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Abstract
Organising evolution strategies hierarchically has been

proposed as a means for adapting strategy parameters

such as step lengths. Experimental research has shown

that on ridge functions, hierarchically organised strategies

can significantly outperform strategies that rely on muta-

tive self-adaptation. This paper presents a first theoreti-

cal analysis of the behaviour of a hierarchically organised

evolution strategy. Quantitative results are derived for the

parabolic ridge that describe the dependence on the length

of the isolation periods of the mutation strength and the

progress rate. The issue of choosing an appropriate length

of the isolation periods is discussed and comparisons with

recent results for cumulative step length adaptation are

drawn.

1 Introduction
Evolution strategies [5] are a type of evolutionary algo-

rithm that is most commonly used for the optimisation of

functions f : IRN → IR. In an attempt to achieve optimal

or near optimal performance, they typically adapt their

step lengths throughout the optimisation process. Step

length adaptation mechanisms that have been proposed

include mutative self-adaptation [3, 13, 16], cumulative

step length adaptation [1, 9], and the use of hierarchically

organised strategies [7, 14, 15].

∗
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A motivation for the use of hierarchically organised

strategies is the insight that strategy parameter adaptation

really is an optimisation problem. Consequently, evolu-

tionary algorithms can be applied to solve it. Several

populations (sometimes referred to as species) with dif-

fering strategy parameter settings evolve in isolation of

each other. After some time, the amount of progress that

has been made by the various populations is compared.

The strategy parameter settings of the most successful

populations are subjected to variation, and a new set of

species is set up and run with those new strategy param-

eter settings. Thus, evolutionary optimisation happens on

two levels: the search space of the lower level strategy is

that of the optimisation problem at hand; that of the up-

per level strategy is the strategy parameter space of the

lower-level strategies. Variation and selection are used on

both levels. Notice that mutative self-adaptation can be

interpreted as a special (trivial) case of hierarchically or-

ganised evolution strategies where each species consists

of a single individual, and where isolation periods last for

a single generation. Also notice that adaptation by means

of hierarchically organised strategies is not limited to step

lengths but can be applied to other strategy parameters as

well. Herdy [8] considers the problem of adapting the

optimal number of offspring generated per time step and

demonstrates empirically that near optimal values on the

hyperplane and sphere models can be obtained.

While having been proposed a long time ago [14], there

is not yet much knowledge — either empirical or theoreti-

cal — with regard to the capabilities and limitations of hi-

erarchically organised evolution strategies, and relatively
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few publications have dealt with the issue. A notable

exception is a paper by Herdy [7] in which the perfor-

mance of strategies using a hierarchical organisation for

adapting step lengths is compared empirically with that of

strategies using mutative self-adaptation. Several objec-

tive functions are considered, including the sphere model

as well as the sharp and parabolic ridges. It is found that

isolation is detrimental to the performance of the strate-

gies on the sphere. The sphere model requires fast adapta-

tion of the step length, and no isolation is either necessary

or useful for successful adaptation. The situation is differ-

ent on the ridges. On the parabolic ridge, mutative self-

adaptation generates step lengths that are much smaller

than optimal, resulting in slow progress. Short steps are

likely to succeed in the short term, but yield inferior long

term performance. Without isolation, opportunistic indi-

viduals that make short steps are rewarded, hampering

long term progress. Herdy observes that hierarchically

organised strategies with longer isolation periods gener-

ate much larger step lengths and thus significantly outper-

form strategies that use mutative self-adaptation. This sit-

uation is even more pronounced on the sharp ridge where

strategies that use mutative self-adaptation drive their step

lengths to zero and stagnate while hierarchically organ-

ised strategies are capable of tracking the ridge. As ridges

are common features of many objective functions [17], the

superior performance on ridges of the hierarchically or-

ganised strategies is likely to be of practical significance.

