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Abstract. This paper presents an analysis of the performance of the (µ/µ, λ)-
ES with isotropic mutations and cumulative step length adaptation on the noisy
parabolic ridge. Several forms of dependency of the noise strength on the distance
from the ridge axis are considered. Closed form expressions are derived that describe
the mutation strength and the progress rate of the strategy in high-dimensional
search spaces. It is seen that as for the sphere model, larger levels of noise present lead
to cumulative step length adaptation generating increasingly inadequate mutation
strengths, and that the problem can be ameliorated to some degree by working with
larger populations.
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1. Introduction

Evolution strategies are a type of evolutionary algorithm that is most
commonly used for the optimisation of real-valued functions of the form
f : IRN → IR. Typical features of evolution strategies include the use
of truncation selection, normally distributed mutations, and some form
of self-adaptation for step length control. See [13] for a comprehensive
introduction. Much work has gone into the analysis of the behaviour of
evolution strategies on simple objective functions, such as the sphere
model [1, 5, 11, 23], ellipsoidal fitness landscapes [12], the corridor
model [22], and the ridge function class [10, 20, 21, 19, 23]. While
the sphere and the ellipsoids serve as models for fitness landscapes in
the vicinity of local optima, both the corridor and the ridge strive to
model features of such landscapes in greater distance from the optima.
More specifically, they test the ability of a strategy to make progress
in a particular direction in search space, where deviation from that
direction is penalised. The goal of such analyses is to derive scaling
laws that help reveal strengths and weaknesses of particular strategy
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variants, to make recommendations with regard to the setting of the
strategies’ exogenous parameters, and to contribute to the continued
improvement of existing and the design of new strategy variants.

Ridge functions are known to pose significant problems for optimi-
sation strategies. Whitley, Lunacek, and Knight [26] point out that
while the difficulties of optimising ridges “are relatively well docu-
mented in the mathematical literature on derivative free minimization
algorithms [. . . ], there is little discussion of this problem in the heuris-
tic search literature”. For evolutionary algorithms in particular, while
long term progress is best achieved with large step lengths, mutation
strength adaptation mechanisms are often shortsighted and generate
step lengths much shorter than optimal. This deficiency on ridges is
the cause of the premature convergence of evolution strategies on a
unimodal objective function that has been observed by Salomon [25].

Several steps have been made toward a quantitative understanding
of the behaviour of evolution strategies on ridge functions. Rechen-
berg [23] provides (without derivation) a formula for the progress rate
of evolution strategies on the parabolic ridge. However, that formula
contains the location in search space as a parameter, and no attempt
is made to model the distribution of the population in search space.
Oyman, Beyer and Schwefel [20, 21] study the performance of the
(1 +, λ)-ES with fixed mutation strength on the parabolic ridge and
derive formulas both for the average distance from the ridge axis and for
the progress rate of the algorithm. They find that the comma strategy is
generally superior to the plus strategy. In a generalisation of that work,
Oyman and Beyer [19] study the behaviour of the (µ/µ, λ)-ES with both
intermediate and dominant recombination. Beyer [10] also considers the
performance of the (1, λ)-ES on ridges other than the parabolic one and
finds that qualitatively different behaviours can result on different ridge
topologies. Insights with regard to the issue of step length adaptation
that have been published so far are purely empirical and include the
aforementioned paper by Salomon [25] as well as results provided by
Herdy [17].

This paper studies the performance of evolution strategies with in-
termediate multirecombination and cumulative step length adaptation
on the noisy parabolic ridge function class. It thus extends previous
work [19, 21] in two directions: first, it considers the influence of noise;
and second, it analytically studies the performance of cumulative step
length adaptation. Its remainder is organised as follows. Section 2
describes the (µ/µ, λ)-ES with cumulative step length adaptation, sum-
marises some results on expected values of order statistics that are
used later in the paper, and briefly reviews the approach to the anal-
ysis of the sphere model that will be seen to form an important step
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in the investigation of the ridge function class. Section 3 studies the
performance of the (µ/µ, λ)-ES on the noisy parabolic ridge without
considering step length adaptation. Scaling laws for the progress rate
as well as for the average distance from the ridge axis are derived, and
several forms of dependency of the noise strength on the distance from
the ridge axis are considered. The results are obtained in the limit of
infinite search space dimensionality and their significance is verified
in experiments in finite-dimensional search spaces. Section 4 includes
cumulative step length adaptation in the analysis. Section 5 concludes
with a brief summary of the results and suggestions for future research.

2. Preliminaries

This section first describes the (µ/µ, λ)-ES with isotropic mutations
and cumulative step length adaptation for the optimisation of functions
f : IRN → IR. Next, terminology and two useful lemmas from the field
of order statistics are introduced. Then, some important results with
regard to the behaviour of the (µ/µ, λ)-ES on the quadratic sphere
model are summarised. Those results form a cornerstone in the analysis
of the behaviour of the (µ/µ, λ)-ES on the ridge function class presented
in Sections 3 and 4.

