
I/O-Efficient Undirected Shortest Paths with Unbounded Weights

Ulrich Meyer
Norbert Zeh

Technical Report CS-2006-04

June 15, 2006

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

I/O-Efficient Undirected Shortest Paths with Unbounded Weights

Ulrich Meyer1,? and Norbert Zeh2,??

1 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken, 66123, Germany.

Email: umeyer@mpi-sb.mpg.de
2 Faculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax, NS B3H 1W5, Canada.

Email: nzeh@cs.dal.ca

Abstract. We present an algorithm for computing single-source shortest paths in undirected graphs with

non-negative edge weights in O(
√

nm/B logn + MST(n,m)) I/Os, where n is the number of vertices, m

is the number of edges, B is the disk block size, and MST(n,m) is the I/O-cost of computing a minimum

spanning tree. Our algorithm is based on our previous algorithm for graphs with bounded edge weights.

Our contribution is the removal of the algorithm’s dependence on the edge weights.

1 Introduction

The single-source shortest-path (SSSP) problem is a fundamental combinatorial optimization prob-

lem with numerous applications. Let G = (V,E) be a graph with vertex set V and edge set E, let

s be a vertex of G, called the source vertex, and let ` : E → R
+ be an assignment of non-negative

real weights to the edges of G. The SSSP problem is to find, for every vertex v ∈ V , the distance,

distG(s,v), from s to v, that is, the weight of a minimum-weight (shortest) path from s to v in G.

In this paper, it will be convenient to consider the following problem, which we call the closest-

source shortest-path (CSSP) problem: In addition to the input discussed above, let w : V → R
+

be an assignment of non-negative source weights to the vertices of G. Then compute for every

vertex x ∈ G, its distance D(x) = min(w(y)+ distG(y,x) | y ∈ G}. If y is a vertex such that w(y)+
distG(y,x) = D(x), a shortest path to x, denoted π(x), is a path of length distG(y,x) from y to x. It is

easy to transform an SSSP instance into an equivalent CSSP instance and vice versa.

The classical SSSP-algorithm is Dijkstra’s algorithm [6], which has seen many improvements,

culminating in linear-time or almost linear-time algorithms for planar graphs [7], undirected graphs

with integer or float edge weights [14, 15], and undirected graphs with real edge weights [13].

Unfortunately, all of these algorithms perform poorly when applied to massive graphs that do not

fit into memory and are stored on disk. The reason is that they access the data in a random fashion,

which is in spite of the fact that the algorithms of [13–15] are similar in spirit to our algorithm.

Much previous work has focused on solving SSSP on massive graphs. These algorithms are

analyzed in the I/O-model [1], where it is assumed that the computer has a main memory that can

hold M vertices or edges and that the graph is stored on disk. In order to process the graph, pieces

of it have to be loaded into memory, which happens in blocks of B consecutive data items. Such a

transfer is referred to as an I/O-operation (I/O). The complexity of an algorithm is the number of

I/O-operations it performs. The equivalent of the internal-memory time bound of O(n logn) required

to sort n numbers is sort(n) = O((n/B) logM/B(n/B)) I/Os [1].

While the I/O-bound of O((n + m/B) logn) achievable by Dijkstra’s algorithm (when imple-

mented using the buffered repository tree of [4]) is essentially still the best bound for SSSP on

? Research supported by DFG grant ME 2088/1-3.
?? Research supported by NSERC and CFI.

general directed graphs, much progress has been made on undirected graphs [8, 11, 12] and on spe-

cial graph classes [2, 9, 10]. The algorithm of Kumar and Schwabe (KS-SSSP) [8] performs O(n +
(m/B) log(n/B)) I/Os. For dense graphs, the second term dominates; but for sparse graphs, the I/O-

bound becomes O(n). The algorithm of [11] improves on this bound for the special case of breadth-

first search (BFS). The SSSP-algorithm by Meyer and Zeh (MZ-SSSP) [12] extends the ideas of [11]

to graphs with edge weights between 1 and W , leading to an O(
√

nm logW/B+MST(n,m)) bound,

where MST(n,m) is the cost of computing a minimum spanning tree of a graph with n vertices and

m edges.1 In this paper, we extend MZ-SSSP significantly to remove the algorithm’s dependence on

W , leading to the following result:

Theorem 1. The SSSP problem in an undirected graph with n vertices, m edges, and non-negative 2

edge weights can be solved in O(
√

nm/B logn+MST(n,m)) I/Os.

For sparse graphs, the cost of our algorithm is O((n/
√

B) logn). The algorithm is fairly compli-

cated and, for realistic values of n and B, unlikely to outperform KS-SSSP. It demonstrates, how-

ever, that it is in general possible to avoid performing one I/O per vertex, without regard for the edge

weights, and, we believe, provides further insight into the I/O-complexity of the SSSP-problem.

We start the presentation in Section 2 with a discussion of the central ideas of KS-SSSP and

MZ-SSSP, which will be reused in our algorithm. Section 3 shows how to augment MZ-SSSP to

make it independent of the edge weights, provided that the graph can be partitioned into appropri-

ate subgraphs. The complexity of the algorithm, instead of depending on logW , will depend on a

parameter of the partition, called its depth. Section 4 discusses a recursive shortest-path algorithm

that uses another partition of the graph into “well-separated” subgraphs, which allows the compu-

tation of shortest paths in the whole graph using nearly independent shortest-path computations on

these subgraphs. Section 5 then argues that any graph can be partitioned into such well-separated

subgraphs such that each has a partition of small depth in the sense of Section 3. This allows us to

combine the two approaches from Sections 3 and 4 to obtain an efficient CSSP-algorithm. Section 6

puts the bits and pieces together and analyzes the complexity of the final algorithm.

2 Previous Work: KS-SSSP and MZ-SSSP

KS-SSSP. KS-SSSP [8] is an I/O-efficient version of Dijkstra’s algorithm. It uses a priority queue

Q to maintain the tentative distances of all vertices. It retrieves the vertices one by one from Q,

by increasing tentative distance. After retrieving a vertex x, it is visited, that is, its incident edges

xy are relaxed, where the relaxation of an edge xy replaces the tentative distance d(y) of y with

min(d(y),d(x)+ `(xy)). This update is reflected by updating the priority of y in Q.

The main contribution of KS-SSSP is the development of an I/O-efficient priority queue that

supports operations Update(x, p), Delete(x), and DeleteMin, each in O((1/B) log(n/B)) I/Os amor-

tized. The latter two behave as on any priority queue, deleting x or the item with minimum priority,

respectively. The former replaces x’s current priority px with min(px, p) if x is in the priority queue.

If x is not in the priority queue and has never been in it, it is inserted with priority p. If x has been in

the priority queue before, but has been deleted, the operation does nothing. This particular behaviour

1 The current bounds for MST(n,m) are O(sort(m) log log(nB/m)) deterministically [2] and O(sort(m)) randomized [5].
2 In the discussion, it is assumed that edge weights are strictly positive. Weight-0 edges can be handled by treating each

connected component of the subgraph they induce as a single vertex.

of the Update operation is supported only for undirected shortest-path computations, by recording

updates vertices perform on each other’s distances and using this information to prevent re-inserted

vertices from being retrieved for a second time using a DeleteMin operation. See [8] for details.

This method to ensure the peculiar behaviour of the Update operation relies on the vertices being

visited by increasing distance. This is not true for our algorithm, but we will argue in the full paper

that, when we retrieve a vertex twice from the priority queue, due to a re-insertion, we still visit it

only once, due to the delayed edge relaxations employed by our algorithm. Thus, we assume in the

remainder of the paper that we have a priority queue whose Update operation behaves as above.

Given this fairly powerful priority queue, visiting a vertex x reduces to scanning its adjacency list

E(x) and performing an Update(y,d(x)+`(xy)) operation on Q for every edge xy ∈ E(x). Thus, KS-

SSSP performs O(m) priority queue operations, which cost O((m/B) log(n/B)) I/Os, and it spends

O(1+deg(x)/B) I/Os to retrieve the adjacency list of each vertex x, O(n+m/B) I/Os in total. This

leads to the claimed I/O-complexity. The bottleneck of KS-SSSP is thus the random accesses to the

adjacency lists. This is the problem addressed by MZ-SSSP and by our new algorithm.

MZ-SSSP. For the case of BFS—that is, SSSP with unit edge weights—the bottleneck created by

random accesses to adjacency lists has been addressed in [11] using a clustering-based approach.

MZ-SSSP extends this approach to allow real edge weights between 1 and W . The basic idea can be

described as follows: First, the vertex set of G is partitioned into q = O(n/µ) carefully chosen sets

V1, . . . ,Vq, called vertex clusters; 1 ≤ µ ≤
√

B is a parameter specified later. For each vertex cluster

Vi, the adjacency lists of the vertices in Vi are concatenated to form an edge cluster Ei. The edges in

each edge cluster Ei are stored consecutively on disk.

The shortest-path computation now proceeds as in KS-SSSP, except that a hot pool H acts as

an intermediary between the priority queue and the adjacency lists. In particular, when a vertex x

is retrieved from Q, it is only released, which means that the hot pool H is instructed to visit x. H

may delay visiting x, but not too long, as formalized by the following property:

(SP) Every vertex x is visited before a vertex y with D(y) > D(x)+distG(x,y)/2 is visited.

It is straightforward to prove that any SSSP/CSSP-algorithm that has this property is correct.

The hot pool H is a buffer space storing adjacency lists. When a vertex x needs to be visited

and E(x) is in H , all edges in E(x) are relaxed. If E(x) is not in H , then the entire edge cluster

containing E(x) is loaded into H before x is visited. This ensures that only O(n/µ + m/B) I/Os

are performed to load edges into the hot pool, because every edge cluster is loaded only once. The

difficult part is looking for adjacency lists in H efficiently, which can be done in O(µ logW/B)
I/Os amortized per edge, provided that the cluster partition has certain properties, discussed in the

next section. A partition with these properties can be computed in O(MST(n,m) + (n/B) logW)
I/Os. By using a priority queue that exploits the bounded range of edge weights to support Update,

Delete, and DeleteMin operations in O((1/B) logW) I/Os amortized, the complexity of the algo-

rithm thus becomes O(n/µ+(mµ logW)/B+MST(n,m)), which is O(
√

nm logW/B+MST(n,m))
if we choose µ =

√

nB/(m logW).

