linear and non-linear.
In linear techniques, each of the k < p components of the new transformed variable is a linear
combination of the original variables:

si = wi,1x1 + . . . wi,pxp, for i = 1, . . . , k, or

s = Wx,

where Wk×p is the linear transformation weight matrix. Expressing the same relationship as

x = As,

with Ap×k, we note that the new variables s are also called the hidden or the latent variables. In
terms of an n × p feature-document matrix X, we have

Si,j = wi,1X1,j + . . . wi,pXp,j, for i = 1, . . . , k and j = 1, . . . , n

where j indicates the jth realization, or, equivalently,
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Sk×n = Wk×pXp×n,

Xp×n = Ap×kSk×n.

Various dimension reduction techniques have been proposed for text data including both feature
selection methods and feature transformation methods [30].

In the following sections, we review a widely used feature selection method for text, as well as two
feature transformation techniques used for text dimension reduction.

2.1 Document Frequency based Method

The Document frequency (DF) of a term is the number of documents in which that term occurs.
One can use DF as a criterion for selecting good terms. The basic intuition behind using document
frequency as a criterion is that rare terms either do not capture much information about one
category, or they do not affect the global performance [30]. This method is often combined with
removal of some very high-frequency terms known as “stop words” and word stemming.

When using DF as a criterion for feature selection, only those dimensions with high values will
appear in the feature vector. In spite of its simplicity, it is believed to be as effective as more
advanced feature selection methods [30]. We use this technique on different document representation
methods based on the vector space model and evaluate how effective it is in comparison with feature
transformation methods for text clustering.

DF can be formally defined as follows. For a document collection in matrix notation, At×d, with t

terms and d documents, the DF value of a term is defined as the number of documents in which
the term occurs at least once among the d documents. To reduce the dimensionality of A from t

to k (k < t), we choose to use the k dimensions with the top k DF values. It is obvious that the
DF takes O(td) to evaluate.

2.2 Latent Semantic Indexing

Latent semantic indexing (LSI) is a method of dimensionality reduction, originally proposed for
information retrieval, that is based on the partial singular value decomposition (SVD) of the feature-
document matrix representation of a dataset.

The SVD is a matrix factorization that can be used to elicit the salient features of a matrix by
determining important vectors (i.e., directions) and quantifying their importance via weighting
factors (called singular values). Given a matrix A ∈ <t×d, its full SVD is written as A = UΣVT ,
where U ∈ <t×t, V ∈ <d×d, and Σ ∈ <t×d. U and V are orthogonal matrices containing the left
and right singular vectors of A respectively. It is common to used a reduced SVD with U ∈ <t×d,
V ∈ <d×d, and Σ ∈ <d×d, where now U simply has orthonormal columns. When A is a feature-
document matrix, U represents the feature vectors and V represents the document vectors. The
matrix Σ can have non-zero entries only on the diagonal, and these entries must be non-negative.
These diagonal entries, called the singular values of A, denoted σj for j = 1, 2, ..., d, are arranged
in non-increasing order. The relative size of the entries σj indicates the relative importance of the
corresponding feature/document vectors. The number of non-zero singular values of a matrix is
known as its rank, r.
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The SVD can be used to interpret a matrix as equal to a weighted sum of r rank-1 matrices; i.e.,

A =
r∑

j=1

σjujv
T
j

where uj and vj are the jth columns of matrices U and V, respectively. This interpretation of the
SVD facilitates our understanding of the formation of lower-rank approximations of A. Replacing
r in this sum by any k with 0 ≤ k < r gives the partial SVD of A,

Ak =
k∑

j=1

σjujv
T
j ≈ A.

In matrix form, this is equivalent to taking Uk and Vk to be the first k columns of U and V, and
Σk to be the leading k × k submatrix of Σ, yielding

Ak = UkΣkV
T
k .

It can be shown that Ak is optimal in the following sense: it is the closest matrix of rank k to the
original matrix A in terms of the 2-norm or the Frobenius norm. The 2-norm of a matrix is the
norm induced by the vector 2-norm (or Euclidean norm); the Frobenius norm of a matrix is the
square root of the sum of the squares of its elements.

This approximation is used to isolate the important directions of the feature-document matrix while
extracting the underlying structure of the data. In LSI, typically k � r. The effect is a reduction in
the noise caused by synonymy and an enhancement of the latent patterns that indicate semantically
similar terms. This means that Ak may be a better representation of the data than the original
feature-document matrix because Ak has less noise in it than A does. In other words, we would
not choose k = d even if this were computationally feasible.

The number of dimensions k to keep in the reduced feature-document matrix when d is very large
is still an open question, but experiments indicate that values of k between 100 and 300 typically
give the best results [8]. Typically the performance of LSI improves dramatically as k increases
from 1, peaks for some number that is still much less than d, then slowly deteriorates from there.

The concept of the SVD also comes up in the context of Principal Component Analysis (PCA). PCA
is a statistical analysis technique aimed at reducing the effective dimensionality of a dataset. The
objective is to find a (linear) transformation of the original variables to a set of new uncorrelated
variables (the principal components) such that a very high proportion of the variation of the old
variables is captured by relatively few of the new ones. Besides offering an alternative viewpoint
to some aspects of PCA theory, the SVD provides a robust computational method for determining
the quantities involved in PCA. In PCA, one determines a spectral decomposition (i.e., in terms of
eigenvalues and eigenvectors) of the matrix AT A:

ATA = XΛX−1,

where X is the matrix of eigenvectors, and Λ is a diagonal matrix with the eigenvalues of ATA.
It can be shown that if we have the SVD of A, then

X = V, and Λ = Σ2.

The issue of whether clustering in a vector space obtained from the first few PCA components
is significantly better than the full set of dimensions was studied in [31]. This study found that,
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for clustering gene expression profiles, there was no clear advantage to using the first few PCA
components, and sometimes the results could be worse. Clustering performance depends on the
clustering algorithm and similarity metric used. On the other hand, Latent Semantic Indexing,
which is related to PCA, has been demonstrated to give significant improvements in text cluster-
ing [18]. So it is possible that PCA-like dimensionality reduction behaves differently in the gene
expression profile data than document data. It should be noted that the full dimensionality of the
gene expression data used in [31] is in the low tens, while that of the document data is typically in
the thousands.