Realising that isolation periods of different lengths are

optimal in different environments, Herdy [7] proposes

adding yet another level to the hierarchy of evolutionary

strategies, with the goal of optimising the length of the

isolation periods. He shows empirically that in the long

term (i.e., after many time steps), the strategy that adapts

the length of its isolation periods performs well on the

sphere as well as on the ridges. Of course, the process of

adding higher levels with the goal of optimising param-

eters of the strategy one level below could be continued

indefinitely. Practically, limitations on the number of ob-

jective function evaluations that can be performed before

a result is expected typically lead to flat hierarchies being

used. Throughout this paper, only two-level hierarchies

are considered.

Overall, the behaviour of hierarchically organised evo-

lution strategies is not well understood. In particular,

there is little knowledge with regard to the influence of

strategy parameter settings on the upper level of the strat-

egy. A better understanding of the effects of design

choices could presumably lead to the more widespread

use and acceptance of hierarchically organised strate-

gies. This paper makes a first step toward such an un-

derstanding by analysing the behaviour of a nontrivial hi-

erarchically organised evolution strategy on the parabolic

ridge. Its remainder is organised as follows. Sec-

tion 2 describes hierarchically organised evolution strate-

gies and introduces useful notation. Section 3 briefly sum-

marises previous results with regard to the performance

of (non-hierarchically organised) evolution strategies on

the parabolic ridge. Those results are used in Section 4

which presents an analysis of the performance of hier-

archically organised evolution strategies on the parabolic

ridge. The approach relies on several simplifications and

assumptions that lead to very concise results that have the

advantage of being easily understood and interpretable.

However, they are not not exact. In Section 5, it is verified

that despite their simplicity, the theoretically obtained re-

sults qualitatively agree with experimental observations.

Implications for the choice of the length of isolation pe-

riods are discussed, and comparisons with recently ob-

tained results for cumulative step length adaptation are

drawn. Section 6 concludes with a brief summary and

suggestions for future research.

2 Hierarchically Organised Evolu-
tion Strategies

The strategy considered in this paper is an instance of the

general [µ′/ρ′ +, λ′(µ/ρ +, λ)γ ]-ES described in [7, 15].

This section first describes the lower and then the upper

level strategies.

2.1 Lower Level Strategy

The lower level strategy considered here is the (µ/µ, λ)-
ES with isotropic mutations and intermediate recombina-

tion. It is popular both because it is relatively well un-

derstood and because of its good performance [5]. The

(µ/µ, λ)-ES is an instance of the more general (µ/ρ +,
λ)-ES where ρ = µ (i.e., the entire population is parent to

every offspring candidate solution generated), and comma
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selection is used (i.e., the life span of an individual can-

not exceed a single generation). More specifically, the

(µ/µ, λ)-ES in every generation updates a search point

x ∈ IRN (the centroid of its population) using the follow-

ing three steps:

1. A set of λ offspring candidate solutions y
(i) = x +

σz
(i), i = 1, . . . , λ, is generated. Mutation strength

σ > 0 determines the step length and the z
(i) are vec-

tors consisting of N independent, standard normally

distributed components.

2. The objective function values f(y(i)) of the off-

spring candidate solutions are determined. The in-

dex k; λ is used to refer to the kth best (i.e., the kth

largest if the task is maximisation and the kth small-

est if the task is minimisation) of the offspring can-

didate solutions.

3. The average

x =
1

µ

µ
∑

k=1

x
(k;λ)

of the µ best of the offspring candidate solutions is

computed and replaces the previous search point.

Notice that the mutation strength σ is constant throughout

an entire run of the lower level strategy. Also notice that

our lower level strategy differs from that considered by

Herdy [7] only in that we use intermediate recombination

rather than discrete recombination. The choice has been

made as the former is easier to handle analytically.

2.2 Upper Level Strategy
The mutation strength σ is the single strategy parameter

that is adapted by the upper level strategy. Thus, while

the lower level strategy faces an N -dimensional optimi-

sation problem, that of the upper level strategy is one-

dimensional. As a consequence, a very simple algorithm

can be used:

1. The search point x and the mutation strength σ are

initialised.

2. Parameter α is set to a value uniformly drawn from

the interval [1.1, 1.5].