3 A Weight-Independent MZ-SSSP

In this section, we review MZ-SSSP and present a new implementation, which we call MZ-SSSP∗.

The cost of MZ-SSSP∗ is O((n/µ) logn+m(µd + logn)/B) I/Os, where d is a parameter of the used

cluster partition, called the depth of the partition. This parameter will always be bounded by logW .

In Section 5, we will be concerned with ensuring that d = O(logn), which, after choosing µ =
√

nB/m, leads to the desired complexity of O(
√

nm/B logn) I/Os, plus the cost for computing the

partition, which will be O(MST(n,m)). In our discussion, we will emphasize whenever MZ-SSSP∗

deviates significantly from MZ-SSSP.

3.1 µ-Partitions

The efficient implementation of the hot pool in MZ-SSSP∗ requires that the used cluster partition has

a number of properties. To define these, we need some notation. For an edge e ∈ G, the category of

e is the integer c such that 2c−1 ≤ `(e) < 2c. A c-component of G is a maximal connected subgraph

of G all of whose edges have category c or less. A category component is a c-component, for

some c. A c-cluster is a vertex cluster Vi that is contained in a c-component, but not in a (c− 1)-
component. We also refer to the corresponding edge cluster Ei as a c-cluster. The diameter diam(V ′)
of a vertex set V ′ is equal to max{distG(x,y) | x,y ∈V ′}. Now the partition required by MZ-SSSP∗

is a µ-partition of G, which is a partition of V into q = O(n/µ) vertex clusters V1, . . . ,Vq with the

following properties:

(C1) Every cluster Vi contains at most µ vertices,

(C2) Every c-cluster Vi has diameter at most µ2c,

(C3) No (c−1)-component contributes vertices to two c-clusters, and

(C4) Every c-component contributing a vertex to a c′-cluster with c′ > c has diameter at most 2cµ.

The first property was not required by MZ-SSSP. We define the depth of a cluster as the difference

between the category of the cluster and the category of the shortest edge with exactly one endpoint

in the cluster. The depth of the partition is the maximal depth of its clusters. A (µ,d)-partition is a

µ-partition of depth d. Note that d ≤ logW .

Even though every edge with exactly one endpoint in a c-cluster of a (µ,d)-partition has category

at least c− d, edges between vertices in the same c-cluster may be arbitrarily short. We define a

mini-cluster to be a (c− d)-component contained in a c-cluster. (Note that, in a (µ,d)-partition,

any (c− d)-component is either completely contained in or disjoint from a given c-cluster.) The

shortest-path computation will have to deal with non-trivial mini-clusters in a special way to ensure

correctness of the algorithm. In MZ-SSSP, all mini-clusters were trivial because it only used the

upper bound of logW on the depth of the partition; so this complication did not arise.

In order to facilitate the efficient retrieval of edges from the hot pool, the shortest-path compu-

tation requires information about which vertices of which cluster are contained in which category

component. This information is provided by a cluster tree Ti associated with each cluster Vi. To de-

fine these cluster trees, let us define the component tree Tc of G first: We say that a c-component is

unique if it is properly contained in a (c+1)-component or it is equal to G; in addition, all vertices

of G are unique 0-components. The vertex set of Tc consists of all unique category components.

Component C is the parent of component C′ if C′ ⊂C and C ⊆C′′ for all C′′ ⊃C′. Now the cluster

tree Ti of a c-cluster Vi is the subtree of Tc containing all nodes of category c or less that are ancestors

of vertices in Vi (which are leaves of Tc).

3.2 Shortest Paths

The shortest-path computation proceeds in iterations; each iteration releases a vertex x from the

priority queue Q and inserts a Visit(x,d(x)) signal into the hot pool to induce the relaxation of all

edges incident of x. Before releasing x from Q, however, a Scan operation is invoked on the hot pool

to ensure that all edges that need to be relaxed before releasing the next vertex are relaxed. This

operation is described in the next section, which discusses the implementation of the hot pool.

3.3 Hot Pool

The structure. The hot pool consists of a hierarchy of r = dlogWe edge buffers EB1, . . . ,EBr, a

hierarchy of r tree buffers TB1, . . . ,TBr, and a hierarchy of r signal buffers SB1, . . . ,SBr. Each of

these hierarchies is implemented as a single stack with markers indicating the boundaries between

individual buffers. We refer to the triple (EBi,TBi,SBi) as level i.

The edge buffers hold edges that have been loaded into the hot pool. Edge buffer EBi+1 will be

inspected by Scan operations about half as often as EBi. If an edge xy is stored in EBi, then TBi

stores all ancestors of x in Tc that have category at most i. The signal buffers store signals used to

trigger edge relaxations and movements of edges between different edge buffers. The purpose of

moving edges between different edge buffers is to initially store edges in buffers that are inspected

infrequently and later, when the time of their relaxation approaches, move them to buffers that are

inspected more frequently, in order to avoid delaying their relaxation for too long.

The inspection of edge buffers is controlled by due times t1 ≤ t2 ≤ ·· · ≤ tr+1 = +∞ associated

with these buffers. These due times satisfy the following condition:

(DT) For 1 ≤ i < r, ti+1 = ti or 2i−3 ≤ ti+1 − ti ≤ 2i−2.

Initially, we set ti = min{w(x) | x ∈ G}+ 2i−2, for 1 ≤ i ≤ r. Due time ti indicates that we have to

inspect EBi for edges to be relaxed or moved to lower buffers before the first vertex with tentative

distance d(x) ≥ ti is released from Q. We will maintain the following invariant:

(HP) After loading a c-edge cluster E j into the hot pool, an edge xy is stored in the lowest edge

buffer EBi such that i ≥ c−d and the i-component C containing vertex x satisfies d(C) < ti+1.

The tree buffers are used to check this condition. In particular, component C is stored as a node of

Ti in the tree buffer TBi, and we ensure that this copy of C in TBi always stores the correct value

of d(C) = min{d(x) | x ∈ C}.3 To achieve this, we insert an Update(y,d(x)+ `(xy)) signal into an

appropriate signal buffer whenever an edge xy is relaxed; this signal updates the tentative distance

of every ancestor of y in Tc that is stored in a tree buffer to which this signal is applied.

As discussed in the previous subsection, the shortest-path algorithm inserts Visit(x,d(x)) signals

into the hot pool to trigger the relaxation of edges incident to x. In MZ-SSSP, these signals are

inserted into SB1 and then move through all signal buffers as higher and higher levels are scanned.

Thus, each signal can visit logW levels. In order to reduce the number of levels through which a

signal travels, we insert a Visit(x,d(x)) signal into SBcx
, where cx = c− d if x is contained in a

c-cluster, and let it travel only up to level c + O(logn). For now, let us say that we send this signal

to level cx. We discuss how to do this efficiently after discussing the Scan operation on the hot pool.

Scanning the hot pool. The Scan operation scans a prefix EB1, . . . ,EB j of edge buffers for edges that

need to be relaxed or moved to other levels. Let f be the minimum priority of the vertices in Q, called

the frontier. (Note that Q can easily maintain this value.) Since f is the priority of the next vertex to

3 This is not quite correct; C will store only an upper bound d∗(C) on d(C); but this upper bound will be good enough to

move edges to lower buffers when their relaxation approaches.

be released from Q, we need to scan all edge buffers EB1, . . . ,EB j such that t1 ≤ ·· · ≤ t j ≤ f < t j+1.

The scanning of an edge buffer EBi may decrease f . Then we use the updated value of f to decide

whether to continue the scan with EBi+1.

The Scan operation can be divided into two separate phases: The up-phase inspects edge buffers

EB1, . . . ,EB j, relaxes edges, and moves edges whose relaxation is not imminent to higher levels.

The down-phase inspects EB1, . . . ,EB j in reverse order, assigns new due times to EB1, . . . ,EB j,

and moves edges to lower levels if the maintenance of property (HP) requires it. These two phases

perform the following operations on each inspected level i:

Up-phase:

– Insert all signals sent to level i since the last scan of this level into SBi.

– For every Visit(x,d(x)) signal in SBi such that x 6∈ TBi, load the edge cluster Eh containing E(x)
into EBi; load the corresponding cluster tree Th into TBi and retrieve the tentative distances of

all nodes in Th from a distance repository REP, which is discussed in Section 3.4. If there are

Visit(x,d(x)) signals in SBi for more than one vertex in Vh, Eh is loaded only once.

– For every cluster tree node C in TBi and every Update(x,d) signal in SBi such that x∈C, replace

d(C) with min(d(C),d).
– For every Visit(x,d(x)) signal in SBi, process the mini-cluster containing x. The details are

explained below. For every category-c edge xy with c ≥ i relaxed during this process, send an

Update(y,d(x)+ `(xy)) signal to level max(i+1,c− logn−d −1) and, if c ≤ i+ logn+d +1,

to level i. We say that such an Update signal has category c.

– Move all cluster tree nodes C in TBi to TBi+1 such that either the category of C is greater than

i or the tentative distance of the i-component containing C is at least ti+1. For every cluster tree

leaf (vertex) x moved to TBi+1, move E(x) to EBi+1.

– Move update signals with category greater than i−d to SBi+1. Discard all other signals in SBi.

– Test whether f ≤ ti+1 and, if so, continue to level i+1.

Down-phase:

– Update the due time ti: If f + 2i−1 ≥ ti+1, then ti = ti+1. Otherwise, let ti = (ti+1 + f)/2. It is

easy to check that this maintains Property (DT).

– Insert all signals sent to level i into SBi. At this point, they will all be Update signals sent during

scans of higher levels. As in the up-phase, apply these Update signals to the nodes stored in TBi.