2.3 Independent Component Analysis

In comparison to PCA, Independent Component Analysis (ICA) is a higher-order method that
seeks linear projections, not necessarily orthogonal to each other, that are as nearly statistically
independent as possible. Statistical independence is a much stronger condition than uncorrelated-
ness. Whereas the latter only involves the second-order statistics, the former depends on all the
higher-order statistics. Independence always implies uncorrelatedness, but the converse is not true.

With the classical assumption of Gaussianity, one can use a second-order technique like PCA
because distribution of a normally distributed variable x can be completely described by second-
order information [14], and there is no need to include any other information, for example from
higher moments. Because only classical matrix manipulations are used, this makes second-order
methods very robust and computationally simple.

ICA is a computational technique for revealing hidden factors that underlie sets of measurements
or signals. ICA assumes a statistical model whereby the observed multivariate data, typically
given as a large database of samples, are linear or nonlinear mixtures of some unknown latent
variables, with unknown mixing coefficients. The latent variables are nongaussian and mutually
independent, and they are called the independent components of the observed data. Thus ICA can
be seen as a generalization of PCA. In fact, for Gaussian distributions, the principal components
are independent components. ICA is a much richer technique, however, capable of finding solutions
to problems where classical methods fail.

Let X of size t × d be the observed mixture signals, where t is the number of features in the
document collection, and d is the number of documents. The noise-free mixing model takes the
form,

X = AS

where S is the source signal matrix of size m × d, where m is the number of sources, and A is the
t × m mixing matrix.

In contrast with PCA, the objective of ICA is not necessarily dimension reduction, but rather only
identification of independent components. For dimensionality reduction, it is assumed that it is
possible to find k � t components that effectively capture the variability of the original data.

One problem of using ICA as a dimensionality reduction method is that there is no order or ranking
of the Independent Components. One solution to this is ordering them according to the norms of
the columns of the mixing matrix (similar to the ordering in PCA) once they are estimated.

Although ICA was originally developed for digital signal processing applications, it has recently been
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suggested that it may be a powerful tool for analyzing text document data as well, provided that
the documents are presented in a suitable numerical form. ICA has been used for dimensionality
reduction and representation of word histograms [17].

3 Text Representation Methods

Before a clustering algorithm can be applied to a document collection, a mapping of each text
document dj into a compact representation of its content needs to performed. Selecting a repre-
sentation for text depends on what one believes to be the meaningful units of text (the problem
of lexical semantics) and the meaningful natural language rules for the combination of these units
(the problem of compositional semantics) [25]. The latter problem is usually neglected, by treating
documents as bags of text units (words, terms, or character N-grams).

In the vector space model, each document is represented by a vector of weights of t features (words,
terms, or character N-grams) extracted from the document:

dj = (w1j , w2j , . . . , wtj),

where t is the number of features, and wi is the weight of the ith feature. The weight of a feature
represents how much that feature contributes to the semantics of document dj. Differences among
approaches are accounted for by

• different interpretations of a feature;

• different methods of computing feature weights.

In this research, we are interested in comparing three different feature types. If there are d docu-
ments in total, the corpus is represented by a t × d feature-document matrix X.

As feature weights, we use the term-frequency, inverse-document frequency (TFIDF) scheme, which
combines the term frequency and document frequency. Here TFIDF is used for all three feature
types, words, terms, and N-grams. TFIDF is based on the idea that if a feature appears many times
in a document, the feature is important to this document and should have higher weight. On the
other hand, a feature that appears in many documents is not important since it is not very useful
in distinguishing different documents; hence, it should have lower weight. The TFIDF variant we
use is shown in Eq. 1:

wi,j = (1 + log fi,j) × log
d

nj

(1)

where wi,j is the weight of feature i in document j, fj is the frequency of the feature i in document
j, nj is the number of documents that contain feature j, and d is the total number of documents [1].

Word Representation A typical choice of a feature type for representing a text document is the
“set of words” or the “bag of words”. For each document and each word in it, a weight is assigned.

Term Representation Multi-word terms, sometimes called phrases, can also be used as features
in document vectors. Term representation has the potential to reduce significantly the dimensional-
ity, and it is therefore believed by some researchers to give better results than word representation
in special text corpora [21]. However, experimental results have been mixed [11, 24, 29].
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N-gram Representation Traditional N-gram work has focused on word bi-grams, that is pairs
of words, but there is a recent trend toward using character N-grams and byte N-grams. Character
N-gram is a language independent text representation technique. It transforms documents into
high-dimensional feature vectors where each feature corresponds to a contiguous substring. N-
grams are N adjacent characters (substring) from the alphabet A [7]. Hence, the number of distinct
N-grams in a text can be, in principle, as high as |A|N . This shows that the dimensionality of the
N-grams feature vector can be very high even for moderate values of N . However, in practice, only a
small fraction of all possible N-grams are present in a given document collection, thus reducing the
dimensionality substantially. For example, there are 8727 unique trigrams in the Reuters dataset,
less than half of the 273 = 19683 possible N-grams. During N-gram feature vector formation, all
the upper case characters are converted into lower case, and space is substituted for punctuation.
The feature vectors are then normalized.

In extracting character N-grams from a document, any non-letter character is replaced by a space
and two or more consecutive spaces are treated as a single one. The byte N-grams are N-grams
retrieved from the sequence of the raw bytes as they appear in data files, without any preprocessing.

In comparison with stemming and stop word removal, the N-gram representation has the advantage
of being more robust and less sensitive to grammatical and typographical errors, and it requires no
linguistic preprocessing; therefore it is language independent. However, the N-gram representation
is not very effective in reducing the dimensionality of the document representation.

4 Experimental Results

We experimentally evaluated the performance of the different dimension reduction methods de-
scribed previously on a number of different representations using several datasets. In this section
we describe the various datasets and the pre-processing procedure, then our experimental method-
ology, followed by a description of the experimental results.