2.1. The (µ/µ, λ)-ES

The strategy under consideration in this paper is the (µ/µ, λ)-ES with
isotropic mutations and intermediate recombination. That strategy is
popular due to both its good performance and its amenability to math-
ematical analysis. The following description of the algorithm is delib-
erately brief. See [13] for a more comprehensive discussion of evolution
strategies and their naming conventions, and see [18] for a thorough
motivation of cumulative step length adaptation.

In every time step the (µ/µ, λ)-ES computes the centroid of the
population of candidate solutions as a search point x ∈ IRN that
mutations are applied to. For the purpose of adapting the mutation
strength, a vector s ∈ IRN that is referred to as the search path is used
to accumulate information about the directions of the most recently
taken steps. An iteration of the strategy updates the search point along
with the search path and the mutation strength of the strategy in five
steps:

1. Generate λ offspring candidate solutions y(i) = x + σz(i), i =
1, . . . , λ, where mutation strength σ > 0 determines the step length
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and the z(i) are vectors consisting of N independent, standard
normally distributed components.

2. Determine the objective function values f(y(i)) of the offspring
candidate solutions and compute the average

z(avg) =
1

µ

µ
∑

k=1

z(k;λ) (1)

of the µ best of the z(i). The index k;λ refers to the kth best of
the λ offspring candidate solutions (i.e., the kth largest if the task
is maximisation and the kth smallest if the task is minimisation).
Vector z(avg) is referred to as the progress vector.

3. Update the search point according to

x← x + σz(avg). (2)

Clearly, the new search point is the arithmetic mean of the µ best
of the offspring candidate solutions.

4. Update the search path according to

s← (1− c)s +
√

µc(2− c)z(avg), (3)

where the cumulation parameter c determines how rapidly the di-
rection information stored in s fades.

5. Update the mutation strength according to

σ ← σ exp

(

‖s‖2 −N

2DN

)

, (4)

where D serves as a damping factor in the adaptation process.

Following recommendations given by Hansen [15], the cumulation pa-
rameter c and damping constant D are set to 1/

√
N and

√
N , respec-

tively. It is the goal of cumulative step length adaptation to adapt
the mutation strength such that correlations between successive steps
are eliminated. The coefficients in Eq. (3) are chosen such that the
search path s consists of standard normally distributed components if
selection is random. The strategy used here differs from the original one
described in [18] in that in Eq. (4), adaptation is accomplished based
on the squared length of the search path rather than on its length. This
modification will simplify the analysis in Section 4 without significantly
impacting the algorithm’s performance.
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2.2. Some Results on Expected Values of Order Statistics

Let X1, X2, . . . , Xλ be a random sample from some univariate prob-
ability distribution, and arrange the Xi in nondecreasing order such
that X1:λ ≤ X2:λ ≤ · · · ≤ Xλ:λ. The kth smallest of the Xi is denoted
by Xk:λ and referred to as the kth order statistic of the sample. See
Balakrishnan and Rao [7] for an introduction to the area of order
statistics. The following lemma gives an expression for the expected
value of the mean of the µ largest of the Xi for the case that the
sample members are independently drawn from a normal distribution.

LEMMA 1. Let X1, X2, . . . , Xλ be λ independent, standard normally
distributed random variables. Then the expected value of the arithmetic
mean of the (λ + 1− µ)th through λth order statistics is

E

[

1

µ

µ
∑

k=1

Xλ+1−k:λ

]

= cµ/µ,λ (5)

where

cµ/µ,λ =
λ− µ

2π

(

λ

µ

)

∫

∞

−∞

e−x2

[Φ(x)]λ−µ−1[1− Φ(x)]µ−1dx

is the (µ/µ, λ)-progress coefficient defined in [11] and where Φ(x) de-
notes the cumulative distribution function of the standardised normal
distribution.

See [11] for a derivation of this result. Figure 1 illustrates how the
(µ/µ, λ)-progress coefficient depends on the population size parame-
ters µ and λ. Lemma 1 will be seen to be useful when there is a direct
connection between a random variable characterising a component of
a mutation vector and the fitness of the corresponding offspring candi-
date solution. However, both in the presence of noise and on the ridge
function class, that connection is only indirect, and a generalisation of
the lemma is required.

Let (X1, Y1), (X2, Y2), . . . , (Xλ, Yλ) be a random sample from some
bivariate probability distribution. If the sample is ordered by the Xi,
then the Y -variate associated with the kth order statistic Xk:λ is de-
noted by Y[k:λ] and referred to as the concomitant of the kth order
statistic. See David and Nagaraja [14] for a treatment of concomitants
of order statistics. The following lemma gives an expression for the
expected value of the arithmetic mean of the concomitants of the µ
largest order statistics for the case that X = Y +Z, where both Y and
Z are normally distributed.

main.tex; 16/01/2006; 14:04; p.5



6

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

PSfrag replacements

truncation ratio µ/λ

p
ro

gr
es

s
co

effi
ci

en
t

c µ
/
µ
,λ

Figure 1. Progress coefficients cµ/µ,λ plotted against the ratio µ/λ for different
values of λ. The curves correspond to, from bottom to top, λ = 4, 10, 40, 100,
and the limit case λ = ∞. The curves are displayed in the range from 1/λ to 1. Note
that only values µ/λ with integer µ are of interest.