– Move all cluster tree nodes C in TBi to TBi−1 such that the category of C is less than i and the

(i−1)-component containing C has tentative distance less than ti. Discard all cluster tree nodes

of category i. For every cluster tree leaf x moved to TBi−1, move E(x) to EBi−1.

– Move all signals of category less than i+ logn+d +1 to SBi−1. Discard all other signals in SBi.

In order to implement these different steps efficiently, we number the nodes in Tc in preorder.

Then we keep the cluster tree nodes sorted by their preorder numbers; we keep the signals in SBi

sorted by the preorder numbers of the vertices they affect; and we keep the edges in EBi sorted by

the preorder numbers of their first endpoints. Given this ordering, it is easy to show that all the above

steps can be implemented by scanning the involved buffers a constant number of times, except that

the signals inserted into SBi have to be sorted before merging them into SBi.

We also argue in the full paper that the due times of empty levels can be represented implicitly

using the due times of the two closest non-empty levels. This is necessary to avoid spending I/Os on

accessing due times of empty levels. Accesses to due times of non-empty levels can be amortized

over the accesses to the elements in these levels.

Processing mini-clusters. The processing of a mini-cluster C involves visiting all vertices in C that

have Visit(x,d(x)) signals in SBi. Since the vertices in the mini-cluster are connected by potentially

very short edges, it may also be necessary to immediately visit vertices in the same mini-cluster

whose tentative distances decrease dramatically as a result of the relaxation of these edges. In par-

ticular, starting with their current tentative distances, we run a bounded version of Dijkstra’s algo-

rithm on the mini-cluster. This can be done in internal memory because the mini-cluster has at most

µ ≤
√

B vertices and, thus, at most B edges. When Dijkstra’s algorithm is about to visit a vertex

x, the vertex is visited if d(x) ≤ ti. Otherwise, the algorithm terminates. Once Dijkstra’s algorithm

terminates, it updates the tentative distances of all vertices in the mini-cluster that have not been vis-

ited, that is, for each such vertex, Update(x,d(x)) operations are performed on Q and the distance

repository, and d(x) is updated in TBi. For every visited vertex x and every category-c edge xy in

E(x) with c ≥ i, Update(y,d(x)+ `(xy)) signals are sent to the levels specified in the discussion of

the up-phase. Finally, a Delete(x) operation is performed on Q for every visited vertex x. This is

necessary to ensure that x is not visited again because, during the processing of the mini-cluster, we

may visit vertices that have not been released from Q yet.

Sending signals to levels. The sending of signals to specific levels in the hierarchy is easily accom-

plished using two priority queues SQ+ and SQ−. A Visit signal to be sent to level i is inserted into

SQ+ with priority i. The next time level i is inspected, this signal is retrieved from SQ+ and inserted

into SBi. Since levels 1, . . . , i− 1 are inspected before level i, the minimum priority in SQ+ is i at

this point, so that these signals can be retrieved using DeleteMin operations. Update signals sent to

other levels when visiting level i are inserted into SQ+ if the target level is greater than i, and into

SQ− if the target level is at most i. In the down phase, signals sent to each level are retrieved from

SQ− using DeleteMax operations.

3.4 Distance Repository

MZ-SSSP∗ needs a distance repository REP, which stores the tentative distances of all vertices in

G and allows us to retrieve the tentative distances of all nodes in a cluster tree Ti. In particular, the

repository supports Update(x,d(x)) and ClusterQuery(Ti) operations. MZ-SSSP does not need such

a repository because of the way the priority queue in MZ-SSSP is implemented and coupled with the

hot pool. Since we use the priority queue of KS-SSSP instead, to avoid the O((1/B) logW) cost per

Update operation on the priority queue in MZ-SSSP, we need the repository to query the tentative

distances of all nodes in a cluster tree when its cluster is loaded into the hot pool. The relaxation of

an edge xy, in addition to performing an Update(y,d(x)+ `(xy)) operation on Q, now also performs

such an operation on REP.

3.5 Analysis

What remains is to prove the correctness of MZ-SSSP∗ and analyze its I/O-complexity. The proof

will rely on the following lemma, which is proved in Appendix A. In this lemma, d(x) and d∗(x)
denote the tentative distances of x stored in REP and with the cluster tree node x in a tree buffer,

respectively. It is possible that d(x) < d∗(x) because the cluster tree node may not be informed about

all updates of d(x). We will argue, however, that this does not affect the correctness of the algorithm.

Lemma 1. A vertex x visited during a scan of level i satisfies ti −2i−2 ≤ d(x) ≤ d∗(x) ≤ ti.

The correctness of the algorithm now follows from the following two lemmas.

Lemma 2. If the vertices on π(x) are visited by increasing distance, then d∗(x) = d(x) = D(x) when

x is visited.

Proof. d(x) = D(x) follows by induction along π(x). Now let y be the predecessor of x on π(x),
which is visited before x. If x’s cluster is loaded after y is visited, we have d∗(x) = d(x) because

d(x) is read from REP at this point. So assume that y is visited after x has been loaded into the hot

pool. Note that, at any time, x is stored somewhere between levels cx and cx + d. Hence, it suffices

to prove that either x and y belong to the same mini-cluster or the Update(x,D(x)) signal issued by

y has category between cx and cx + d + logn + 1. Indeed, in the former case, the update of d(x) to

D(x) is immediately recorded in TBcx
. In the latter case, the Update signal is applied to all levels

between cx and cx +d, that is, x sees this update.

So assume that y and x do not belong to the same mini-cluster. Then edge yx has category

at least cx, which proves the lower bound on the category of the update. If edge yx had category

greater than cx +d + logn+1, then `(yx) ≥ n ·2cx+d+1 +2cy−1. On the other hand, since x is loaded

before this update happens, a vertex z in the same (cx +d)-component as x is visited before y. This

implies that d(z) ≤ D(y)+ 2cy−2. Since x and z belong to the same (cx + d)-component, we have

D(x) < d(z)+n ·2cx+d ≤ D(y)+2cy−2 +2cx+d < D(y)+ `(yx), a contradiction.

Lemma 3. Let y be x’s predecessor on π(x). If d(y) = D(y) when y is visited, then y is visited before

x.

Proof. Assume that x is visited before y, and let Ix and Iy be the two invocations of procedure Scan

during which x and y are visited. If Ix = Iy and x and y belong to the same mini-cluster, y must be

visited before x because D(y) < D(x) ≤ d(x). So x and y belong to different mini-clusters. Then

cx ≤ cy. Hence, d(x) ≤ tcx
≤ tcy

≤ D(y)+2cy−2 < D(y)+ `(yx), a contradiction.

If Ix precedes Iy, then we have d(x)≤ tcx
≤ fx, where fx is the value of f at the end of invocation

Ix. At the end of Ix, tcy
≥ fx; see Lemma 8 in Appendix A. Hence, we have D(y) ≥ tcy

− 2cy−2 >
tcy

− `(yx) ≥ d(x)− `(yx), again a contradiction.

Lemma 4. MZ-SSSP ∗ is correct and has property (SP).

Proof. Correctness is immediate from Lemmas 2 and 3. To prove property (SP), assume that there

exist two vertices x and y such that D(y) > D(x)+distG(x,y)/2, but y is visited before x. Vertices x

and y cannot be in the same mini-cluster because it is easily verified that all vertices in a mini-cluster

are visited by increasing distance. Thus, distG(x,y) ≥ 2max(cx,cy)−1 ≥ 2cx−1. Now consider the two

invocations Ix and Iy that visit vertices x and y.

If Ix = Iy, then we must have cy ≤ cx because y is visited before x. Since x and y are visited in

this invocation, we have D(y) ≤ tcy
≤ tcx

≤ D(x)+2cx−2 ≤ D(x)+distG(x,y)/2, a contradiction.

If Iy precedes Ix, let fy be the value of the frontier at the end of invocation Iy. Then D(y) ≤ tcy
≤

fy ≤ tcx
≤ D(x)+2cx−2 ≤ D(x)+distG(x,y)/2, again a contradiction.

Lemma 5. Excluding the cost of computing the (µ,d)-partition, the I/O-complexity of MZ-SSSP ∗ is

O((n/µ) logn+m(µd + logn)/B).

Proof sketch. First observe that we perform O(m) priority queue operations and Update operations

on REP. The cost per Update on the repository is O((1/B) logn) amortized, as discussed in Sec-

tion 6, which gives a cost of O((m/B) logn) for these operations. We also send only O(m) signals

to the different levels of the hot pool, which costs O(sort(m)) I/Os for the involved operations on

SQ+ and SQ−, as well as sorting these signals before insertion into the signal buffers.

The remainder of the complexity analysis hinges on two claims: (1) Every cluster is loaded into

the hot pool only once. This would result in a cost of O(n/µ + m/B) for reading edge clusters and

tree buffers, plus O((n/µ) logn +n/B) for answering cluster queries on REP (see Section 6 for the

cost of these queries). (2) Every signal traverses at most d + logn + 2 levels in the hot pool; every

edge and cluster tree node traverses at most d levels in the hierarchy, remaining at each level for

only O(µ) scans of this level. This would imply a cost of O((m/B)(d + logn+2)) for scanning the

signals and O(mdµ/B) for scanning edges and cluster tree nodes. Summing up the different costs,

we obtain the claimed cost of the algorithm.

The number of levels traversed by each edge or signal is easily seen to be as claimed. The

number of scans of a level during which an edge remains at a given level follows from properties

(C2) and (C4) and the fact that ti increases by at least 2i−3 every time level i is scanned, which is

easy to prove. So we have to prove that we do not load a cluster more than once. To prove this, it

suffices to show that, after loading a cluster containing a vertex x into the hot pool, a Visit(x,d(x))
signal finds x at level cx. This follows from Lemma 10 in Appendix A.