4.1 Datasets and Data Preparation

We use four datasets for our experiments, including both unstructured newsgroup items and rela-
tively more structured abstracts from scientific research papers. These datasets have been widely
used in the research of information retrieval and text mining. The number of classes ranges from
3 to 10 and the number of documents ranges between 83 and 2778 per class. Below is a brief
description of each dataset’s characteristics, as well as the preprocessing applied to each. Table 1
summarizes the characteristics of the datasets.

University of Rochester Computer Science Technical Reports This dataset 1 consists of
528 abstracts from 4 categories - Artificial Intelligence (111), Systems (193), Theory (141), and
Robotics (83). As all reports are from computer science, a fair amount of shared terminology
between the categories is expected. This is the smallest dataset in our experiments. We call
this dataset URCS.
The complete text of each abstract was used in the experiments with the exception of several
short LATEX formulas in several of the theory abstracts which were removed.

1http://www.cs.rochester.edu/trs/
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Dataset Dataset size classes class size range

Classic3 3891 3 1033 - 1460
NG 3500 7 500

RD-256 6519 10 105 - 2778
RD-512 3948 10 89 - 1449
URCS 528 4 83 - 193

Table 1: Summary of data sets used in experiments.

Classic3 This is a widely used dataset composed of 3891 abstracts from 3 disjoint research fields
- 1398 aeronautical system papers (Cranfield), 1033 medical papers (Medline), and 1460
information retrieval papers (CISI). This dataset has been used by many researchers [2] in
text mining. We call this dataset Classic3.
For the Cranfield and CISI documents, the title and the abstract were used. The Medline
collection repeated the title in the abstract; thus for this collection only the abstracts were
used.

A subset of 20 Newsgroups 20 Newsgroups is a collection of approximately 20000 newsgroup
documents, partitioned nearly evenly across 20 different newsgroups. It has become a popular
dataset for experiments in text applications of machine learning techniques2. The original
dataset contains both closely related groups and highly disjoint ones. In our experiments we
choose a subset of 7 relatively disjoint groups (comp.windows.x, rec.autos, sci.crypt, sci.med,
talk.politics.guns, rec.sport.baseball, and soc.religion.christian), each with exactly 500 docu-
ments. We call this dataset NG.
Most experiments done previously with the newsgroup data tended to remove the newsgroup
headers with the exception of the subject line, because the header contains the ‘true’ class
of each document potentially biasing the clustering process. Thus this work took the same
approach and removed the newsgroup headers with the exception of the subject line.

A subset of Reuters 21578 Reuters 21578 is currently the most widely used test collection for
text categorization research. The data were originally collected and labelled by Carnegie
Group, Inc. and Reuters, Ltd3. Because the dataset contains some noise, such as repeated
documents, unlabelled documents, and nearly empty documents, we choose a subset of 10
relatively large groups (acq, coffee, crude, earn, interest, monet-fx, money-supply, ship, sugar,
and trade), and we use two variants that we call: RD256 (all documents have at least 256
bytes) and RD512 (all documents have at least 512 bytes), in our experiments.
For each of the articles in the 10 categories that were used, the title and body of the article
were extracted. It should be be noted that the word ‘reuters’ is technically a stopword for
this dataset as every article ends with it.

The details of the preprocessing for each of the three representations used (words, terms, and
N-grams) are presented next.

Word Representation. After the extraction the content of the documents in each dataset as
described above, further processing is done to derive the word representation of each document.

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
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For each of the datasets (URCS, Classic3, NG, RD256, RD512), the following processing steps were
performed:

1. replaced all non-alphabetical characters with a space character

2. replaced all multispaces (tabs, spaces, or newlines) with a single space

3. converted all upper case characters to lower case

4. tokenized each document into a bag of words based on spaces

5. removed all stopwords from the standard van Rijsbergen stop word list

6. stemmed each word using using Porter’s Stemmer 4 [1].

7. removed any word that appears in four documents or less in the dataset

8. calculated the weight of each word in each document using the standard TF/IDF (Term
Frequency/Inverse Document Frequency).

9. normalized the feature vector for each document to unit length

Term representation. Documents were processed as follows:

• removed non-numeric characters such as at the beginning of each line (appear in some news
documents)

• separated the sentences in each document by new-lines (exactly one sentence per line)

• tokenized punctuations (inserted a space before and after each punctuation mark)

• applied POS (part of speech) tagging using the Brown Corpus 5 as a reference

• removed numeric tokens, and punctuations

• applied Porter’s stemmer

• extracted noun phrases (terms) using the automatic term extraction package developed by [20]

The extracted terms are then indexed, and stored in a file. Each of the terms represents a dimension
of the feature space in the same way as when word features are used, except that the total dimension
of the feature space is much smaller (as shown in table 2). Because of this, we do not perform any
further term frequency-based dimension reduction as we do for words.

A disadvantage of using term representation is that a small subset of the document set may be
represented by null document vectors, because the probability of a document not having any of
the extracted features is much higher with term than word or N-gram representation. In fact, this
document loss may become quite significant in some cases, such as the Classic-3 and URCS data
in our experiments. Table 3 shows the detailed information regarding this issue.

4The software is available at http://www.tartarus.org/~martin/PorterStemmer/
5The Brown Corpus of Standard American English (or just Brown Corpus) was compiled by Henry Kucera and

W. Nelson Francis at Brown University, Providence, RI
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Feature representation
Initial dimension of feature space

Classic3 NG RD256 RD512 URCS

Words 4420 9908 5396 4847 1430
Terms 786 1395 1325 1279 189

Table 2: Initial feature space dimensions (before reduction) using words and terms

Classic3 NG RD256 RD512 URCS

Actual documents 3893 3500 6519 3948 528
Null vectors 798 189 136 73 90

Percentage loss 20% 5% 2% 2% 17%

Table 3: Document loss when using term representation

N-gram Processing In both character and byte N-grams, multispaces (new lines, tabs, and
space) are converted into a single space. In addition, for character N-grams, any non-alphabetical
character is also converted into a space. Compared to word representation, the standard process-
ing procedures like stop word removal, removal of low frequency terms, and stemming are not
applied [16, 19].