LEMMA 2. Let Y1, Y2, . . . , Yλ be λ independent, standard normally
distributed random variables, and let Z1, Z2, . . . , Zλ be λ independent,
normally distributed random variables with mean zero and with vari-
ance ϑ2. Then, defining Xi = Yi + Zi for i = 1, . . . , λ and ordering
the sample members by nondecreasing values of the X variates, the
expected value of the arithmetic mean of those µ of the Yi with the
largest associated values of Xi is

E

[

1

µ

µ
∑

k=1

Y[λ+1−k:λ]

]

=
cµ/µ,λ√
1 + ϑ2

where the progress coefficient cµ/µ,λ was defined above.

The derivation of this result is straightforward using the approach pur-
sued in [3, 6]. The quantity ϑ is referred to as the noise-to-signal ratio
of the selection process.

2.3. The Quadratic Sphere Model

Since the early work of Rechenberg [22], the performance of evolution
strategies has extensively been studied on the quadratic sphere model
with objective function

f(x) =
N
∑

i=1

(xi − x̂i)
2 x ∈ IRN

where x̂ is the optimiser and the task is minimisation. See [4] for a
discussion of the usefulness of such considerations, and see [11] for
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Figure 2. Decomposition of a vector z into central component zA and lateral compo-
nent zB . Vector zA is parallel to x̂−x, vector zB is in the hyperplane perpendicular to
that. The starting and end points, x and y = x+σz, of vector σz are at distances R
and r from the optimiser x̂, respectively.

comprehensive results and techniques of analysis for a great number of
strategy variants.

Central to the quantitative characterisation of the performance of
evolution strategies on the sphere model is the computation of the
difference in fitness f(x) − f(x + σz) between candidate solutions (or
search points) x and y = x + σz. That difference is referred to as the
fitness advantage associated with vector z. Depending on the context,
z can be either a mutation vector or a progress vector. The commonly
used approach to computing the fitness advantage relies on a decom-
position of vector z that is illustrated in Fig. 2, where R = ‖x̂−x‖ and
r = ‖x̂−y‖ are the distances of x and y from the optimiser. Using “·”
to denote the dot product, vector z can be written as the sum of two
orthogonal vectors zA and zB , where

zA =
(x̂− x) · z

R2
(x̂− x)

is parallel to x̂− x and
zB = z− zA

is in the (N − 1)-dimensional hyperplane perpendicular to that. The
vectors zA and zB are referred to as the central and lateral components
of vector z, respectively. The signed length

zA =
(x̂− x) · z

R
(6)

of the central component of vector z equals ‖zA‖ if zA points towards
the optimiser and it equals −‖zA‖ if zA points away from it.
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Using elementary geometry, it can easily be seen from Fig. 2 that

r2 = (R − σzA)2 + σ2‖zB‖2,

and therefore, rearranging terms and realising that ‖z‖2 = z2
A +‖zB‖2,

that

f(x)− f(x + σz) = R2 − r2

= 2RσzA − σ2‖z‖2. (7)

That is, the fitness advantage associated with vector z has two contri-
butions: one that can be either positive or negative, depending on the
signed length of the central component of that vector, and one that is
always negative. It is of course desirable to achieve a positive fitness
advantage associated with the progress vector in order to decrease
the distance from the optimiser. Selection of good candidate solutions
needs to ensure that the signed length of the central component of the
progress vector is positive, and the mutation strength needs to be such
that the negative contribution of the second term is outweighed.

Computation of the expected fitness advantage associated with the
progress vector is best accomplished in the limit of infinite search
space dimensionality. Computational experiments in finite-dimensional
search spaces are then used to verify the accuracy of the predictions for
finite N . Improved approximations for finite N can often be derived,
but are not subject of this paper.

Recall that the components of a mutation vector z are independently
standard normally distributed. The squared length ‖z‖2 of mutation
vectors is thus χ2-distributed with N degrees of freedom. Due to the
properties of the χ2-distribution, in the limit N →∞, ‖z‖2/N asymp-
totically approaches 1 (its mean is 1 while its variance is O(1/N)). As
a consequence, as detailed in [11], in the range of mutation strengths
where the fitness advantage associated with the progress vector is pos-
itive (and thus in the range of interest), variations in the negative
contributions to the fitness advantage described by the second term
on the right hand side of Eq. (7) can be ignored. The kth best off-
spring candidate solution is that with the kth largest signed length
of the central component of the mutation vector that generated it.
Thus, the signed length zA of the central component of the mutation
vector that generates the kth best offspring candidate solution is the
(λ − 1 + k)th order statistic in a sample of λ independent, standard
normally distributed random variates.