4 A Recursive Shortest-Path Algorithm

In this section, we describe a CSSP-algorithm that uses in a sense the exact opposite of a µ-partition

of low depth. We start by defining the partition required by the algorithm and then argue that short-

est paths in the whole graph can be computed by solving nearly independent CSSP-problems on

the graphs in the partition. We only prove the correctness of the algorithm here. We analyze its

complexity in Section 6, where we combine it with MZ-SSSP∗ to obtain our final algorithm.

4.1 Barrier Decomposition

Our algorithm uses a barrier decomposition of G, which consists of a number of multigraphs

G0, . . . ,Gq and vertex sets /0 = B0, . . . ,Bq, called barriers, with the following properties:

(B1) Every graph Gi represents a connected vertex-induced subgraph Hi of G; H0 = G.

(B2) For i < j, Hi ∩H j = /0 or H j ⊂ Hi. If H j ⊂ Hi and Hi ⊆ Hk for all Hk ⊃ H j, we call Gi the

parent of G j (and G j a child of Gi).

(B3) For all i, graph Gi is obtained from Hi by contracting each graph H j such that G j is a child of

Gi into a single vertex r(G j), which we call the representative of G j. For a vertex x ∈ H j, we

consider r(G j) the representative of x in Gi and denote it by rx. For x ∈ Gi, let rx = x.

(B4) For a given graph G j with parent Gi, B j is the set of vertices in (V (Hi)∪Bi)\V (H j) that are

reachable from H j using edges of length at most 2n`max(H j), where `max(H j) is the length of

the longest edge in H j.

(B5) No set Bi contains a graph representative.

Intuitively, for every graph G j, the set B j forms a barrier between H j and the rest of G in the

sense that a shortest-path between two vertices in H j cannot contain a vertex not in V (H j)∪B j.

4.2 The Algorithm

Assume we are given a Dijkstra-like CSSP algorithm A , that is, an algorithm that visits every vertex

exactly once and, when it does, relaxes all edges incident to x. Assume also that algorithm A has

property (SP). Given a barrier decomposition of G, we can then solve the CSSP problem on G

recursively. The resulting algorithm will require the use of the distance repository REP, augmented

to support a GraphQuery(Gi) operation, which returns the tentative distances of all vertices in Gi;

for a graph representative x = r(G j), let d(x) = min{d(y) | y∈H j}. The algorithms looks as follows:

ShortestPaths(Gi): Run a modified version of algorithm A on the graph graph Gi ∪Bi obtained

from G[V (Hi)∪Bi] by contracting each graph H j such that G j is a child of Gi into a single vertex

r(G j). The modifications are as follows:

– Terminate A as soon as all vertices in Gi have been visited. In particular, it is not required to

visit all vertices in Bi.

– When A visits a vertex x that is not a graph representative, relax all its incident edges. In partic-

ular, for such an edge xry, where ry may or may not be a graph representative, replace d(y) with

min(d(y),d(x)+ `(xy)) in REP and d(ry) with min(d(ry),d(x)+ `(xy)) in A’s data structures.

– When A visits a graph representative r(G j):

• Recursively invoke ShortestPaths(G j) with the source weights of all vertices in V (G j)∪B j

initialized to their current tentative distances. (These distances are retrieved from REP.)

• If the recursive call visits vertices in B j, reflect this in the data structures of the current in-

vocation to ensure that these vertices are not visited again. (E.g., if A is Dijkstra’s algorithm

or MZ-SSSP∗, remove these vertices from the priority queue.)

• If the recursive call updates the tentative distances of vertices in B j, reflect this in the data

structures of the current invocation. (E.g., if A is MZ-SSSP∗, update their priorities in the

priority queue and send corresponding Update signals to the hot pool.)

• Relax all edges with exactly one endpoint in H j, that is, for each edge xy such that x ∈ H j

and y ∈ Hi \H j, replace d(ry) with min(d(ry),d(x)+ `(xy)).

The initial invocation is on graph G0, which ensures that all vertices in G are visited. The fol-

lowing lemma shows that this solves the CSSP problem.

Lemma 6. For every vertex x ∈ Hi ∪Bi visited by ShortestPaths(Gi), we have d(x) = D(x) at the

time when x is visited.

Proof. The proof is by induction on the number of descendants of Gi. If there is none, the algorithm

behaves like A and the claim follows because, by (SP), all vertices on π(x) are visited in order.

So assume that Gi has at least one child G j, that there exists a vertex x ∈ Hi ∪ Bi such that

d(x) > D(x) when x is visited, and that every vertex z preceding x on π(x) satisfies d(z) = D(z)
when it is visited. First assume that x is not visited in a recursive call Shortest-Path(G j), where G j

is a child of Gi. Let y be x’s predecessor on π(x), and let ry be its representative in Gi. ry must be

visited after x because otherwise d(x) = D(x) when x is visited. Hence, by (SP), D(y) ≥ D(ry) ≥
D(x)−distGi∪Bi

(ry,x)/2 ≥ D(x)−distG(y,x)/2, a contradiction because y ∈ π(x).

Now assume that x is visited during a recursive call ShortestPaths(G j). Then the claim follows

by induction if we can prove that DH j∪B j
(x) = D(x). So assume the contrary. If π(x) ⊆ H j ∪B j, this

is impossible. So π(x) contains at least one vertex outside H j ∪B j. Let z be the last such vertex on

π(x), and let y be its successor on π(x), which is in H j ∪B j. We need to prove that w(y) = D(y).
Assume the contrary. Then r = r(Gi) must be visited before rz, that is, by (SP), D(r) ≤ D(rz)+

distGi∪Bi
(rz,r)/2. However, we have D(u) < D(r)+ n · `max(H j) ≤ D(r)+ distGi∪Bi

(rz,r)/2, for all

u ∈ H j, because z 6∈ B j. Hence, D(u) < D(rz)+ distGi∪Bi
(rz,r) ≤ D(z)+ distG(z,u). Thus, z cannot

belong to π(u), for any u∈H j, and x 6∈H j. Then, however, x is visited only if DH j∪B j
(x)≤DH j∪B j

(u),
for some u ∈ H j. Since D(x) ≤ DH j∪B j

(x) and DHi∪Bi
(u) = D(u), this implies again that z 6∈ π(x), a

contradiction.

5 Computing the Partition

Our final algorithm is based on the recursive framework of Section 4 and uses MZ-SSSP∗ or, on

small graphs, Dijkstra’s algorithm to compute shortest paths on the different graphs in the barrier

decomposition. To achieve the desired I/O-complexity, we need the following properties of the

barrier decomposition of G.

(P1) The barrier decomposition consists of O(n/µ) multigraphs G0, . . . ,Gq.

(P2) Each graph Gi has at most
√

B vertices or is equipped with a (µ, logn + 2)-partition. In the

former case, we call it atomic; in the latter compound.

(P3) If the parent Gi of G j is atomic, then G j is Gi’s only child. If the parent Gi of a graph G j is

compound, then B j is a subset of a vertex cluster of Gi, and this vertex cluster contains only

one graph representative. This implies in particular, that |B j| ≤ µ ≤
√

B, for all j.

Next we sketch the construction of such a partition, essentially proving its existence. Due to

space limitations, we omit the proof that the construction can be carried out in O(MST(n,m)) I/Os.

Details are provided in Appendix B. The construction consists of three phases: The first two compute

a µ-partition of G whose deep clusters have a particularly simple structure. In the third phase, every

deep cluster is split into up to three parts, two of which are shallow; the third defines an atomic

graph that separates the two graphs containing the two shallow parts.

To obtain a µ-partition, we compute Tc from a minimum spanning tree of G using a variation

of an algorithm from [3]. Then we process Tc bottom-up. For every c-component C, if it contains

more than µ vertices not assigned to clusters yet or has diameter greater than 2cµ, we group (the

unassigned vertices of) its children to form clusters of diameter at most 2cµ and containing at most

µ vertices. This phase essentially simulates the construction in [12], but does so in O(sort(n)) I/Os

using the information provided by Tc.

In the second phase, we call a cluster Vi deep if it has depth greater than logn + 2. We call a

node C in Tc internal, mixed, or external depending on whether all, some, or none of the vertices in

C belong to Vi. Our goal is to ensure that the mixed nodes in each cluster tree Ti form a top-down

path and that the only mixed node in Ti with external children is the bottom-most node of the path.

This can be achieved by processing Ti bottom-up. When reaching a mixed node C in Ti with at least

one mixed child and at least two non-internal children in Tc, we remove the subtrees of Ti rooted at

mixed children of C from Ti and form a new cluster containing the leaves of each of these trees. It is

easy to verify that all deep clusters that remain after this processing have the desired structure and

that the construction at most triples the number of clusters.

The final partition is now obtained as follows: For the cluster tree Ti of each deep cluster Vi, let

C1
i be the highest mixed node in Ti that has category no greater than c− logn− 2, where c is the

category of Vi; let C2
i be the lowest mixed node in Ti. Let C be the set of all these nodes C1

i and C2
i

for all deep clusters in the partition. Then each node Ch
i in C defines a subgraph H j consisting of all

descendant leaves of Ch
i in Tc. Consequently, the vertex set of each graph G j consists of the leaves

of one of the subtrees of Tc obtained by splitting each node Ch
i into a top and a bottom copy and

making all children of Ch
i children of the bottom copy.

This procedure splits every deep cluster Vi into up to three parts. The parts corresponding to the

top and bottom parts of Ti are easily verified to have depth at most logn+2. The middle part defines

an atomic graph. Note that every graph’s barrier is contained in a cluster of the original µ-partition

and, thus, has size at most µ. It is also easily verified that every graph Gi satisfies Property (P3). The

number of graphs is at most twice the number of clusters in the µ-partition produced by the second

phase, which is O(n/µ). Hence, we obtain

Lemma 7. It takes O(MST(n,m)) I/Os to compute a barrier decomposition of an undirected graph

G that has properties (P1)–(P3).