The two most important decisions in working with N-grams are the choice of the value N and the
profile length. The profile length is the number of N-grams used in the feature vector. Typically the
most frequent N-grams are chosen. Theoretically the maximum profile length, or the dimensionality
of the feature vector, for character N-grams is 27N . However, the actual number will be significantly
less as character sequences like ‘QQQ’ are not likely to appear in normal documents. Obviously
choosing a large N will lead to high dimensionality. Prior work has show that choosing N to be
3 or 4 tends to give optimal results, with little difference between the two [19]. Various profile
lengths have been used by other researchers, with common lengths having been 1000, 2000, 3000,
4000, and 5000 [19, 16]. For the N-gram experiments, we used the N-gram software tool [15]. The
preprocessing steps for N-grams are:

1. replace all non-alphabetical characters with a space character

2. replace all multispaces (tabs, spaces, or newlines) with a single space

3. convert all upper case characters to lower case

4. produce the N-gram representation for each document

5. derive the top k N-grams based on the number of documents each N-gram appears in (these
set of k N-grams is called the N-gram profile)

6. remove any N-gram that does not appear in the N-gram profile from the N-gram representa-
tion of each document

7. calculate the weight of each N-gram in each document using the standard TF/IDF (Term
Frequency/Inverse Document Frequency).

8. normalize the feature vector for each document to unit length
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In this work, both 3-grams and 4-grams with profile lengths of 500, 1000, 2000, 3000, 4000, and
5000 were used. The limited size of the URCS dataset resulted in the total number of 3-grams
being less than 5000; thus it was not possible to produce a 3-gram profile of 5000.

4.2 Experimental Design and Metrics

Several ways of measuring the quality of clustering, especially text clustering, have been proposed.
For our datasets, we have class labels for each data item, and therefore we can use a group of
measures which considers the degree of agreement or overlap between the classes and the computed
clusters. Accordingly, we have selected one of the most highly used quality measures in text
clustering: purity.

Purity measures the extent to which each cluster contains documents from primarily one class [32].
The overall purity of a clustering solution is defined as the weighted sum of individual cluster
purities:

Purity =
k∑

r=1

nr

n
P (Sr) (2)

where P (Sr) is the purity for a particular cluster of size nr, k is the number of clusters and d is
the total number of data items in the dataset. Purity of a single cluster is defined by P (Sr) = nd

nr
,

where nd is the number of documents in cluster r that belong to the dominant (majority) class in
r; i.e., the class with the most documents in r. Obviously, the higher the purity value, the purer
the cluster in terms of the class labels of its members, and the better the clustering results.

In order to have reliable and representative results, that generalize to real situations, several points
must be taken into account. First, we should pick text collections from a variety of domains. The
choice of clustering algorithm is the second issue. K-means or its variants are the most commonly
used clustering algorithms used in text clustering, but it is a well-known problem that the clustering
results of k-means are sensitive to its initialization. In order to reduce the negative effect of poor
initialization, each result is computed from the average of 15 different runs of each experiment.

It is not common to have two separate sets of training and test documents in text clustering, as
most researchers prefer to report clustering results on the training set. However, as is common in
classification problems, in order to have results closer to the actual performance of the clustering
algorithm, we divide the whole text collection into a training and a test part [12]. We then perform
the usual clustering on the training part, and, for each cluster, we use its mean as its representative.
For the testing part, we use the nearest neighbor classification algorithm to assign a test document
to its cluster.

All our experiments were conducted in the Matlab 7 environment. The svds procedure is a built-
in Matlab function. We also used the FastICA toolbox6 for performing ICA. For the k-means
algorithm, we used the GMeans Toolbox7. We have implemented the rest of the code in Matlab.
The number of clusters k is five times the number of known classes in the dataset used, the aim
being to obtain clusters with high purity, even if a single class is split among several clusters.

It has been demonstrated [28] that it is not necessary to normalize the projection matrix computed
in LSI or ICA, because there is no significant difference between using the normalized or non-

6http://www.cis.hut.fi/projects/ica/fastica/
7http://www.cs.utexas.edu/users/yguan/datamining/gmeans.html
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normalized projection matrix. Our experiments also show that using a normalized version of
projection matrix in these two methods does not give us any significant improvement in clustering
quality.

The authors in [28] suggest plotting the singular values of LSI and eigenvalues used in the whitening
step of ICA on the same horizontal scale as the clustering performance for detecting the “good”
range of reduced dimensions. For a given dimension k in the singular value graph, the k-th singular
value in the sorted list of singular values in decreasing order is plotted. This reflects the fact that
dimension reduction in LSI is performed by taking the upper left submatrix of dimension k of the
diagonal matrix of singular values. Increasing the dimension simply involves taking a larger upper
left submatrix of the same diagonal matrix, where singular values are sorted in non-increasing order
along the diagonal. The graph of eigenvalues in ICA is defined similarly.

In all figures, the dimensions are ordered as follows: for DF, the dimensions are ordered according
to the DF values; for LSI the dimensions are ordered based on the singular values (which indicate
the importance of the dimensions); similarly, for ICA, the number of dimensions are determined
by the PCA preprocessing step, in which the principal components are ordered based on their
eigenvalues indicating their relative importance.

4.3 Experiments using Word Representation

We summarize the performance of the three dimension reduction methods for the word represen-
tation of all five datasets in Fig. 1. For all datasets, we observe that the singular values decrease
very quickly for the first few tens of dimensions and after that, there is a smooth and somewhat
flat reduction. In [28], the authors refer to the part of the singular value curve, where a rapid
reduction of singular values happens, as the transition zone. By looking at the purity diagrams,
this transition zone seems to correspond to the dimensionality where we can get best performance
out of ICA or LSI.

The results show that for all datasets, clustering quality using ICA is better than using LSI in the
whole range of dimensionalities investigated. For low dimensionalities, especially lower than 50,
for all datasets, the DF based method has the worst performance among the dimension reduction
methods used. The following reviews these results in more detail for each dataset.