3. Two runs of the lower level strategy are conducted

in parallel. The runs last for γ generations each and

both use x as their initial search point. One run uses

mutation strength σ · α, the other one uses σ/α.

4. The objective function values of the final search

points generated in the two runs of the lower level

strategy are compared. The search point x of the

upper level strategy is set to the better of those two

points; mutation strength σ is set to the mutation

strength used in the more successful of the two runs.

5. The process is terminated if a prescribed number

of steps has been made or otherwise continues with

step 2.

In the notation introduced in [7, 15], the overall strategy

thus described is a [1, 2(µ/µ, λ)γ ]-ES. The purpose of

step 2 is to generate two mutation strengths, one larger

than the previous one and one smaller. The exact na-

ture of the rule for doing so is of minor significance. We

have randomised the choice of α rather than simply us-

ing α = 1.3 as Herdy [7] did in order no to be confined

to a discrete set of mutation strengths that would lead to

artifacts in the graphs below. In general, admitting larger

values of α allows potentially faster adaptation while at

the same time leading to stronger fluctuations in the adap-

tation process. For values of α very close to 1, the dif-

ference between the final search points of the two popu-

lations is likely to be very small, and a random walk be-

haviour of the mutation strength may result. Constraining

α to be in [1.1, 1.5] avoids both strong fluctuations and

random walk behaviour.

3 The Parabolic Ridge
The parabolic ridge is a commonly used function for test-

ing the ability of optimisation strategies to make progress

in one particular direction in search space, where devia-

tion from that direction is penalised. It can be described

by objective function

f(x) = x1 −
d

N

N
∑

i=2

x2
i (1)

where x = 〈x1, . . . , xN 〉 ∈ IRN and where the task is

maximisation. Figure 1 shows a plot of the function for
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Figure 1: A plot of the two-dimensional parabolic ridge.

N = 2. Notice that while the ridge function has no fi-

nite maximum, maximisation still is a meaningful task if

progress towards larger objective function values is con-

sidered the goal of optimisation. The x1-axis is referred

to as the ridge axis. Progress in direction of that axis is

beneficial while deviation from it has a negative effect

on objective function values. Small mutation strengths

afford the short term advantage of reducing the distance

from the ridge axis, but lead to slow long term progress.

It is important to realise that while in the definition used

here the ridge is aligned with an axis of the coordinate

system, that fact is irrelevant for strategies that rely on

isotropic mutations such as those considered here and de-

scribed in Section 2. Evolution strategies with isotropi-

cally distributed mutations do not exploit separability of

the objective function. The coordinate system could be

subjected to an arbitrary rigid transformation without af-

fecting the strategies’ performance.

For large values of N , the performance of the (µ/µ, λ)-
ES on the parabolic ridge is relatively well understood.

Oyman et al. [11, 12] have studied the behaviour of the

(1, λ)-ES. Oyman and Beyer [10] have generalised the

analysis for the (µ/µ, λ)-ES. All of these studies as-

sume fixed mutation strengths. More recently, Arnold

and Beyer [2] have investigated the influence of different

forms of noise on the performance of the (µ/µ, λ)-ES on

the parabolic ridge, and they have analysed the behaviour

of cumulative step length adaptation. Results from that

study will be contrasted in Section 5 with those obtained

in Section 4 for hierarchically organised strategies. The

remainder of this section summarises the relevant insights

gained in [10], adapted to conform to the somewhat dif-

ferent notation used here and simplified by dropping any

terms that disappear in the limit N → ∞.