6 Complexity of the Final Algorithm

By Lemma 7, it takes O(MST(n,m)) I/Os to compute the desired decomposition of the graph. Using

MZ-SSSP∗ to solve CSSP in a compound graph Gi in the computed barrier decomposition takes

O(((ni + |Bi|)/µ) logn +(miµ logn)/B) I/Os, where ni is the number of vertices in Gi and mi is the

number of edges in Gi. if graph Gi is atomic, we use Dijkstra’s algorithm to solve CSSP in Gi,

which incurs O(1 + mi/B) I/Os: Load all vertices and, for every pair of vertices, the shortest edge

between these two vertices into memory. Then run Dijkstra’s algorithm. Before visiting the graph

representative r(G j) in Gi, relax all edges incident to visited vertices to ensure that all vertices in

H j know their correct tentative distances.

It is easy to see that ∑
q
i=1(ni + |Bi|) = O(n) and ∑

q
i=1 mi = O(m). Hence, the cost of all CSSP-

computations on graphs Gi is O((n/µ) logn+(mµ logn)/B) = O(
√

nm/B logn), for µ =
√

nB/m.

The distance repository can be implemented as an augmented buffered repository tree [4] (see

Appendix C), which supports the required operations in the following I/O-bounds: Update(x,d) op-

erations take O((1/B) logn) I/Os amortized. A ClusterQuery(Vj) operation takes O((1+ r j) logn+
|Tj|/B) I/Os, where r j is the number of cluster tree roots that belong to or are adjacent to Tj. A

GraphQuery(Gi) takes O((1+ci) logn+ |V (Gi)|/B) I/Os, where ci is the number of children of Gi.

Now observe that our algorithm performs exactly one subgraph query per graph Gi and at most two

cluster queries per cluster: once when the cluster is loaded into the hot pool and a second time when

the graph representative r(G j) in the cluster is visited, namely to retrieve the tentative distances of

all vertices in B j. Moreover, it is easy to show that the sum of the r j and ci is O(n/µ), so that the

cost of all queries on the repository is O((n/µ) logn + n/B) = O((n/µ) logn). Since we perform

only O(m) edge relaxations, the cost of all Update operations is O((m/B) logn).
The final issue is the relaxation of edges between vertices in H j and Hi \H j whenever the recur-

sive call on a child G j of the current graph Gi returns. This is easily accomplished as follows: For

every edge xy, we store the index of the smallest graph Hi such that x,y∈Hi. When vertex x is visited

during the invocation of ShortestPaths on a descendant G j of Gi, we insert an Update(y,d(x)+`(xy))
signal into a priority queue XQ, with priority i. When the recursive call later returns to Gi, we re-

trieve all Update signals with priority i from XQ and update the tentative distances of all represen-

tatives ry accordingly. This adds an extra cost of O(sort(m)) for all edges.

Summing the costs of all parts of the algorithm, we obtain the I/O-bound claimed in Theorem 1.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Communications of the

ACM, pages 1116–1127, September 1988.

2. L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and multi-way planar graph separation.

Journal of Algorithms, 53(2):186–206, 2004.

3. L. Arge, L. Toma, and N. Zeh. I/O-efficient algorithms for planar digraphs. In Proceedings of the 15th ACM

Symposium on Parallelism in Algorithms and Architectures, pages 85–93, 2003.

4. A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook. On external memory graph traver-

sal. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms , pages 859–860, 2000.

5. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-memory graph

algorithms. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms , pages 139–149,

January 1995.

6. E. W. Dijkstra. A note on two problems in connection with graphs. Numerical Mathematics, 1:269–271, 1959.

7. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest path algorithms for planar graphs. Journal of

Computer and System Sciences, 55:3–23, 1997.

8. V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving graph problems in external

memory. In Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing, pages 169–176, October

1996.

9. A. Maheshwari and N. Zeh. I/O-efficient algorithms for graphs of bounded treewidth. In Proceedings of the 12th

Annual ACM-SIAM Symposium on Discrete Algorithms , pages 89–90, 2001.

10. A. Maheshwari and N. Zeh. I/O-optimal algorithms for outerplanar graphs. Journal of Graph Algorithms and

Applications, 8(1):47–87, 2004.

11. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In Proceedings of the 10th

Annual European Symposium on Algorithms, volume 2461 of Lecture Notes in Computer Science, pages 723–735.

Springer-Verlag, 2002.

12. U. Meyer and N. Zeh. I/O-efficient undirected shortest paths. In Proceedings of the 11th Annual European Sympo-

sium on Algorithms, volume 2832 of Lecture Notes in Computer Science, pages 434–445. Springer-Verlag, 2003.

13. S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and additions. In Proceedings of the

13th Annual ACM-SIAM Symposium on Discrete Algorithms , pages 267–276, 2002.

14. M. Thorup. Undirected single source shortest paths with positive integer weights in linear time. Journal of the ACM,

46:362–394, 1999.

15. M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms, 35:189–201, 2000.

A Analysis of MZ-SSSP

This appendix provides omitted proofs of lemmas used in the analysis of MZ-SSSP∗.

Lemma 8. At the end of an invocation of procedure Scan, ti ≥ f , for all i. The value of ti never

decreases.

Proof. Let i be the highest level scanned in the invocation. Then, for j ≤ i, t j is changed to a value

no less than f . Level i+1 is not scanned because ti+1 > f , that is, f ≤ t j, for all j > i.

To see that the due time ti never decreases, observe that ti changes only when level i is inspected.

In this case, we have f ≥ ti and ti is changed to a value no less than f .

Lemma 9 (Lemma 1). A vertex x visited during a scan of level i satisfies ti−2i−2 ≤ d(x)≤ d∗(x)≤
ti.

Proof. The rightmost inequality is trivial because x is visited only if d∗(x)≤ ti. The middle inequal-

ity is also trivial because, when x is loaded into a tree buffer, the current value of d(x) is retrieved

from REP, that is, d∗(x) = d(x) at this time. Subsequently, the node x in the tree buffer sees a subset

of the updates of d(x) performed on REP.

We prove the first inequality by induction on d(x). Initially, we have ti = wmin + 2i−2, where

wmin is the minimum source weight of any vertex in G. Since no update can change d(x) below

wmin, we have d(x) ≥ wmin = ti −2i−2 if x is visited before ti is changed for the first time.

If x is visited after ti is changed, let I be the invocation of procedure Scan that visits vertex x, and

let I′ be the last invocation before I that changed ti. Since x is not visited when iteration I′ inspects

level i, we must have one of two cases: (1) Vertex x is not released from Q before invocation I′ or

(2) it is released before invocation I′, but d(x) > ti.

Case (2) immediately leads to a contradiction because we would have released a vertex with

tentative distance greater than ti before scanning level i. So we have to consider Case (1). First we

observe that, at the end of invocation I′, we have d(x) ≥ f ′, where f ′ is the value of the frontier at

the end of invocation I′. This follows because x ∈ Q at the end of the invocation. If d(x) ≥ f ′ at

the beginning of invocation I, we are done because invocation I′ changes ti to a value no greater

than f ′ + 2i−2, that is, d(x) ≥ ti −2i−2. If d(x) < f ′ at the beginning of invocation I, there must be

an edge yx that is relaxed after invocation I′ and whose relaxation decreases d(x) to a value less

than f ′. Since d(y) < d(x), the induction hypothesis implies that, when vertex y is visited, we have

d(y)≥ tcy
−2cy−2. If cy = i, then vertex y is in fact visited in invocation I, and we have d(x) > d(y)≥

ti −2i−2, as claimed. If cy 6= i, vertices x and y cannot belong to the same mini-cluster, and edge yx

has length `(yx)≥ 2cy−2 +2i−2, that is, d(x) = d(y)+`(yx)≥ tcy
−2cy−2 +2cy−2 +2i−2 ≥ f ′+2i−2,

by Lemma 8, which is a contradiction because we assumed that d(x) < f ′.

The following lemma proves that a vertex x, once loaded into the hot pool, reaches level cx

before a Visit(x,d(x)) signal does so, even if vertex x is temporarily moved to a higher level. In

particular, the lemma implies that, if D(x) < tcx+1, then the whole cx-component containing x is

stored at level cx. In the proof of the lemma, we make use of Lemmas 2 and 3. In particular, we use

that, when a vertex x is visited, we have d(x) = D(x).

Lemma 10. Let C be a category- j component. If C is stored in a tree buffer at level j + 1, then

D(C) ≥ t j+1.

Proof. Let x be a vertex in C such that D(C) = D(x), and let y be x’s predecessor on π(x). Then

y 6∈ C and, hence, edge yx has category at least max(cy, j + 1), that is, length at least 2cy−2 + 2 j−1.

As long as vertex y has not been visited yet, we either have y ∈ Q or there is a Visit(y,D(y)) signal

pending.

In the former case, we have tcy
≥ f , by Lemma 8, where we use the value of tcy

at the time when

y is visited and the current value of f . By Lemma 9, we have D(y) ≥ tcy
−2cy−2 when y is visited.

Hence, we have D(y) ≥ f −2cy−2.

In the latter case, since this signal has not been processed yet, we have tcy
≥ f , using their current

values and, thus, by Lemma 8, tcy
≥ f if we use the value of tcy

at the time when y is visited and the

current value of f . Thus, as in the previous case, D(y) ≥ f −2cy−2.

This implies, in both cases, that D(C) ≥ D(x) = D(y) + `(yx) ≥ f − 2cy−2 + 2cy−2 + 2 j−1 =
f + 2 j−1. Whenever level j + 1 is inspected, t j+1 is updated to a value no greater than f + 2 j−1.

Hence, we have D(C) > t j+1.

If y has been visited already, then d(C) = D(C). Since component C is stored at a level greater

than j, we have d∗(C) ≥ t j+1. Next we argue that d∗(C) = D(C), so that D(C) ≥ t j+1.

Arguments analogous to the proof of Lemma 2 prove that the update of d(C) to D(C) is applied

to level j +1 the next time level j +1 is inspected after vertex y is visited. Let I be this invocation,

and let I′ be the previous invocation that inspected level j + 1. Then, by our above argument, the

fact that C is stored at level j +1 implies that D(C) ≥ t j+1 after invocation I′ and before invocation

I. Invocation I updates d∗(C) to D(C), so that, if d∗(C) ≥ t j+1 at any time after invocation I, this

implies that D(C) ≥ t j+1.