Classic3 dataset In the results shown in Fig. 1.a, we observe the following. The performance
of DF peaks around dimensionality of 100 with purity of 0.80 and then flattens out and settles
around 0.78 and 0.77 with increasing dimensionality. ICA and LSI achieve their best results with
dimensionality equal to 10 (over the range examined). The best LSI performance matches the
best performance of DF (achieved with a much higher dimensionality). The best ICA performance
is better than the best performance of DF. LSI is inferior to ICA for the whole dimension range
investigated.

NG dataset We observe the following in Fig. 1.b. For the range of dimensions between 10 and
100, both ICA and LSI are superior compared with DF. ICA provides its best performance with
10 dimensions and after that it still has the best results amongst the dimension reduction methods
examined. LSI also provides its best result at 10 dimensions, but is inferior compared to ICA in
terms of the best results and robustness. Similar to Classic3, the best results of LSI and ICA seem
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to coincide with the transition zone of singular value curves.

RD256 and RD512 datasets LSI is again inferior to ICA for the whole range of dimensions
investigated, as shown in Figs. 1.c and 1.d. For RD256, DF peaks at dimensions between 110 and
150 with purity around 0.87 and then flattens out and settles with a purity around 0.86. For RD512,
it peaks again at dimensions between 110 and 150 with purity around 0.84 and then flattens out
and settles with a purity around 0.83. LSI provides the best results at dimension 20 with purity of
0.85. ICA also provides its best result at dimension 20. Again, we observe a coincidence between
good performance of LSI/ICA and the transition zones of singular value curves.

URCS dataset It can be seen in Fig. 1.e that LSI is again inferior compared to ICA. DF
performance peaks at a dimension of 90 and then settles with a purity around 0.80. Both ICA
and LSI provide better results over a range of [10, 40] compared with DF but for dimensionalities
greater than 50, as the dimensionality increases, the performance of DF is getting better than
both LSI and ICA. The best results of LSI and ICA are still better than that of DF, and they are
achieved with very low dimensionalities. Again, the good performance of LSI/ICA coincides with
the transition zones of the singular value curves in Fig. 1.e.

(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 1: Comparing dimension reduction techniques, ICA, LSI, and DF on the word representation
of five examined datasets. Purity is plotted as a function of the dimensions used. ICA outperforms
LSI and DF in the low dimensions. A graph of the ordered and scaled sequence of singular values
is also shown as a function of dimension, to display the correlation of its transition zone with the
performance curves. The x-axis represents dimensionality, and the y-axis represents purity value.
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Dataset Classic3 NG RD256 RD512 URCS

p-Value 0.5921 0.4965 0.0930 0.7566 0.7748

CI(× 1000) [−1.8, 3.1] [−5.3, 2.6] [−0.4, 4.8] [−1.6, 2.2] [−7.7, 5.8]

Table 4: Paired t-test results for the null hypothesis being that the means of purities for ICA and
LSI are equal, for term representation. CI is the associated confidence interval.

4.4 Experiments using Term Representation

In the case of term representation, unlike word representation, there is no clear difference between
LSI and ICA performance. Fig. 2 shows the performance results of LSI and ICA methods on all
datasets.

To compare the performance of LSI and ICA within their investigated dimension range, the null
hypothesis of the paired t-test assumes the means of purities for ICA and LSI for this range are
equal. Table 4 shows the result of the paired t-test. The second row of this table contains the p

values for the null hypothesis and the third row shows confidence interval for this hypothesis. The
t-test does not reject the null hypothesis; therefore there is no statistically significant difference in
the clustering quality of LSI and ICA methods.

It is also interesting to see that, unlike the word representation, the best results for LSI and ICA
do not seem to coincide exactly with the transition zone of singular value curves, but the transition
zone still can give some hints about the starting point of searching for the best dimensionality.

For the DF based method, the overall performance pattern is like that of word representation.
The clustering quality starts to increase as the dimensionality increases until some middle-range
values for all datasets. After this mid-range value, the clustering quality settles down around some
maximum clustering performance. In word representation, this maximum performance, which is
achieved at higher dimensions, was very close to the maximum performance of the other two
methods; however, for the term representation, this is not the case.

The trends of performance curves of LSI and ICA methods for all datasets are similar to the word
representation experiment. In this case, as with the word representation, performance of these two
dimension reduction methods reaches its maximum at some very low dimension greater than 20,
and then starts to degrade.

4.5 Experiments using N-gram Representation

For each dataset, we generate its 3-gram and 4-gram representations with different profile lengths
ranging from 500 to 5000. In this section, the objective of experiments is to determine the effect
of N-gram profile length on the clustering quality. We are also interested in identifying which of
the two N-gram representations achieves better performance when the three dimension reduction
methods are applied. Then for each dataset, we select the N-gram length and the corresponding
profile length which achieved the best clustering quality.
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 2: Comparing dimension reduction techniques, ICA, LSI and DF, on the term representation
of five examined Datasets. The x-axis represents dimensionality, and the y-axis represents purity
value. ICA and LSI have no significant performance difference, and they generally outperform DF
in the low dimensions. In addition, a plot of Singular Values is included to show the Correlation of
the Transition Zone with the Performance Curves.

4.5.1 N-gram Profile Length and Clustering Quality

In the first set of experiments with N-grams, we are interested in investigating the impact of the
N-gram profile length on clustering quality. In these experiments, we apply the ICA, LSI, and DF
dimension reduction methods on 3-grams and 4-grams with different profile lengths ranging from
500 to 5000. In each case, we select the shortest profile length which gives results close to the best
over different profile lengths as the “best-case” profile length for the corresponding dataset and
dimension reduction method.

The clustering performance for 3-grams when ICA has been used as dimension reduction method is
shown in Fig. 3. As it appears in these diagrams, for all datasets, clustering performance increases
as the profile length increases. But for all datasets, it seems that a profile length equal to 2000 is
the best-case length as defined above.