According to Eq. (1) the progress vector is the arithmetic mean of
the µ best mutation vectors. It follows that the expected value of the
signed length of its central component equals the expected value of the
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arithmetic mean of the (λ+1−µ)th through λth order statistics. Letting

Xi = z
(i)
A , Lemma 1 from Section 2.2 is thus immediately applicable

and the expected signed length of the central component of the progress
vector is cµ/µ,λ. Moreover, it has been shown in [8] that

‖z(avg)‖2
N

N→∞

=
1

µ
. (8)

The reduction in the squared length by a factor of 1/µ compared to
that of the mutation vectors being averaged results from the fact that
the lateral components of the latter have no influence on the fitness of
the candidate solutions and are thus uncorrelated. Averaging µ uncor-
related random vectors of squared length 1 yields a random vector of
squared length 1/µ. The averaging is beneficial as the negative term
contributing to the fitness advantage of the progress vector is reduced.
In [8], that reduction has been termed the genetic repair effect.

Real-world optimisation problems often suffer from noise present
in the process of evaluating the quality of candidate solutions. Such
noise can be a consequence of factors as varied as the use of Monte
Carlo techniques, physical measurement limitations, or human input
in the selection process. As discussed in [1, 3], most frequently, noise
is modelled as an additive Gaussian term with mean zero and with
a standard deviation σε that is referred to as the noise strength. The
noisy objective function value of candidate solution y = x+σz then is

fε(y) = f(x)− 2RσzA + σ2‖z‖2 + σεzε

where zε is standard normally distributed and where the index in fε

indicates the measurement of the fitness value is disturbed by noise.
Variations in the third term on the right hand side again lose signifi-
cance as N → ∞. As both the second and fourth terms are normally
distributed, so is the noisy fitness advantage associated with vector z.

Noise has no influence on the squared length of the progress vector.
However, it does have an influence on the signed length of that vector’s
central component. The candidate solutions selected to survive are
those with the largest values of 2RσzA − σεzε. The signed lengths of
the central components of the mutation vectors are thus concomitants
of the order statistics that result from ranking the offspring candidate

solutions by their noisy objective function values. Letting Yi = z
(i)
A and

Zi = −(σε/2Rσ)z
(i)
ε , Lemma 2 from Section 2.2 is applicable and the

expected signed length of the central component of the progress vector
is

E
[

z
(avg)
A

]

N→∞

=
cµ/µ,λ√
1 + ϑ2

,
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where ϑ = σε/2Rσ is the noise-to-signal ratio that the strategy operates
under. Notice that in general, the noise strength need not be constant,
but instead it may vary across the search space.

3. The (µ/µ, λ)-ES on the Noisy Parabolic Ridge

In this section the performance of the (µ/µ, λ)-ES with isotropic mu-
tations is studied on the parabolic ridge. The treatment of cumulative
step length adaptation is deferred until Section 4. The results pre-
sented here generalise those derived in [19] by considering noise in the
analysis. In contrast to that reference, no attempt is made to include
N -dependent terms in the calculations. Numerical experiments are used
to illustrate that the accuracy of the results is good provided that N
is sufficiently large.

3.1. Expected Progress Vector

Even though the parabolic ridge described by objective function

f(x) = x1 −
d

N

N
∑

i=2

x2
i x ∈ IRN , d > 0 (9)

has no finite optimum, maximisation is still a meaningful task if prog-
ress along the ridge axis (i.e., in the x1-direction) is considered as a
performance measure. It is also worth pointing out that while in the
definition used here the ridge axis is aligned with an axis of the coor-
dinate system, that fact is irrelevant for a strategy that uses isotropic
mutations such as those considered in the present paper. The coordinate
system could be subjected to an arbitrary rigid transformation without
affecting the strategy’s performance.

Clearly, the parabolic ridge contains within it an (N−1)-dimensional
quadratic sphere. Similar to the decomposition of vectors described in
Section 2.3, a mutation or progress vector z = (z1, z2, . . . , zN )T on the
ridge can be written as the sum of three mutually orthogonal vectors
that are straightforward to obtain. Let z1 = (z1, 0, . . . , 0)

T and z2...N =
(0, z2, . . . , zN )T denote the projections of z onto the hyperspaces with
z2 = · · · = zN = 0 and z1 = 0, respectively. Furthermore, decompose
z2...N into vectors zA and zB as done in Section 2.3 with (x1, 0, . . . , 0)

T

for x̂. Then z = z1 + zA + zB is a decomposition of z into mutually
orthogonal components and z1, zA, and zB are referred to as the axial,
central, and lateral components of z, respectively. See Fig. 3 for an
illustration.
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Figure 3. Decomposition of vector z into its axial component z1, central compo-
nent zA, and lateral component zB for N = 3. The dashed lines indicate locations
of constant fitness.