For fixed mutation strength σ, the (µ/µ, λ)-ES tracks

the parabolic ridge at a varying distance

R =

√

√

√

√

N
∑

i=2

x2
i

from the ridge axis. After initialisation effects have faded,

the distribution of R values is time invariant. The dis-

tance of the search point from the ridge axis fluctuates

around a stationary average value while the value of the

x1-component increases. By considering the case that

N → ∞, results from the analysis of the sphere model

can be used to derive an approximation for the average

distance at which the ridge axis is tracked. Introducing

for notational convenience % = 2Rd/N as the normalised

distance from the ridge axis and σ∗ = σd/µcµ/µ,λ as the

normalised mutation strength, in [10] it has been seen that

%2(σ∗) =
σ∗2

2
+

√

σ∗4

4
+ σ∗2 (2)

can be used as an approximation for the average squared

normalised distance from the ridge axis provided that

N is sufficiently large. That is, the distance from the

ridge axis increases monotonically with increasing muta-

tion strength, and for large mutation strengths the depen-

dence is nearly linear. Figure 2 illustrates this relationship

and demonstrates that even though having been obtained

for N → ∞, Eq. (2) provides a reasonably good descrip-

tion of evolution strategy behaviour even for small values

of N .

Furthermore, defining the progress rate ϕ of the strat-

egy as the expected distance in direction of the x1-axis

that the strategy’s search point travels per generation and

introducing normalisation ϕ∗ = ϕd/µc2
µ/µ,λ, it can be

derived from the results in [10] that

ϕ∗(σ∗) =
σ∗2

σ∗2/2 +
√

σ∗4/4 + σ∗2
(3)

can serve as an approximation for the normalised progress

rate provided that N is sufficiently large. It is easy to see
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Figure 2: Normalised distance % from the ridge axis plot-

ted against normalised mutation strength σ∗. The solid

line has been obtained from Eq. (2). The points represent

results measured in runs of the (µ/µ, λ)-ES with µ = 3
and λ = 10 in search spaces with N ∈ {4, 40, 400} and

d = 1.0.

from Eq. (3) that the progress rate of the (µ/µ, λ)-ES in-

creases monotonically with increasing mutation strength,

and that for large values of σ∗ the normalised progress

rate tends toward a value of 1. Figure 3 illustrates this

relationship. It can be seen how the quality of the approx-

imation improves with increasing N .

4 Performance Analysis
This section uses the results describing the performance

of the (µ/µ, λ)-ES on the parabolic ridge to derive a char-

acterisation of the behaviour of the hierarchically organ-

ised strategy outlined in Section 2. The analysis assumes

that the isolation periods are sufficiently long in order for

several simplifications described below to be made. It will

be seen in experiments that the accuracy of the predictions

made is good for large values of γ and N , but that the

formulas derived also provide a good qualitative under-

standing of the behaviour of the hierarchically organised

strategy for relatively small values of those parameters.

Central to the analysis of the performance of hierarchi-

cally organised evolution strategies is the need to char-

acterise the cumulative effect of running the lower level

strategy for the duration of an isolation period. More
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Figure 3: Normalised progress rate ϕ∗ plotted against nor-

malised mutation strength σ∗. The solid line has been

obtained from Eq. (3). The points represent results mea-

sured in runs of the (µ/µ, λ)-ES with µ = 3 and λ = 10
in search spaces with N ∈ {4, 40, 400} and d = 1.0.

specifically, given a population centroid x that has been

arrived at with a mutation strength of σ, it is necessary

to estimate the objective function value of the population

centroid x
′ obtained after running the lower level strategy

with a mutation strength of ς (which here is either σ ·α or

σ/α) for a further γ time steps. The respective values of

f(x′) for the different populations that evolve in parallel

determine the mutation strength used in the next iteration

of the upper level strategy. It is particularly easy to obtain

such an estimate if the following three assumptions are

made.

1. At the end of an isolation period, the lower level

strategy is in the stationary limit state described by

Eq. (2).

2. That limit state is reached so early in the isolation pe-

riod that it can be assumed that all of the progress in

direction of the ridge axis made during the isolation

period is made in that limit state.

3. For the purpose of comparing fitness values of pop-

ulation centroids, it is sufficient to consider their ex-

pected values; i.e., fluctuations can be ignored.