Clustering performance with LSI as the dimension reduction method for 3-gram representation
with different profile lengths is shown in Fig. 4. Unlike the previous case with ICA, increasing the
profile length does not necessarily provide better clustering results. For example, in datasets RD256
and RD512, further increasing the profile length beyond 2000 makes clustering quality worse. The
optimum profile length is different for each dataset, but overall we do not need to go further than
profile length of 4000 to get the best clustering result. Profile length equal to 2000 is still one of
the best profile lengths for 3-gram when we use LSI as the dimension reduction method.

Increasing the profile length does not have much impact on clustering quality when DF is used
as dimension reduction method on 3-grams, as shown in Fig. 5. It is interesting that for all

16



(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 3: Purity as a function of dimension, parameterized by profile length for 3-gram represen-
tation when ICA dimension reduction is used. Profile length of 2000 is the shortest necessary to
get the best performance. x-axis represents dimension and y-axis represents purity value.

profile lengths investigated, the clustering quality change pattern remains almost the same. We
can still see some small improvements in clustering quality with increasing profile length, but due
to computational expense, it does not seem reasonable to go further than 500 for getting better
clustering quality using this dimension reduction method.

The next three experiments show the impact of profile length for 4-gram representation when each
of the three dimension reduction methods is used. The first experiment shows this impact for ICA
method and the results can be seen in Fig. 6. For all datasets, clustering performance increases
as the profile length increases, as we have seen for 3-grams. In this case again, profile length equal
to 2000 is the shortest length required to get the best performance out of 4-grams, and after this
value, increasing the profile length does not increase the clustering performance by much.

The next experiment uses LSI as dimension reduction method, and its results are shown in Fig. 7.
Despite what we saw in the similar experiment for 3-gram representation, with increasing the profile
length, we do get better clustering results. As table 5 shows, in most cases profile lengths equal
to 4000 and 5000 are the best for 4-gram representation when LSI is used as dimension reduction
method.

For the DF dimension reduction method, as with the 3-gram representation, increasing the profile
length in the 4-gram representation does not have much impact on clustering quality, as shown in
Fig. 8. Similar to the case of 3-gram representation, the clustering quality change pattern remains
almost the same for all profile lengths. Increasing profile length makes some small improvements
in clustering quality, but due to computational expense, it does not seem reasonable to go further
than 500 for getting better clustering quality using this dimension reduction method.

Based on the experiments in this section, increasing the profile length does not change the clustering
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 4: Purity as a function of dimension, parameterized by profile length for 3-gram represen-
tation when LSI dimension reduction is used. Profile length between 2000 and 3000 is necessary to
get the best performance. x-axis represents dimension and y-axis represents purity value.

quality considerably when DF is used for dimension reduction. Due to computational costs incurred
from having longer profile length, it seems that for this dimension reduction method, profile length
equal to 500 is good enough to get the optimum clustering quality. For ICA and for profile length
above 2000, we do not get enough increase in clustering quality to justify a longer profile length for
all datasets. However, for LSI, increasing profile length seems to have positive impact on clustering
quality for most datasets. This fact is much clearer for the 4-gram representation; as we have seen
in this case, the optimum profile length tends to be greater than 4000 for almost all datasets.

4.5.2 N and Clustering Quality

In order to investigate the effect of N-gram length (N) on clustering quality, we choose the best
profile length for 3-grams and 4-grams based on the results shown in the previous section. Table 5
shows these best profile length for 3-grams and 4-grams when each of the three dimension reduction
methods, LSI, ICA, or DF, is applied.

Dimensionality and sparsity increase with N, as can be seen in Table 6. Therefore, we intuitively
expect that by increasing the N-gram size, we need a longer profile in order to capture the same
amount of information. We observe this in table 5 for the LSI method: for the 4-gram repre-
sentation, we need to have longer profile to get the best clustering quality compared to 3-gram
representation. However, this intuition does not hold for ICA in most cases.

The comparison between the best performance achieved with 3-grams and 4-grams with different
profile lengths when ICA is used as dimension reduction method on all datasets is shown in Fig. 9.

For the Classic3 dataset, the 3-gram representation clearly achieves better clustering quality com-
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 5: Purity as a function of dimension, parameterized by profile length for 3-gram representa-
tion when DF based dimension reduction is used. Increasing the profile length does not necessarily
improve the clustering performance significantly. The x-axis represents dimensionality, and the
y-axis represents purity value.

pared with 4-gram representation. For the NG dataset, 3-gram representation is slightly better
than 4-gram representation in the whole range of dimensions investigated. Unlike the Classic3
and NG datasets, for both versions of the Reuters dataset, 4-gram achieves better performance
compared to 3-gram representation. For the URCS dataset, the difference in performance between
these two representations is not as pronounced as for other datasets, but a t-test for comparing
the means of two performance curves shows that 4-gram representation is marginally better than
3-gram representation (p-values are approximately 0.1).

The comparison between the best performance achieved with 3-grams and 4-grams over all profile
lengths considered when LSI is used as dimension reduction method on all datasets is shown in
Fig. 10. We observe that 4-grams achieve better clustering performance compared to 3-grams.

The comparison between the best performance achieved with 3-grams and 4-grams with different
profile lengths when DF is used as dimension reduction algorithm on all datasets is shown in Fig.
11.

For the Classic3 dataset, the 3-gram representation clearly achieves better clustering quality com-
pared to the 4-gram representation. For the NG dataset, the 3-gram representation is slightly
better than the 4-gram representation in the whole range of dimensions investigated. Unlike the
Classic3 and NG datasets, for both versions of Reuters dataset, 4-grams achieve better perfor-
mance compared with 3-grams. For the URCS dataset, the difference between the performance of
these two representations is not as pronounced as for other datasets, but a t-test for comparing
the means of two performance curves shows that 4-gram representation is marginally better than
3-gram representation (with the p-value approximately 0.1).
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 6: Purity as a function of dimension, parameterized by profile length for 4-gram representa-
tion when ICA dimension reduction is used. Profile length of 2000 is the shortest necessary to get
the best performance. The x-axis represents dimensionality, and the y-axis represents purity value.