Using the decomposition along with Eqs. (6) and (9), it follows that
the fitness of candidate solution y = x + σz is

f(y) = x1 + σz1 −
d

N

N
∑

i=2

(xi + σzi)
2

= x1 −
d

N

N
∑

i=2

x2
i + σz1 −

d

N

(

2σ
N
∑

i=2

xizi + σ2
N
∑

i=2

z2
i

)

= f(x) + σz1 +
d

N

(

2σRzA − σ2‖z2...N‖2
)

(10)

where R = ‖x2...N‖ denotes the distance of the search point from the

ridge axis. If z is a mutation vector then ‖z2...N‖2/N N→∞

= 1 holds as
seen in the discussion of the sphere model in Section 2.3. Introducing
the standardised distance from the ridge axis

ρ =
2Rd

N

the noisy fitness of candidate solution y is thus

fε(y)
N→∞

= f(x) + σz1 + ρσzA − σ2d + σεzε (11)

where zε is a standard normally distributed random variable reflecting
the noise present in the evaluation process and where σε denotes the
noise strength.

For the purpose of selection, offspring candidate solutions are ranked
according their noisy fitness values. According to Eq. (1), the mutation
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vectors of those µ of the offspring with the highest noisy fitness values
are averaged arithmetically to form the progress vector. The axial,
central, and lateral components of the progress vector are thus the
arithmetic means of the respective components of the selected mutation
vectors. The signed lengths of the axial and central components of
the mutation vectors are standard normally distributed. As the kth
best offspring candidate solution is that with the kth largest value of
σz1 + ρσzA + σεzε (the other terms in Eq. (11) are identical for all
offspring), the signed lengths of both the axial components z1 and the
central components zA of the mutation vectors are concomitants of the
order statistics that result from ranking candidate solutions according
to their noisy fitness. Moreover, as all random variables in Eq. (11) are
normally distributed, and as the sum of two normally distributed ran-
dom variables is again normally distributed, Lemma 2 from Section 2.2

is applicable. In particular, letting Yi = z
(i)
1 and Zi = (ρσz

(i)
A +σεz

(i)
ε )/σ,

it follows from Lemma 2 that the expected value of the signed length
of the axial component of the progress vector is

E
[

z
(avg)
1

]

N→∞

=
cµ/µ,λ

√

1 + ϑ2 + ρ2
(12)

where ϑ = σε/σ denotes the noise-to-signal ratio that the strategy

operates under. Similarly, letting Yi = z
(i)
A and Zi = (σz

(i)
1 +σεz

(i)
ε )/ρσ,

it follows from Lemma 2 that the expected value of the signed length
of the central component of the progress vector is

E
[

z
(avg)
A

]

N→∞

=
cµ/µ,λ

√

1 + (σ2 + σ2
ε )/ρ

2σ2

=
ρcµ/µ,λ

√

1 + ϑ2 + ρ2
. (13)

Finally, for the squared length of the combined central and lateral
components of the progress vector,

‖z(avg)
2...N ‖2
N

N→∞

=
1

µ
(14)

holds in analogy to the corresponding result in Eq. (8) for the sphere
model.

3.2. Distance from the Ridge Axis and Progress Rate

The expected values of the signed lengths of the axial and central com-
ponents of the progress vector computed in Eqs. (12) and (13) depend
on the standardised distance ρ of the search point from the ridge axis.
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In the case that the mutation strength is constant, that distance varies
with time and either has a time-invariant limit distribution or diverges
to ∞. Steps 1, 2, and 3 of the algorithm outlined in Section 2.1 define
an iterated stochastic mapping

R(t+1)2 =
N
∑

i=2

(

xi + σz
(avg)
i

)2

= R(t)2 − 2R(t)σz
(avg)
A + σ2‖z(avg)

2...N ‖2

of distances from the ridge axis, where Eq. (6) has been used and where
superscripts indicate time. Multiplying by 4d2/N2 in order to switch
to standardised distances yields evolution rule

ρ(t+1)2 = ρ(t)2 − 4d

N

(

ρ(t)σz
(avg)
A − σ2d

N
‖z(avg)

2...N ‖2
)

(15)

for the dynamical system. Consider the case that ρ does not diverge.
In that case, iterating Eq. (15), the squared standardised distance to
the ridge axis tends towards and then fluctuates around a stationary
limit value. For given σ, σε, ρ, and λ, both the mean and the variance
of the term in parentheses are in O(1). Due to the presence of the
factor 4d/N that that term is multiplied with, for given mutation and
noise strengths fluctuations are of order O(1/N) and thus decrease
with increasing search space dimensionality. In the limit case N →∞,
variances vanish altogether and all random variables can be replaced by
their expected values. Using Eqs. (13) and (14) for the expected values

of z
(avg)
A and ‖z(avg)

2...N ‖2 and demanding that ρ(t+1) = ρ(t), Eq. (15) yields

ρ2σcµ/µ,λ
√

1 + ϑ2 + ρ2
=

σ2d

µ
.