Clearly, validity of the second assumption implies valid-

ity of the first. Both of them hold if the length γ of the
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isolation periods is sufficiently large, where what is suffi-

cient depends on the mutation strengths σ and ς as well as

on the population size parameters µ and λ and the search

space dimensionality N . The more ς differs from σ, the

larger γ needs to be in order for the assumptions to hold

with a certain accuracy. As for the third assumption, it is

generally valid if ς is sufficiently different from σ. While

again, quantifying what is sufficient is a difficult task and

depends on, among other things, the search space dimen-

sionality, it will be seen that the qualitative agreement of

results derived under the assumption with experimental

measurements is good.

Assuming that γ is sufficiently large, the population

centroid is at a normalised distance %(σ∗) from the ridge

axis at the beginning and at a normalised distance %(ς∗) at

the end of the isolation period, where mutation strengths

are normalised as outlined above and where the distances

from the ridge axis are described by Eq. (2). From Eq. (1)

with the normalisation of the distance from the ridge axis,

the objective function values at the beginning and at the

end of the isolation period are f(x) = x1 −N%2(σ∗)/4d
and f(x′) = x′

1 − N%2(ς∗)/4d, respectively. The ex-

pected difference in objective function values between

population centroids x and x
′ is thus

∆f = f(x′) − f(x)

= γϕ(ς∗) − N

4d

(

%2(σ∗) − %2(ς∗)
)

.

The first of the two terms on the right hand side is due to

progress in direction of the ridge axis and has been com-

puted as the product of the expected progress per time step

and the number of steps made. (Recall that progress is as-

sumed to have been made in the limit state assumed at the

end of the isolation period.) The second term on the right

hand side is due to the change in distance from the ridge

axis that results from the altered mutation strength. With

the normalised length γ∗ = γµc2
µ/µ,λ/N of the isolation

periods, it thus follows

∆f(γ∗, σ∗, ς∗) =
N

d

(

γ∗ϕ∗(ς∗)

−%2(σ∗)

4
+

%2(ς∗)

4

)

(4)

for the difference between the objective function values

of x and x
′.

The [1, 2(µ/µ, λ)γ ]-ES described in Section 2 evolves

two populations in parallel, one with mutation strength

σ · α and one with mutation strength σ/α. After γ gen-

erations, the objective function values of the centroids x
′

1

and x
′

2 of the two populations are compared. The popula-

tion with the larger objective function value of its centroid

passes on its mutation strength to the next iteration of the

upper level strategy. Letting

g(α) =
d

N
(f(x′

1) − f(x′

2))

it is clear that the mutation strength used in the next it-

eration of the upper level strategy is σ · α (the mutation

strength that led to x
′

1) if g(α) ≥ 0 and σ/α (the muta-

tion strength that led to x
′

2) otherwise. Function g(α) is

referred to as the gain difference. With Eq. (4) it follows

that

g(α) =
d

N
(∆f(γ∗, σ∗, σ∗ · α) − ∆f(γ∗, σ∗, σ∗/α))

= γ∗ϕ∗(σ∗ · α) − γ∗ϕ∗(σ∗/α)

− %2(σ∗ · α)

4
+

%2(σ∗/α)

4
(5)

where % and ϕ∗ are given by Eqs. (2) and (3), respectively.

Rather than attempting to determine the distribution of

the normalised mutation strength in the limit of large γ,

we will see that an approximation of the average value of

σ∗ can be computed by relatively simple means. It is clear

from Eq. (5) that g(1) = 0 independent of γ∗ and σ∗.

For sufficiently small values of α, the sign of g(α) in the

vicinity of 1 is thus determined by the derivative g′(1) =
∂g/∂α|α=1. The mutation strength of the next iteration

of the upper level strategy is σ · α if g′(1) > 0 and it is

σ/α if g′(1) < 0. That is, as α > 1 by definition of the

algorithm in Section 2, the mutation strength is increased

if g′(1) > 0 and it is decreased if g′(1) < 0. For g′(1) =
0, there is no strong pressure to either increase or decrease

the mutation strength, and which one of σ · α and σ/α
prevails is a matter of chance. Thus, the mutation strength

for which g′(1) = 0 can be used as an approximation

for the average mutation strength that the hierarchically

organised strategy generates.