4.5.3 Best N-gram Parameters

In this section, we try to select a good profile length and reduced dimensionality for 3-gram and 4-
gram representations. We have observed that, for almost all datasets, ICA achieves better clustering
quality compared with LSI, as shown in Fig. 12. Only for the NG dataset, and for dimensionality
less than 80, does LSI seem to be better. We notice, however, that for this dataset only, we compare
performance with profile lengths of 4000 and 2000 for LSI and ICA respectively. If we compare
equal profile lengths for this representation, we will notice that ICA performs better than LSI.

The DF based method with the 3-gram representation achieves better clustering quality for dimen-
sions in the second half of the investigated range of dimensions, while in the first half and for lower
dimensions, this method seems to be worse than the other two methods. It is interesting, however,
that even the best performance of this method is still considerably worse than the best performance
of the two other methods. Since we are interested in lower dimensions, it seems that DF is not the
best selection amongst these three methods.

Contrary to the results for 3-gram representation, for all datasets, LSI with the 4-gram represen-
tation achieves better clustering quality compared to ICA in the range of dimensions in which we
are interested, as shown in Fig. 13. However, upon a careful look at the profile lengths which are
used for this comparison, we notice that because we are comparing the best results of ICA and
LSI method, the profile lengths used are not necessarily equal. If we use equal profile lengths for
comparison, then ICA method is slightly better than LSI method.
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 7: Purity as a function of dimension, parameterized by profile length for 4-gram represen-
tation when LSI dimension reduction is used. Profile length between 3000 and 5000 is necessary to
get the best performance. x-axis represents dimensionality and y-axis represents purity value.

The DF based method, as with the 3-gram case, achieves better clustering quality for dimensions
in the second half of the investigated range of dimensions, but the performance of ICA and LSI
method is clearly much better than DF method for the 4-gram representation, compared with the
3-gram representation in Fig. 12. Again, as with the 3-gram case, it is interesting that even the best
performance of this method is still considerably worse than the best performance of the two other
methods. In this case, due to better clustering quality of 4-grams for some datasets, this difference
is much larger compared to 3-gram representation. Since we are interested in lower dimensions, it
seems that the DF based method is not the best choice amongst these three methods.

These experiments show that, given equal profile lengths, for both 3-gram and 4-gram representa-
tion, ICA achieves superior results to LSI. In the 3-gram case, this superiority is very clear, but
for the 4-gram representation, the difference is not large, and the ICA method is only slightly
better than LSI. The interesting point is that for the 3-gram representation, even the result of the
best profile length when LSI is used is worse than a mid-range profile length when ICA is used as
dimension reduction method. But for the 4-gram representation, when choosing the good profile
length for LSI, we can expect LSI to achieve better results compared to ICA when the mid-range
profile length is used.

As a general result for all experiments performed on the N-gram representation, it seems that for
each of the 3-gram and 4-gram representation, and for a mid-range profile length (around 2000),
ICA is the method of choice. But choosing between the 3-gram and 4-gram representations seems
to depend on the data set.
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 8: Purity as a function of dimension, parameterized by profile length for 4-gram representa-
tion when DF based dimension reduction is used. Increasing the profile length does not necessarily
increase the clustering performance significantly. The x-axis represents dimensionality, and the
y-axis represents purity value.

4.6 Comparing Dimension Reduction Techniques

As it is clear in most experiments, the performance of DF based clustering reaches its maximum
at some middle range of dimensions (much higher than the best dimensions of ICA/LSI), and then
the performance remains stable as the number of dimensions increases. It is also interesting that
the best performance of this method at these middle range dimensions is often equal to the best
performance of ICA/LSI, which is achieved at much lower dimensions. This suggests that it might
be possible to use the DF based method as a preprocessing step to pre-select a subset of dimensions
to be used for ICA/LSI instead of using the full set of dimensions for these methods. This can help
especially when the original dimensionality is too high, making it too expensive to compute ICA
or LSI. In the case of ICA, sometimes this may be necessary, because the input matrix for ICA,
unlike LSI, is dense and therefore performing SVD on it is extremely expensive.

In summary, for all cases except 4-grams, the performance of ICA is clearly better than LSI. In the
case of 4-grams, ICA is at least as good as LSI for equal profile lengths, but LSI is better than ICA
for the best profile length of each method.

4.7 Comparing Text Representation Methods

In order to decide on the best text representation method, we compare their best clustering perfor-
mance over every dimension reduction method considered. For each text representation method,
we first select the dimension reduction method, with which it has achieved its best performance.
For example, ICA is the best dimension reduction method for word representation, and LSI is the
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Dataset Classic3 NG RD256 RD512 URCS

Representation 3-gram

ICA 2000 2000 2000 2000 2000
LSI 2000 4000 2000 2000 3000
DF 2000 2000 2000 2000 2000

Representation 4-gram

ICA 2000 2000 2000 2000 2000
LSI 5000 5000 3000 4000 4000
DF 2000 2000 2000 2000 2000

Table 5: Optimal profile lengths for 3-grams and 4-grams when each of the listed dimension reduc-
tion methods is applied.

3-Gram

Dataset 500 1000 2000 3000 4000 5000

Classic3 0.5277 0.6665 0.7940 0.8561 0.8908 0.9124

NG 0.3503 0.5140 0.6840 0.7720 0.8242 0.8577

RD256 0.6028 0.7203 0.8289 0.8805 0.9092 0.9270

RD512 0.4930 0.6363 0.7743 0.8418 0.8798 0.9033

URCS 0.4517 0.6061 0.7578 0.8320 0.8730 NA

4-Gram

Classic3 0.6526 0.7432 0.8210 0.8602 0.8850 0.9022

NG 0.5089 0.6264 0.7316 0.7854 0.8193 0.8435

RD256 0.7226 0.7947 0.8559 0.8865 0.9059 0.9196

RD512 0.6385 0.7278 0.8067 0.8465 0.8721 0.8905

URCS 0.5965 0.6937 0.7822 0.8286 0.8587 0.8799

Table 6: Each value shows the fraction of zero elements in the corresponding matrix

best for the 4-gram representation. Actually, except for the 4-gram representation, for all other
representations ICA had the best performance. We then compare the clustering performance of
each representation applying its best dimension reduction method. The results of this comparison
are shown in Fig. 14. We see that the term representation has the worst clustering quality amongst
the four different representations.