B Computing the Graph Decomposition

B.1 High-Level Description

To describe the computation of a barrier decomposition with properties (P1)–(P3), a little more

notation is required. Let T be a minimum spanning tree of G. For a c-component C, let T [C] be the

subtree of T induced by the vertices of C, and let T̃ [C] be the tree obtained from T [C] by contracting

all edges of category less than c. Let E = (e1, . . . ,e2n−2) be an Euler tour of T , let E [C] be the tour

obtained from E by removing all edges that do not belong to T [C], and let Ẽ [C] be the tour obtained

from E [C] by removing all edges of category less than c, that is, E [C] is an Euler tour of T [C] and

Ẽ [C] is an Euler tour of T̃ [C]. Let the Euler diameter diamE (C) of a component be equal to the

weight of all edges in E [C]. For two category-c edges e and f in C, let distE (e, f) be the weighted

length of the subtour (e, . . . , f) of E [C].
Let BT be the bottleneck tree of T , which is defined recursively as follows: If T has one vertex,

then BT consists of this vertex. If T has more than one vertex, let e be the heaviest edge in T , and let

T1 and T2 be the two connected components of T − e. Then BT has a root node representing e, and

the two children of e are the roots of bottleneck trees for T1 and T2. The component tree Tc can be

computed from BT as follows: Assign category 0 to every leaf of BT , and let the category of every

internal node be equal to the category of the corresponding edge in T . Then contract all edges in BT

whose endpoints have the same category. The result is Tc.

Computing a µ-partition. A µ-partition of G can now be obtained as follows: Process Tc bottom-up.

For every component C, compute the number nC of vertices in C that have not been assigned to

clusters yet. For a leaf, let nC = 1. For an internal node C with children C1, . . . ,Ck, let nC = ∑
k
i=1 nCi

.

If nC ≤ µ and diamE (C) ≤ 2cµ, where c is the category of C, label C as not assigned to a cluster

and proceed to C’s parent. Otherwise, let nC = 0 and use Ẽ [H] to partition C into clusters: First

observe that every edge in Ẽ [H] connects two (c− 1)-components contained in C. Thus, we can

consider Ẽ [H] to be a sequence F = (Ci1 , f1,Ci2 , f2, . . . , ft−1,Cit) of alternating components and

edges such that, for 1 ≤ j ≤ t−1, the first endpoint of f j is in Ci j
and the second endpoint is in Ci j+1

.

Now perform a scan of this sequence to group components C1, . . . ,Ck into clusters. During the scan,

maintain an upper bound D on the diameter of the cluster currently under construction, as well as

the number S of vertices in the cluster. Initially, D = 0 and S = 0. For each item in F , perform the

following actions:

– When processing a component Ci j
, distinguish two cases:

• If this is the first occurrence of Ci j
in F and nCi j

> 0, then add diamE (Ci j
) to D and increase

S by nCi j
. If now D > 2cµ or S > µ, start a new cluster consisting of component Ci j

, and

define D = diamE (Ci j
) and S = nCi j

. Label Ci j
with the ID of this cluster. Otherwise, add Ci j

to the current cluster, and label Ci j
with its ID.

• If this is not the first occurrence of Ci j
or nCi j

= 0, there are two subcases: If D = 0, do

nothing. If D > 0, add distE (f j−1, f j)− `(f j−1)− `(f j) to D.

– When processing an edge f j, if D = 0, do nothing; otherwise, add `(f j) to D.

At the end, if nC > 0, where C is the root of Tc, label C with the ID of a unique cluster to collect

all vertices that have not been assigned to clusters yet. Once Tc has been processed like this, find for

every leaf x the lowest labelled ancestor in Tc and label x with the cluster ID of that ancestor. The

final µ-partition is defined as the collection of maximal vertex sets V1, . . . ,Vq such that all vertices in

a set Vi have the same cluster ID.

Lemma 11. The above procedure produces a µ-partition of G.

Proof. First let us prove that every cluster has properties (C1)–(C4): Consider a cluster Vi formed

when partitioning a c-component. If this cluster is a c-cluster, its diameter is bounded by 2cµ because

otherwise its last (c−1)-component in the Euler tour would have started a new cluster. (Note that a

single (c−1)-component contributing to Vi cannot have diameter greater than 2cµ because otherwise

it would have been partitioned into clusters of category less than c.) For the same reason, it cannot

contain more than µ vertices. If Vi is a c′-cluster with c′ < c, then the c′-component containing Vi is

not partitioned (because Vi is formed when partitioning the category-c ancestor of this component),

which implies that the whole component, and thus Vi, has diameter at most 2c′µ and contains at most

µ vertices that have not been assigned to clusters yet. Thus, in either case, Vi has properties (C1) and

(C2).

A (c−1)-component cannot contribute vertices to more than one c-cluster because the partition-

ing of c-components assigns complete (c− 1)-components, that is, more precisely, all unassigned

vertices in these components to clusters. This proves property (C3).

Finally, it is easy to see that every c′-component that contributes to a c-cluster with c > c′ cannot

have diameter greater than 2c′µ because otherwise this component would have been partitioned into

clusters of category at most c′. Thus, Vi has property (C4).

It remains to bound the number of clusters: Clusters are formed by partitioning category com-

ponents. We count two types of clusters separately: For every component C that is partitioned into

clusters by our construction, the first cluster is of type I. All remaining clusters are of type II. To pay

for the creation of the type-I cluster when partitioning a c-component C, we add diamE (C)/(2cµ)+
nC/µ to a charge account Φ1. To pay for the creation of any type-II cluster, we add D/(2cµ)+ S/µ

to a charge account Φ2, where we use the values of D and S at the time when the cluster is created.

Since nC > µ or diamE (C) > 2cµ if C is partitioned, Φ1 increases by at least one for every type-I

cluster. Similarly, Φ2 increases by at least one for every subsequent cluster because this cluster is

formed whenever D > 2cµ or S > µ. To bound the number of clusters, it therefore suffices to bound

Φ1 and Φ2.

To bound Φ1, we observe that nC = 0 after partitioning a component C. Hence, every vertex

contributes exactly 1/µ to Φ1, and the total contribution of all nC/µ terms to Φ1 is n/µ. A category-

c edge xy in the Euler tour contributes only to the diameters of category-c′ components with c′ ≥ c.

Hence, its total contribution to Φ1 is at most ∑
+∞
c′=c `(xy)/(2c′µ) < ∑

+∞
i=0 1/(2iµ) = 2/µ. Since the

Euler tour contains less than 2n edges, the total contribution of all Euler tour edges to Φ1 is less

than 4n/µ. Thus, there are at most 5n/µ type-I clusters in total.

The contribution of vertices to Φ2 can be bounded by 2n/µ as follows: Once a vertex x is

assigned to a cluster, it does not contribute to S in any subsequent partitioning step. It may, however,

be charged for the creation of two clusters, namely if it is in a (c−1)-component that starts a new

cluster. In this case, it contributes to the values of S charged for the creation of the cluster containing

x, as well as the following cluster. Thus, every vertex contributes at most 2/µ to Φ2, and the total

contribution of all vertices in at most 2n/µ.

Similarly, an edge contributes at most 8/µ to Φ2. Consider the partitioning of a c-component

C. If edge e has category c, it contributes `(e)/(2cµ) to D at most once. Otherwise, let C′ be the

(c− 1)-component that contains e. Then e contributes up to two times to Φ2, for exactly the same

reasons why a vertex may contribute to Φ2 twice. As in the analysis of edge contributions to Φ1,

this sums up to a total contribution of 8n/µ by all the edges. Thus, there are at most 10n/µ type-II

clusters.

Making deep clusters skinny. The next step is to refine the µ-partition so that every deep cluster Vi

(that is, cluster of depth greater than d = logn+2) has the following properties:

(DC1) For every category c′, there exists at most one c′-component that shares some, but not all, of

its vertices with Vi.

(DC2) Let c be the category of Vi, let C bet the c-component containing Vi, and let c′′ be the minimal

category such that there exists a c′′-component C′ that shares some, but not all vertices with

Vi. Then every child of C′ is either disjoint from Vi or completely contained in Vi, and every

vertex in C \Vi is contained in C′.

Consider a deep c-cluster Vi, and let Ti be its cluster tree. We call a node C of Tc internal, mixed,

or external, depending on whether all, some, or none of the vertices in C belong to Vi. Now process

Ti bottom-up. For a given node C, apply the following rules:

– If C is internal or external, proceed to C’s parent.

– If C is mixed, let C1, . . . ,Ck be its children in Tc. If exactly one of them is mixed and the rest are

internal or C has no mixed child, proceed to C’s parent. If there is at least one mixed child and

at least two non-internal (mixed or external) children, then iterate over the mixed children and,

for each such child, create a new cluster that contains all vertices in the subtree of Ti rooted at

this child. Declare this child to be external. If C now has only external children, declare C to be

external.

Lemma 12. Given a µ-partition P = (V1, . . . ,Vq) of G, the above procedure produces a µ-partition

P ′ = (V ′
1, . . . ,V

′
s) of G that has properties (DC1) and (DC2).

Proof. It is easy to verify that all clusters in partition P ′ have properties (C1)–(C4). We bound the

number of clusters and prove that each deep cluster has properties (DC1) and (DC2).

When creating a cluster containing all vertices in Vi that belong to a mixed child C′ of a node

C in Ti, we can think of this as cutting the edge CC j. Let T ′
i be the tree obtained by contracting all

edges in Ti that are not cut. The total number of new clusters we create is equal to the number of

edges in T ′
i , which is at most twice the number of leaves of T ′

i . We argue that we can charge each

leaf in all these trees T ′
i to a unique cluster Vj in P , which proves that the number of clusters at most

triples.