Figure 4 plots the gain difference g(α) for γ∗ = 10.0
and several values of σ∗. For σ∗ = 1.0, the derivative

g′(1) is positive and the mutation strength will be in-

creased. For σ∗ = 4.0, the sign of g′(1) is negative and
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Figure 4: Gain difference g(α) plotted against the step

length multiplier α for γ∗ = 10.0 and several values

of σ∗. Notice that the scale of the horizontal axis is loga-

rithmic.

the mutation strength will be decreased. For σ∗ = 2.0,

the curve is nearly flat at the origin and whether the muta-

tion strength is increased or decreased is largely random.

Thus, σ∗ = 2.0 can be expected to be not far from the av-

erage normalised mutation strength of the [1, 2(µ/µ, λ)γ ]-
ES on the parabolic ridge with γ∗ = 10.0. This is con-

firmed in experiments summarised below. Notice that the

range of the horizontal axis in Fig. 4 is larger than the

interval from which α-values are drawn, thus justifying

the reliance on the sign of g′(1) for determining the sign

of g(α).
Using Eqs. (2), (3), and (5), the gain difference can be

written as

g(α) =
γ∗σ∗2α2

%2(σ · α)
− γ∗σ∗2

α2%2(σ/α)
− %2(σ · α)

4
+

%2(σ/α)

4
.

Computing the derivative with respect to α for α = 1
results in

g′(1) =
2γ∗σ∗2

%4(σ∗)

(

2%2(σ∗) − σ∗
d%2

dσ∗

)

− σ∗

2

d%2

dσ∗
.

It is easily verified from Eq. (2) that

%4(σ∗) = σ∗2 (

%2(σ∗) + 1
)

and that
d%2

dσ∗
= σ∗

%2(σ∗) + 1

%2(σ∗) − σ∗2/2
.

It follows that

g′(1) =
2γ∗

%2(σ∗) + 1

(

2%2(σ∗) − σ∗2 %2(σ∗) + 1

%2(σ∗) − σ∗2/2

)

− σ∗2

2

%2(σ∗) + 1

%2(σ∗) − σ∗2/2

=
σ∗2

%2(σ∗) − σ∗2/2

(

2γ∗

%2(σ∗) + 1
− %2(σ∗) + 1

2

)

.

Demanding that g′(1) = 0 thus yields condition

4γ∗ =
(

%2(σ∗) + 1
)2

.

Taking the square root yields

%2 =
√

4γ∗ − 1 (6)

as an approximation for the average squared normalised

distance at which the [1, 2(µ/µ, λ)γ ]-ES tracks the para-

bolic ridge.

Using Eq. (6) in Eq. (2) results in

√

4γ∗ − 1 − σ∗2

2
=

√

σ∗4

4
+ σ∗2.

Squaring both sides and rearranging terms it follows that

σ∗2 =
√

4γ∗ − 2 +
1√
4γ∗

=
(
√

4γ∗ − 1)2√
4γ∗

. (7)

Taking the square root yields

σ∗ =

√
4γ∗ − 1

(4γ∗)1/4

= (4γ∗)
1/4 − (4γ∗)

−1/4
(8)

as an approximation for the average normalised mutation

strength of the [1, 2(µ/µ, λ)γ ]-ES on the parabolic ridge.

Finally, using Eqs. (2), (6), and (7) in Eq. (3) results in

ϕ∗ =
σ∗2

%2(σ∗)

=

√
4γ∗ − 1√

4γ∗

= 1 − 1√
4γ∗

(9)

as an expression for the normalised progress rate of the

[1, 2(µ/µ, λ)γ ]-ES on the parabolic ridge. Notice the re-

markable simplicity of Eqs. (6), (8), and (9).
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Figure 5: Average normalised distance % from the ridge

axis plotted against normalised length γ∗ of the isola-

tion periods. The solid line has been obtained from

Eq. (6). The points have been measured in runs of the

[1, 2(3/3, 10)γ]-ES with d = 1.0.