Introducing normalised quantities

σ∗ =
σd

µcµ/µ,λ
and σ∗

ε =
σεd

µcµ/µ,λ
,

squaring, and rearranging terms yields the equivalent condition

ρ4 − σ∗2
(

1 + ρ2
)

− σ∗

ε
2 = 0 (16)

that can be used to obtain the stationary standardised distance from
the ridge axis. The following three subsections consider three different
types of dependency of the noise strength on the distance from the
ridge axis. More specifically, the cases that the noise strength is uniform
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Figure 4. Standardised distance ρ from the ridge axis plotted against normalised
mutation strength σ∗ for the case of uniform noise strength. The solid lines have
been obtained from Eq. (17). The points represent results measured in runs of
the (µ/µ, λ)-ES on the parabolic ridge in search spaces with N = 40 (+) and
N = 400 (×). In all cases, µ = 3, λ = 10, and d = 1.0.

throughout the search space, that it increases quadratically with the
distance from the ridge axis, and that the rate of increase is cubic
are examined. The cases have been chosen as they can be handled
analytically while at the same time exhibiting qualitatively different
characteristics and posing widely differing demands to the step length
control mechanism to be discussed in Section 4.

3.2.1. Uniform Noise Strength
Consider the case that the noise strength σε is uniform throughout the
search space. Solving Eq. (16) yields

ρ2 N→∞

=
σ∗2

2
+

√

σ∗4

4
+ σ∗2 + σ∗

ε
2 (17)

for the squared standardised distance from the ridge axis. Figure 4
illustrates how the accuracy of predictions made using Eq. (17) im-
proves with increasing values of N by comparing with values measured
in runs of evolution strategies. Not shown here, greater values of µ
and λ generally require greater values of N in order to achieve the
same degree of accuracy. The quality of the approximation is largely
independent of the strength of the noise present.

With the knowledge of the standardised distance from the ridge axis
thus obtained, the performance of the (µ/µ, λ)-ES on the parabolic
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ridge can now be quantified. Following [19, 20, 21] in defining the
progress rate1

ϕ = σE
[

z
(avg)
1

]

of the strategy as the expected distance in direction of the ridge axis
that the search point moves per time step, it follows from Eq. (12) that

ϕ
N→∞

=
σcµ/µ,λ

√

1 + ϑ2 + ρ2
. (18)

Introducing normalisation

ϕ∗ =
ϕd

µc2
µ/µ,λ

and using Eq. (17) for the squared standardised distance from the
ridge axis, the normalised progress rate of the (µ/µ, λ)-ES on the noisy
parabolic ridge is

ϕ∗ N→∞

=
σ∗

√

1 + ϑ2 + ρ2

N→∞

=
σ∗

√

1 + σ∗

ε
2/σ∗2 + σ∗2/2 +

√

σ∗4/4 + σ∗2 + σ∗

ε
2

=
σ∗2

σ∗2/2 +
√

σ∗4/4 + σ∗2 + σ∗

ε
2
. (19)

The last step can easily be verified by squaring the denominator in
the last row. Figure 5 illustrates how the accuracy of predictions made
using Eq. (19) improves with increasing values of N by comparing with
measurements made in runs of evolution strategies on the parabolic
ridge. While for N = 40, substantial deviations between predictions
and measured values exist, for larger values of σ∗ the agreement is
generally good for N = 400.

As found in [19], in the absence of noise the progress rate of the
(µ/µ, λ)-ES on the parabolic ridge monotonically increases with in-
creasing mutation strength. It can be seen from Eq. (18) as well as
from Fig. 5 that the same holds true in the presence of uniform noise.

1 Alternatively, it is possible to use the quality gain, i.e., the expected change in
the fitness value of the search point from one time step to the next, as a performance
measure. In the stationary limit state, the (squared) distance from the ridge axis is
unchanged in the mean, and the only contribution to the change in fitness values
stems from the x1-component. In that state, progress rate and quality gain thus
agree in the limit N → ∞.
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Figure 5. Normalised progress rate ϕ∗ plotted against normalised mutation strength
σ∗ for the case of uniform noise strength. The solid lines have been obtained from
Eq. (19). The points represent results measured in runs of the (µ/µ, λ)-ES on the
parabolic ridge in search spaces with N = 40 (+) and N = 400 (×). In all cases,
µ = 3, λ = 10, and d = 1.0.

In addition to its beneficial effect for σε = 0, increasing σ reduces
the noise-to-signal ratio ϑ = σε/σ that the strategy operates under.
For large mutation strengths that ratio tends to zero and according to
Eq. (19) the effects of noise on the progress rate vanish.

From Eqs. (17) and (19) and undoing the normalisations, for large
mutation strengths the strategy operates at a standardised distance of
close to ρ = σd/µcµ/µ,λ from the ridge axis and achieves a progress rate

of nearly ϕmax = µc2
µ/µ,λ/d. Increasing the population size parameters

µ and λ thus decreases the stationary standardised distance ρ from the
ridge axis and increases the optimal progress rate ϕmax. Similar to what
has been found on the quadratic sphere [8, 11], a roughly linear increase
in ϕmax can be achieved as a result of increasing λ provided that µ is
increased such that the ratio µ/λ remains unchanged. For large values
of λ, a setting of µ = 0.270λ is optimal as it maximises µc2

µ/µ,λ. Larger

values of λ are beneficial and result in a linear speed-up if offspring
candidate solutions can be evaluated in parallel. Notice however that
Eq. (19) holds only in the limit N → ∞. In finite-dimensional search
spaces, the rate of increase of ϕmax is sublinear in µ and λ, and the
serial performance of the (µ/µ, λ)-ES suffers once the number of off-
spring generated per time step is too large. It is not possible to derive
quantitative recommendations with regard to the choice of λ from the
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analysis presented here as all N -dependent terms have been left out of
the calculations.