We start by observing that the cluster trees Ti are edge-disjoint. Every leaf of T ′
i corresponds

to a category component C that contributes some, but not all, of its vertices to Vi. This component

must contain another cluster whose cluster tree root C′ is equal to C or is a descendant of C such that

every node on the path from C to C′ in Tc is not a cluster tree root. We then charge C to C′, which

ensures that every cluster tree root is charged at most once. This proves our claim.

Now observe that the partitioning procedure explicitly guarantees that every cluster tree T ′
j cor-

responding to a cluster V ′
j in P ′ contains at most one node corresponding to a mixed component per

level, that is, cluster V ′
j has property (DC1). To prove property (DC2), let c be the category of V ′

j ,

let C be the c-component containing V ′
j , and let C′ be the lowest mixed node in T ′

j . Now assume

that not every node in C \V ′
j is contained in C′. Then there exists a proper ancestor C′′ of C′ such

that at least two of its children have descendant leaves that do not belong to V ′
j , one of which is an

ancestor of C′. Since the ancestor of C′ is mixed, C′′ satisfies the condition for removing all of its

mixed descendants from V ′
j . This is a contradiction.

Computing the barrier decomposition. To finish the construction, we consider each deep cluster V ′
i

in the current partition in turn. Let T̃i be the subtree of Tc induced by nodes that are mixed w.r.t.

V ′
i . Then, by property (DC1), T̃i is a single path (C1, . . . ,Ck), where C1 is the root of T̃i, and the

categories of C1 and Ck differ by at least d. Every child C′ 6∈ T̃i of a node C j ∈ T̃i is either internal or

external. All children of nodes C1, . . . ,Ck−1 are internal, by property (DC2). Let C j be the deepest

node whose category is at least c− d, where c is the category of C1, that is, the category of V ′
i .

Then split T̃i into three subpaths (C1, . . . ,C j), (C j+1, . . . ,Ck−1), and (Ck). In the case when j = k−1,

the middle path is empty. This partition of T̃i into subpaths corresponds to a partition of V ′
i into

subclusters V 1
i , V 2

i , and V 3
i , where V 3

i contains all descendant leaves of Ck that belong to V ′
i , V 2

i

contains all descendant leaves of C j+1 that are in V ′
i \V 3

i , and V 1
i contains all the remaining vertices

of V ′
i .

We obtain our barrier decomposition by making every vertex C j+1 or Ck in the above partition

a graph Hl and then defining graphs Gl as in Section 4.1. Note that these graphs Gl have as their

vertex sets the leaves of the trees obtained by splitting each node C j+1 or Ck into a top and a bottom

copy and making its children children of the bottom copy. It is then easy to see that every cluster

tree corresponding to a cluster produced in the above partitioning of deep clusters is completely

contained in such a tree corresponding to a graph Gl , that is, the cluster trees naturally define a

partition of each graph Gl into clusters.

We define a graph Gl to be atomic if it corresponds to a tree that contains a path (C j+1, . . . ,Ck−1)
of the tree T̃i of a deep cluster V ′

i . All other graphs are compound.

Lemma 13. The above procedure produces a barrier decomposition with properties (P1)–(P3).

Proof. First observe that there are only O(n/µ) graphs in the barrier decomposition because P ′

contains O(n/µ) clusters and each cluster causes the creation of at most two additional subgraphs

in the partition. This proves property (P1).

It is easy to verify that the clusters in each graph Gl form a µ-partition. Now consider a com-

pound graph Gl and a cluster V ′ in the µ-partition of Gl . If V ′ is a cluster of P ′, then it is not

partitioned and, thus, has depth at most logn + 2. Otherwise, it is a cluster V 1
i or V 3

i because the

cluster V 2
i belongs to an atomic graph. It is easily verified that each cluster V 1

i or V 3
i has depth at

most logn+2. Thus, the partition has property (P2).

Now consider a graph Gl whose parent is atomic. Then Hl = Ck in the partition of a deep cluster

V ′
i , and its parent is C j+1. But C j+1 is easily seen to have only one child. If Gl’s parent is compound,

then Hl = C j+1 in the partition of a deep cluster V ′
i . The cluster in Gl’s parent that contains r(Gk) is

then V 1
i . Note that this cluster contains only one graph representative and that the difference between

the category of C j+1 and C1 is at least logn+2, which implies that Bl is contained in V 1
i . This proves

property (P3).

B.2 I/O-Efficient Implementation

The three steps of the above procedure are rather easy to implement in an I/O-efficient manner.

Computing the µ-partition. The construction of the minimum spanning tree T takes O(MST(n,m))
I/Os. As shown in [3], the extraction of the bottleneck tree BT from T can be carried out in

O(sort(n)) I/Os. This construction is easy to augment so that it labels every node in BT with the

category of its corresponding edge. The contraction of the edges connecting nodes with the same

category can then be carried out in O(sort(n)) I/Os using the Euler tour technique and list ranking

[5].

An Euler tour E of T can be computed in O(sort(n)) I/Os [5]. Given Euler tour E , we have to

compute diamE (C), for each node C in Tc, as well Euler tours Ẽ [C] and the distances distE (e, f),
for consecutive edges e and f in Ẽ [C].

First the construction of Ẽ [C], for all C ∈ Tc: Label all the nodes of Tc in preorder. Now sort the

vertices of Tc by their categories as primary keys and by their preorder numbers as secondary keys.

Sort the edges in E by their categories as primary keys and by the minimum preorder numbers of

their endpoints as secondary keys. It is not hard to see that this results in a partition of the edges in

E into sets Ẽ [C] and that these sets are stored in the same order as their corresponding nodes C in

Tc. Rearranging the edges in each list Ẽ [C] in their order of appearance in E creates a correct Euler

tour of T̃ [C].

Now observe that E [C] consists of all edges in lists Ẽ [C′], where C′ is a descendant of C in

Tc. Hence, we can process Tc bottom-up, computing for every node C, diamE (C) = ∑e∈Ẽ [C] `(e)+

∑C′ diamE (C′), where the second sum is over all children of C in Tc.

The computation of distances distE (e, f), for consecutive edges e and f in Ẽ [C] is discussed in

Appendix B.3. Note that we need to answer only O(n) such distance queries. By Corollary 1, this

takes O(sort(n)) I/Os.

Given this information, the initial µ-partition is easy to compute because it requires processing

Tc bottom-up and, for every node, traversing the Euler tour Ẽ [C]. Since Tc has size O(n) and the

total size of all tours Ẽ [C] is O(n), the total cost of this procedure is O(sort(n)).

Once the nodes of Tc have been labelled with cluster IDs in this processing phase, it suffices to

process Tc top-down to propagate cluster IDs from labelled nodes to the leaves in the corresponding

cluster. This takes another O(sort(n)) I/Os [5].

Refining the µ-partition. Given the initial cluster partition, it suffices to sort the adjacency lists of the

vertices in G so that the adjacency lists of all vertices in the same cluster are stored consecutively.

Now a single scan of these edge lists suffices to identify all deep clusters, that is, all clusters whose

category is more than d more than the category of the shortest edge with exactly one endpoint in the

cluster.

The next task is identifying Ti, for every deep cluster Vi. This is done quite easily by marking all

leaves of Tc that belong to a deep cluster. In addition, label each such leaf with the smallest interval

of preorder numbers that contains all preorder numbers of nodes in Vi. This is useful for identifying

the root of Ti. Now process the nodes of Tc bottom-up. For every node C with children C1, . . . ,Ck, if

there is such a child marked as belonging to a cluster Vi and this child is not the root of Ti, mark C

as belonging to Ti. If C’s preorder interval includes the preorder interval of Vi, then mark C as being

the root of Ti.

The cost of this procedure is O(sort(n)) for processing Tc in this fashion. The labelling of nodes

in Tc as belonging to trees Ti can be computed using the above procedure because every non-root

node belongs to exactly one tree Ti (otherwise, the corresponding component would contribute ver-

tices to two clusters of a higher category). For every root node, it is easy to create a copy per tree

Ti of which it is a root. Since there are only O(n/µ) clusters, only O(n/µ) copies of nodes in Tc are

made. Now sort the nodes by their membership in trees Ti. Then the procedure for partitioning each

tree Ti into subtrees that induce the refined µ-partition can be performed by processing each tree Ti

bottom-up.

Computing the barrier decomposition. To carry out the third step, we again partition Tc into subtrees

corresponding to clusters in the refined partition. Splitting each tree into the three pieces is then

easily done in O(sort(n)) I/Os. Once Tc has been partitioned in this fashion, the construction of

graphs G1, . . . ,Gq and arranging the clusters in their cluster partitions is trivially implemented in

O(sort(n)) I/Os.

Thus, we obtain a barrier decomposition of G with properties (P1)–(P3) in O(MST(n,m) +
sort(n)) = O(MST(n,m)) I/Os, which proves Lemma 7.

B.3 Computing Euler Distances

In this section, we assume that we are given the Euler tour E , the component tree Tc, and O(n)
queries to determine distances distE (e,e′). We assume that the edges in E are numbered 1 through

2n− 2—we refer to these numbers as the indices of the edges—and that every query to compute

distE (e,e′) is given as the interval [e+1,e′−1], annotated with the ID of the component C such that

e and e′ are consecutive in Ẽ[C]. For two edges e,e′ ∈ E , let E(e,e′) be the subtour of E including

all edges with indices in the range [e,e′]. E [C](e,e′) is defined similarly w.r.t. E [C]. Note that edges

e and e′ are not necessarily part of E [C](e,e′).
Now consider a query [e,e′] generated by two edges in the tour Ẽ[C] of a c-component C. If

E(e,e′) does not contain an edge of category greater than c, then E [C](e,e′) = E(e,e′), and we can

answer query [e,e′] by answering a range weight query over E , that is, by summing the weights of

all edges in E with indices in the range [e,e′] and returning the resulting total weight. If there is an

edge of category greater than c in E(e,e′), then E(e,e′) leaves C through an edge f = xy of category

greater than c and returns to c through the opposite edge f r = yx. E(e,e′) may leave C and return to

C several times. For every edge f ∈ E(e,e′) through which E(e,e′) leaves C, the edges in E(f , f r)
do not belong to E [C](e,e′).