Both 3-gram and 4-gram representations achieve impressive results, but it is worth noticing that
these represent best-case results, achieved after a careful investigation of different parameter values
(including N-gram length and its corresponding profile length). Without these optimized parame-
ters, N-gram representation is likely to have lower clustering performance. Our experiments indicate
certain appropriate values for these parameters. For the 3-gram representation, profile length equal
to 2000 is sufficient to obtain close to the highest clustering quality. For the 4-gram representation,
this value is around 3000. We also observed that, in most cases, the 4-gram representation achieves
better clustering quality than the 3-gram representation using these suggested values for profile
length.

4.8 Computational Considerations

The run time of the experiments consists of two components, dimensionality reduction and K-
means clustering. The run time of dimensionality reduction in the case of ICA and LSI increases
slightly faster than linear with the chosen dimensionality for the range of dimensionalities tested
(up to 300). The run time of DF is practically a constant function of dimensionality, as the main
computation is sorting the features according to their DF value. For comparing the run time of
DF, ICA and LSI, the run time in seconds for dimensionality of 100 is shown in Table 7, on a Linux
Pentium 4, 2.8GHz, with 1GB of RAM. The differences among the data sets are explained by the
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 9: Comparing best clustering results over all profile lengths considered for 3-gram and 4-
gram representation, when ICA dimension reduction is used. No clear winning N-gram length can
be seen. The x-axis represents dimensionality, and the y-axis represents purity value.

different initial dimensionalities, as shown in Section 4.1.

The run time of clustering for dimensionality equal to 100 for the word representation in seconds is
shown in table 8. Run time increases linearly with dimensionality for the range tested (up to 300).

5 Discussion

In this research, we have studied three well-known dimension reduction techniques, DF, LSI, and
ICA, for the document clustering task. We applied these methods to five benchmark datasets in
order to compare their relative performance. We have also compared three different representation

df ICA LSI

Terms Words Terms Words Terms Words

Classic3 0.17 2.18 96 316 22 72

NG 0.36 7.25 171 282 29 106

RD256 0.69 4.20 311 442 46 113

RD512 0.40 2.70 168 277 29 73

URCS 0.007 0.11 5 35 2 12

Table 7: Run time of dimensionality reduction in seconds for dimensionality of 100. Run time for
LSI and ICA is a slightly faster than linear function of dimensionality for the range tested (up to
300). Run time for DF is constant.

24



(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 10: Comparing best clustering results over all profile lengths considered for 3-gram and 4-
gram representation when LSI dimension reduction is used. 4-grams appear to outperform 3-grams.
The x-axis represents dimensionality, and the y-axis represents purity value.

Data set Run time (s)

Classic3 5.50
NG 8.70

RD512 28.70
URCS 0.28

Table 8: Run time in seconds for clustering for dimensionality of 100.

methods based on the Vector Space Model, and we applied the dimension reduction methods to
find the best combination of representation method and dimension reduction algorithm for text
clustering.

¿From the experimental results, several general conclusions can be drawn. In general, we can
rank the three dimension reduction techniques in the order of ICA, LSI, DF, with ICA being the
best. ICA demonstrates good performance and superior stability compared to LSI in almost all
configurations. Both ICA and LSI can effectively reduce the dimensionality from a few thousands
to a range between 10 and 100. The best performance of ICA/LSI seems to correspond well with
the transition zone of the singular value curve. In the case of N-gram representation, ICA performs
well with mid-range profile lengths, whereas LSI performs better on longer profile lengths. The DF
based technique can get close to optimal performance of two other methods, but at much higher
dimensions. At lower dimensions, its performance is much worse than the other two methods.

requirements, we see that LSI and ICA require one to two orders of magnitude more computation
compared to DF, and that ICA requires 2-5 times more computation compared to LSI. Cluster-
ing requires the same order of magnitude of computation as the DF dimensionality reduction.
This means that dimensionality reduction is the dominant computation in clustering using reduced
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 11: Comparing best clustering results over all profile lengths considered for 3-gram and
4-gram representation when DF based dimension reduction is used. No clear winning profile length
is seen. The x-axis represents dimensionality, and the y-axis represents purity value.

dimension by LSI and ICA. This is true with the k-means clustering algorithm for the low di-
mensionalities tested. Investing in dimensionality reduction of a document collection is worthwhile
when multiple clusterings of the same collection are required, for example hierarchical clustering.
Another case is interactive clustering for visualization, where the user can change clustering param-
eters and view the resulting clusters interactively. In interactive clustering, it is important for the
clustering computation to be fast, while preserving quality, and therefore using the lowest possible
dimensionality is desirable.

Among the three representation methods, traditional word representation seems to achieve better
results in most cases, especially for lower dimensions. The N-gram representation can be considered
to be a replacement for word representation because its performance result is close to word repre-
sentation. However, it needs careful and precise determination of its two input parameters, which
are the N-gram length and the profile length. If these parameters are selected carefully, then the
performance of the N-gram representation performance can be very close to word representation,
and, for higher dimensions, even better. Term representation performance is significantly worse
than the two other representations. Even if we use default parameters for N-gram representation,
its worst performance is still better than best performance of term representation.

For clustering unlabelled datasets, the recommended process is to use words as features and ICA
for dimension reduction. Terms are an inferior representation. N-grams can provide equal or better
performance than words, if carefully tuned. N-grams need no language-specific preprocessing (e.g.,
stemming, stop word removal), and they are thought to be better than words in handling noisy
text, for example text obtained through optical character recognition of printed documents or the
output of a speech recognizer.
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(a) Classics3 (b) NG (c) RD256

(c) RD512 (d) URCS

Figure 12: 3-gram representation - comparing different dimension reduction methods. ICA appears
to outperform LSI and DF in low dimensions. For each dimension reduction method, we select
the profile length which gives the best result. The x-axis represents dimensionality and y-axis
represents purity value.
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