3.2.2. Quadratic Noise Strength
Next, consider the case that the noise strength increases quadratically
with the distance from the ridge axis, i.e. that σε = ζρ2 for some ζ ≥ 0.
We refer to ζ as the noise level. Equation (16) then reads

ρ4 − σ∗2
(

1 + ρ2
)

− ζ∗2ρ4 = 0

where ζ∗ = ζd/µcµ/µ,λ is the normalised noise level. Solving for the
square of the standardised distance from the ridge axis yields

ρ2 N→∞

=
σ∗2

2(1− ζ∗2)
+

√

σ∗4

4(1 − ζ∗2)2
+

σ∗2

1− ζ∗2 . (20)

For ζ∗ ≥ 1, there is no real-valued solution and the strategy fails to
track the ridge for any nonzero value of the mutation strength. In that
case, the distance to the ridge axis diverges to ∞ and the resulting
progress rate (but not the quality gain!) approaches zero. If ζ ∗ < 1, then
the resulting normalised progress rate is in close analogy to Eq. (19)

ϕ∗ N→∞

=
σ∗

√

1 + ζ∗2ρ4/σ∗2 + ρ2

N→∞

=
σ∗(1− ζ∗2)

σ∗/2 +
√

σ∗2/4 + 1− ζ∗2
. (21)

The dependence of the stationary distance ρ from the ridge axis and
of the normalised progress rate ϕ∗ on ζ∗ are shown in Figs. 6 and 7.
It can be seen that while the accuracy of the predictions is quite good
for N = 400, the deviations in the lower dimensional search space with
N = 40 are considerable. In contrast to the uniform noise case, the
quality of the approximation also deteriorates with increasing levels
of noise present. The influence of the N -dependent terms cannot be
neglected and better approximations remain to be derived in future
work. It is also worth noting that while Eqs. (20) and (21) suggest that
increasing µ and λ makes it possible to deal with any amount of noise
present (by driving ζ∗ to zero), this is an idealisation for N →∞ that
does not hold for finite N .

It can be seen from Figs. 6 and 7 that as in the case of uniform
noise strength, increasing the mutation strength is beneficial as it leads
to an increase in progress rate. However, unlike in the situation where
the noise strength is uniform, in the quadratic case it is not possible
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Figure 6. Standardised distance ρ from the ridge axis plotted against normalised
mutation strength σ∗ for the case that the noise strength increases quadratically
with the distance from the ridge axis. The solid lines have been obtained from
Eq. (20). The points represent results measured in runs of the (µ/µ, λ)-ES on the
parabolic ridge in search spaces with N = 40 (+) and N = 400 (×). In all cases,
µ = 3, λ = 10, and d = 1.0.

to always achieve the same progress rate as in the absence of noise. In
the uniform noise case, increasing the mutation strength results in a
higher signal strength that serves to drive the noise-to-signal ratio to
zero. In the case that the noise strength increases quadratically with
the distance from the ridge axis however, the increased distance at
which the ridge axis is tracked as a result of increasing σ also results in
an increase in the noise strength that leads to the noise-to-signal ratio
tend to a non-zero limit value. More specifically, for large mutation
strengths, the first term in the radicand in Eq. (20) dominates the
second and the squared stationary standardised distance from the ridge
axis is ρ2 = σ∗2/(1 + ζ∗2). The corresponding normalised progress rate
is ϕ∗

max = 1 − ζ∗2 and thus decreases with increasing ζ∗. While the
exact limit value is not well described by Eq. (21) unless N is very
large, the qualitative behaviour of ρ2 and ϕ∗ is captured correctly by
Eqs. (20) and (21).

3.2.3. Cubic Noise Strength
Finally, consider the case that the noise strength increases cubically
with the distance from the ridge axis, i.e. that σε = ζρ3. Equation (16)
then reads

ρ4 − σ∗2
(

1 + ρ2
)

− ζ∗2ρ6 = 0 (22)
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Figure 7. Normalised progress rate ϕ∗ plotted against normalised mutation strength
σ∗ for the case that the noise strength increases quadratically with the distance from
the ridge axis. The solid lines have been obtained from Eq. (21). The points represent
results measured in runs of the (µ/µ, λ)-ES on the parabolic ridge in search spaces
with N = 40 (+) and N = 400 (×). In all cases, µ = 3, λ = 10, and d = 1.0.