Our goal now is to start with the whole Euler tour E and to delete the edges from E in such an

order that, for any query [e,e′], there exists a point in time when E(e,e′) = E [C](e,e′); this is the

point at which we answer query [e,e′] by answering a range weight query over E . More precisely, if

we say that processing an edge e means deleting e from E and processing a query means answering

it over the subsequence of E produced by all edge deletions performed so far, we want to find an

ordering of the edges and the queries so that processing them in this order gives the correct answer

for each query.

This ordering is obtained rather easily from the component tree Tc. First we extend Tc by adding

a child [e,e′] to a node C in Tc, for every query [e,e′] over E [C]; we also add a child e to C, for every

edge e in Ẽ [C]. Let T ∗
c denote this extended version of Tc. Now let the index of a component C be

the minimum index of any edge contained in C. We sort the children of each component in T ∗
c so

that components and edges succeed queries and the components and edges are sorted by decreasing

indices. Now we compute the postorder numbering of the nodes of T ∗
c defined by the depth-first

traversal that visits the children of each node in the given order. The ordering of queries and edges

defined by this numbering is the order in which we process them. The next lemma proves that this

gives the correct result for every query.

Lemma 14. Processing queries and edges in the order described above makes every query [e,e′]
over E [C] return the correct weight of E [C](e,e′).

Proof. Consider a query [e,e′] and an edge f in E(e,e′), and let c be the category of edges e and e′.
We say that f is separated from query [e,e′] if there exists an edge g of category greater than c such

that f ∈ [g,gr] and [g,gr] ⊂ [e,e′]. Then an edge in E(e,e′) belongs to E [C](e,e′) if and only if it

is not separated from query [e,e′]. Therefore, we need to prove that, by the time we answer query

[e,e′], an edge f ∈ E(e,e′) is still present in E if and only if it is not separated from [e,e′].
First assume that f is separated from [e,e′], and let C′ be the LCA of f and [e,e′] in T ∗

c . Since f

and e do not belong to the same c-component, C′ is a proper ancestor of C and f . Let x and y be the

two children of C′ that are ancestors of C and f , respectively. Since f ∈ [e,e′], the index of x must

be less than the index of y. Hence, [e,e′] succeeds f in the processing order, that is, f is removed

from E before [e,e′] is answered.

Now assume that f is not separated from [e,e′]. Then f must belong to the same c-component C

as e and e′. Thus, f must have category at most c, that is, it is either contained in a child component

of C or it is itself a child of C. Since the components and edges that are children of C succeed the

queries that are children of C in the processing order, we process query [e,e′] before deleting edge

f .

The above ordering can easily be computed in O(sort(n)) I/Os using standard techniques. The

next lemma states that the resulting sequence of edge deletions and range weight queries over the

Euler tour can be processed in O(sort(n)) I/Os using a buffer tree. Again, the required buffer tree

operations are standard.

Lemma 15. A sequence of N deletions and range weight queries can be answered in O(sort(N))
I/Os using a buffer tree.

Since E has length O(n), that is, we perform only O(n) deletions, and since we have to deter-

mine only O(n) distances distE (e,e′), Lemmas 14 and 15 immediately imply

Corollary 1. The Euler distances distE (e,e′) required in the computation of a µ-partition of an

undirected graph G can be computed in O(sort(n)) I/Os.

C The Distance Repository

The distance repository is very similar to a buffered repository tree (BRT) [4]. In particular, we

number the vertices of G in the order in which they are visited by a depth-first traversal of Tc, and

we assign them to the leaves of a balanced binary tree in this order, B vertices per leaf. Every internal

node of Tc is assigned the smallest interval containing the numbers of all its descendant leaves.

Initially, every leaf stores the source weights of all its vertices as their tentative distances, and

every internal node stores the minimal tentative distance of all vertices stored in its descendant

leaves.

C.1 Updates

An Update(x,d) operation traverses the path from the root to the leaf containing x, updating x’s

tentative distance as well as the tentative distance of every ancestor of the leaf storing x. As in a

BRT, this is implemented in a lazy fashion, by associating a buffer of size B with every internal

node and inserting Update(x,d) signals into the root buffer. When the buffer of a node v overflows,

we update v’s tentative distance to the minimum of its current tentative distance and the tentative

distances of all Update signals in the buffer. We then distribute the signals to the two children of v.

In particular, if these children are internal nodes, the signals are appended to their buffers, and

the buffers are emptied recursively if this causes them to overflow. If the children are leaves, they

are loaded into internal memory, and the Update signals are applied to the vertices they store. The

cost per buffer emptying process is O(1/B) amortized per signal. Since every signal participates

in O(log(n/B)) buffer emptying processes, the cost per Update operation is O((1/B) log(n/B))
amortized, as claimed.

C.2 Graph Queries

A GraphQuery(Gi) operation now proceeds as follows: Let V 1
i be the set of vertices in Gi that

are not graph representatives, and let V 2
i be the set of graph representatives. First we empty all

buffers of ancestors of the vertices in V 1
i , and then we inspect all leaves storing vertices in V 1

i to

retrieve their current tentative distances. For every vertex in V 2
i , we observe that, since it represents

a subgraph H j of G, it corresponds to a consecutive range [a,b] of vertex IDs, and the tentative

distance of r(G j) is the minimum tentative distance of the vertices in this range. This can be queried

by emptying the buffers along the paths from the root to the leaves storing vertices a and b. Then we

query the tentative distances of a and all vertices in the same leaf as a that are to the right of a, the

tentative distances of b and all vertices in the same leaf as b that are to the left of b, as well as the

tentative distances of all children of nodes on the two traversed paths whose intervals are completely

contained in [a,b].
The total cost of processing the nodes in V 1

i is O((1+ |V 2
i |) log(n/B)+L1) amortized, where L1

is the number of leaves that store vertices belonging to V 1
i . Indeed, if |V 2

i | = 0, then the leaves in L1

form a consecutive range of leaves, and the query bound would be O(log(n/B)+L1); every node in

V 2
i creates a gap in the range of the leaves in L1, and it may be necessary to traverse a path of length

log(n/B) to reach each of the leaves in L1 immediately before and after the gap.

The total cost of processing the nodes in V 2
i is O(|V 2

i | logn) amortized. Now observe that L1 ≤
2 + |V 1

i |/B + 2|V 2
i |: If there were no gaps in the sequence of vertex IDs of the vertices in V 1

i , then

these vertices would be stored in at most 2 + |V 1
i |/B leaves of the BRT. Every gap creates at most

two nodes that are visited, but which contribute less than B nodes to the output. Each such gap,

however, corresponds to a node in V 2
i . Hence, the total cost is O((1 + |V 2

i |) log(n/B)+ |Vi|/B), as

claimed.

C.3 Cluster Queries

A ClusterQuery(Vi) operation is similar to a GraphQuery, but needs to take into account that the

intervals of vertex IDs of the nodes in the queried cluster tree Ti are non-disjoint. Let C be the root

of Ti. Then we partition the range of IDs of vertices in C into three sets of intervals. Let V 1
i be the

set of leaves of Ti that are not graph representatives. Let V 2
i be the set of leaves of Ti that are graph

representatives, and let I2
i be the set of their corresponding intervals of vertex IDs. Finally, for every

node C′ ∈ Ti such that not all vertices in C′ belong to Vi, partition the set of vertices in C′ that belong

neither to Vi nor to a child of C′ in Ti into intervals of consecutive vertex IDs and add these intervals

to a set I3
i .

We start by retrieving the tentative distances of all vertices in V 1
i as in the case of a graph

query. The intervals in I2
i and I3

i are processed as the vertices in V 2
i in the case of a graph query.

Now store the tentative distance of every vertex in V 1
i with its corresponding leaf in Ti; store the

result of every query in I2
i with its corresponding leaf in Ti; and, for every node C′ ∈ Ti that added

intervals to I3
i , store the minimum tentative distance of all its intervals with C′. Now process Ti

bottom-up and update the tentative distance of every node to be the minimum of its own current

tentative distance and the tentative distances of its children. It is obvious that this produces the

correct tentative distances for all nodes in Ti.

As for the I/O-complexity, let us first consider the cost of the queries in the three sets. Every

query in I2
i or I3

i costs O(log(n/B)) I/Os and corresponds to a cluster tree Tj whose root either

belongs to Ti or is a child of a node in Ti. The queries for the vertices in V 1
i cost O((1 + |I2

i |+
|I3

i |) log(n/B)+ |V 1
i |/B) I/Os because, as in the case of a GraphQuery, the vertices in V 1

i would be

stored in consecutive leaves, except for the gaps introduced by graph representatives and clusters

other than Vi that contain vertices of C. Each such gap, adds at most two leaves to the set of leaves to

be inspected. Hence, in total, the cost of the queries on the BRT equals O((1+ri) log(n/B)+ |Vi|/B),
where ri is the number of cluster tree roots in or adjacent to Ti. (Note that ri accounts for the queries

in both |I2
i | and |I3

i | because every graph representative is also a cluster tree root.)

Once the queries in the three sets have been answered, assigning them to the correct nodes in Ti

and processing Ti bottom-up can be accomplished in O((|Ti|+ ri)/B) I/Os, provided that the nodes

of Ti are stored in preorder, which is easily ensured when preparing the cluster trees. Hence, this

increases the cost of the query by only a constant factor, and the cost of a ClusterQuery is as claimed.

This proves

Lemma 16. There exists a data structure supporting Update(x,d) operations in O((1/B) log(n/B))
I/Os, GraphQuery(Gi) operations in O((1+ci) log(n/B)+ |Gi|/B) I/Os, and ClusterQuery(Vj) op-

erations in O((1+ r j) log(n/B)+ |Tj|/B) I/Os, where ci is the number of children of Gi and r j is the

number of cluster tree roots in or adjacent to Tj. All I/O-bounds are amortized.