5 Discussion

Figures 5, 6, and 7 compare results from Eqs. (6), (8),

and (9) with measurements made in runs of hierarchically

organised evolution strategies on parabolic ridges of dif-

ferent dimensionalities. It can be seen that for N = 400
the accuracy of the predictions is good except for the

smallest values of γ∗. Note that due to the normalisation

of the length of the isolation periods, the smallest γ val-

ues represented in the graphs are indeed small; for N = 4,

the leftmost data points in Figs. 5, 6, and 7 correspond to

γ = 1 and thus no isolation at all. For the smaller search

space dimensionalities, larger deviations of the measured

results from those that have been obtained theoretically

occur. However, except for small values of γ∗, the de-

viations that can be observed in the figures appear to be

of the same order of magnitude as those in Figs. 2 and 3

that had been obtained for the (µ/µ, λ)-ES. As the re-

sults for that strategy have been used in the derivation of

the results for the hierarchically organised strategy, more

accurate predictions could not have been expected. Any

additional inaccuracies are due in part to the fact that the

mutation strength is not constant but instead fluctuates,

and that those fluctuations have not been considered in

the analysis in Section 4. Altogether, Eqs. (6), (8), and (9)
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Figure 6: Average normalised mutation strength σ∗ plot-

ted against normalised length γ∗ of the isolation periods.

The solid line has been obtained from Eq. (8). The points

have been measured in runs of the [1, 2(3/3, 10)γ]-ES

with d = 1.0.

provide a useful qualitative description of the behaviour

of the strategy even for N as small as 4.

As seen in [10] and illustrated in Fig. 3 above, on

the parabolic ridge it is always beneficial for the long

term success of evolution strategies to increase the mu-

tation strength. As for the hierarchically organised strat-

egy longer isolation periods result in larger mutation

strengths, the graph in Fig. 7 is monotonically increasing.

On other objective functions, such as the sphere model,

long isolation periods prevent fast adaptation of the muta-

tion strength and hamper progress. Adapting the length of

isolation periods as suggested by Herdy [7] is a possibil-

ity, but it adds to the computational costs of the strategy.

It would thus be desirable to give a recommendation for

the length of the isolation periods that yields satisfactory

performance on both the sphere and the ridge (and, hope-

fully, on other functions as well). It can be seen from

Fig. 7 that a large proportion of the maximal progress

rate is achieved already with relatively small values of γ∗.

Equation (9) suggests that for γ∗ = 1, the [1, 2(µ/µ, λ)γ ]-
ES achieves 50% of its maximal progress; for γ∗ = 4 it

achieves 75%. Figure 7 shows that for finite N , the pro-

portions of the maximal progress rate that are achieved

with those values of the normalised length of the isolation

8
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Figure 7: Normalised progress rate ϕ∗ plotted against nor-

malised length γ∗ of the isolation periods. The solid line

has been obtained from Eq. (9). The points have been

measured in runs of the [1, 2(3/3, 1)γ]-ES with d = 1.0.

periods are even higher. For the parabolic ridge, choosing

γ =
βN

µc2
µ/µ,λ

(10)

where β ∈ [1.0, 4.0] thus guarantees that a substantial

proportion of the maximal progress rate is achieved. In-

creasing γ further would yield a speed-up of at most 33%.

The length of the isolation periods should thus be cho-

sen proportional to the dimensionality of the search space.

Equation (10) also suggests that using larger values of µ
and λ (and thus increasing the denominator) allows oper-

ating with shorter isolation periods. It is important to keep

in mind however that the results from Section 4 are not

sufficiently accurate in order to determine optimal settings

of the population size parameters, and more work will

need to be done in order to confirm the value of Eq. (10)

for the choice of the length of the isolation periods. It

also remains to be seen what proportion of the optimal

progress rate on the sphere model can be achieved with

that recommendation.

Finally, it is interesting to compare the results for

the hierarchically organised strategy with those for the

(µ/µ, λ)-ES with cumulative step length adaptation that

have been derived in [2]. In that reference, it has been

seen that a (µ/µ, λ)-ES with cumulative step length adap-

tation on the parabolic ridge in the limit N → ∞ employs

an average normalised mutation strength of σ∗ = 1/
√

2.

With that step length, the average normalised distance

from the ridge axis and the resulting normalised progress

rate are % = 1 and ϕ∗ = 1/2, respectively. With long iso-

lation periods, the hierarchically organised strategy can

thus achieve nearly twice the progress rate of the strat-

egy that uses cumulative step length adaptation for the

control of its mutation strength. However, it is important

to keep in mind that the hierarchically organised strategy

evolves two populations in parallel. For the same value λ,

its computational costs (quantified as the number of ob-

jective function evaluations) per time step are thus twice

as high. The progress per unit of cost is thus roughly the

same for both strategies. It is also interesting to note that

the time scales on which the strategies adapt the mutation

strength are similar. According to [6], for cumulative step

length adaptation the cumulation parameter is commonly

chosen to be inversely proportional to the search space

dimensionality. It thus takes order N steps for the infor-

mation accumulated in the search path to fade. For the

hierarchically organised strategy, Eq. (10) suggests that

the length of the isolation periods should be chosen pro-

portional to N . For both strategies, order N steps are

required for the mutation strength to change by a constant

factor.

6 Summary and Conclusions
To conclude, this paper has presented a first analysis of the

behaviour or a hierarchically organised evolution strat-

egy on the parabolic ridge. Equations have been derived

that describe the average mutation strength as well as

the progress rate achieved by the strategy. While sev-

eral simplifications and assumptions have been made in

the derivation of the results, numerical experiments sug-

gest that the accuracy of the results is good for not too

small values of the length of the isolation periods and of

the search space dimensionality. It has been seen that

both the average mutation strength of the hierarchically

organised strategy and the average distance at which the

ridge axis is tracked increase with the fourth root of the

length of the isolation periods. The progress rate asymp-

totically approaches its optimal value (that is obtained for

very large mutation strengths), and the deviation from the

optimal value is inversely proportional to the square root

9



of the length of the isolation periods. Choosing the length

of the isolation periods according to Eq. (10) ensures that

a substantial proportion of the maximal progress rate is

realised. A comparison with the (µ/µ, λ)-ES that em-

ploys cumulative step length adaptation has shown that

potentially, the [1, 2(µ/µ, λ)γ ]-ES can achieve twice the

progress rate, albeit at twice the computational costs per

time step.

Clearly, this paper is but a first step in the analysis of

the behaviour of hierarchically organised evolution strate-

gies. Numerous ways of generalising and extending its

results are conceivable. First, it is desirable to obtain a

more accurate description of the behaviour of the strategy

for short isolation periods and for small values of N . Such

an approximation would be useful for the task of com-

puting optimal population size parameters for the lower

level strategy. Second, it is interesting to study the influ-

ence of the choice of distribution used for generating the

step length multiplier α on the performance of the strat-

egy. It seems conceivable that larger populations on the

lower level may allow using larger values of α, thus en-

abling faster adaptation. Third, other objective functions

remain to be studied. Of particular interest is the sphere

model as it requires relatively short isolation periods for

efficient performance. The techniques used by Beyer [3]

for the analysis of mutative self-adaptation may be useful

for that task. Another interesting candidate for analysis

is the general ridge function class, and in particular the

sharp ridge. For fixed mutation strength, such an analysis

has been presented by Beyer [4], and the approach pur-

sued here should be easily adapted to that case. Also of

interest is the case that there is noise present in the optimi-

sation process. Results obtained in [2] indicate that cumu-

lative step length adaptation performs less than optimally

in the presence of noise, and it will be of great interest to

derive corresponding results for hierarchically organised

strategies and compare them. Finally, the potential of hi-

erarchically organised strategies for step length adaptation

in the CMA-ES described by Hansen and Ostermeier [6]

remains to be explored.
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