and is thus no longer quadratic in ρ2 but cubic instead. For a given
value of ζ∗ and small σ∗, Eq. (22) has two nonnegative real roots, the
smaller of which corresponds to a stable fixed point of the cubic poly-
nomial in Eq. (15). As σ∗ increases, the value of that fixed point grows
until it coincides with the larger, unstable fixed point and subsequently
disappears. The resulting effect on the standardised distance from the
ridge axis is illustrated in Fig. 8. The solid lines in that figure have been
obtained by numerically finding the root of Eq. (22) that corresponds to
the stable fixed point in the mapping of squared standardised distances
from the ridge axis. The line corresponding to ζ ∗ = 0.2 abruptly ends at
σ∗ ≈ 2.4 as the stable fixed point disappears. With mutation strengths
beyond this point, no stable limit state exists and the distance from
the ridge axis diverges to ∞. For ζ∗ = 0.1, the point where the stable
limit state ceases to exist is beyond the range of mutation strengths
shown. The measurements from runs of evolution strategies that are
included in the figure show that the behaviour can indeed be observed
in practice.

While an explicit solution for the roots of the cubic equation exists,
it is complicated and does not yield new insights. However, an upper
bound on values of σ∗ that allow tracking the ridge can easily be de-
rived. The two roots of the cubic polynomial in Eq. (22) are separated

by a local maximum at z = (1 +
√

1− 3σ∗2ζ∗2)/3ζ∗2. That maximum
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Figure 8. Standardised distance ρ from the ridge axis plotted against normalised
mutation strength σ∗ for the case that the noise strength increases cubically with
the distance from the ridge axis. The solid lines have been found by numerically
finding the stable root of Eq. (22). The points represent results measured in runs
of the (µ/µ, λ)-ES on the parabolic ridge in search spaces with N = 40 (+) and
N = 400 (×). In all cases, µ = 3, λ = 10, and d = 1.0.

and with it the two roots do not exist if 1− 3σ∗2ζ∗2 < 0, making

σ∗ ≤ 1√
3ζ∗

a necessary (though not sufficient) condition for being able to track the
ridge at a finite distance.

The case of noise that increases cubically with the distance from the
ridge axis is interesting as it presents a situation that is qualitatively
different from those considered so far. If the noise strength increases
superquadratically with ρ, then the strategy is forced to track the ridge
more closely than it would in the cases considered above and thus
cannot use arbitrarily large mutation strengths. The larger the level of
noise present, the smaller the mutation strength needs to be in order
to be able to track the ridge. Figure 9 illustrates the dependence of the
progress rate on the mutation strength for several values of ζ ∗. It can
be seen that for ζ∗ 6= 0, increasing the mutation strength is beneficial
up to some point. Beyond that point, the progress rate starts to decline
before the strategy abruptly starts to lose its ability to track the ridge at
all. As for the case of quadratic noise, the accuracy of the predictions
is quite good for N = 400. For N = 40 it is merely the qualitative
dependence that is described correctly, and N -dependent terms will
need to be taken into account in order to derive recommendations with
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Figure 9. Normalised progress rate ϕ∗ plotted against normalised mutation strength
σ∗ for the case that the noise strength increases cubically with the distance from the
ridge axis. The solid lines have been obtained by inserting the numerically obtained
stable root of Eq. (22) into Eq. (18). The points represent results measured in runs
of the (µ/µ, λ)-ES on the parabolic ridge in search spaces with N = 40 (+) and
N = 400 (×). In all cases, µ = 3, λ = 10, and d = 1.0.
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Figure 10. Optimal normalised mutation strength σ∗ and resulting normalised
progress rate ϕ∗ plotted against the normalised noise level ζ∗ for the case of noise
that increases cubically with the distance from the ridge axis. The graphs have been
obtained numerically using Eqs. (18) and (22).

regard to the choice of λ in finite-dimensional search spaces. Finally,
Fig. 10 illustrates the dependence of the optimal mutation strength
and the resulting progress rate on ζ∗. That graphs in that figure have
been obtained by numerically optimising Eq. (18) using the stable
fixed point of Eq. (22) for ρ2. It can be seen that both the optimal
mutation strength and the resulting progress rate decrease rapidly with
increasing levels of noise present.
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4. Cumulative Step Length Adaptation

The calculations presented in Section 3 have considered the mutation
strength as a constant, exogenous quantity. In contrast, the algorithm
outlined in Section 2.1 adapts the mutation strength using the cumu-
lative step length adaptation mechanism [18]. Cumulative step length
adaptation on the noisy sphere model has been studied in [1, 5]. This
section presents an analysis of the behaviour of cumulative step length
adaptation of the noisy parabolic ridge. The analysis allows handling
all three forms of noise considered above.

4.1. Accumulated Search Path

It has been seen in Section 3.1 that the behaviour of the (µ/µ, λ)-ES
with static step length is described on the noisy parabolic ridge by an
iterated stochastic mapping with the (standardised) distance from the
ridge axis as its only state variable and with Eq. (15) as its evolution
rule. Using cumulative step length adaptation introduces as further
state variables the axial and central lengths s1 and sA of the accumu-
lated progress vector, the squared length ‖s‖2 of that vector, and the
mutation strength σ. That is, the algorithm described in Section 2.1
defines a stochastic mapping

(ρ(t), s
(t)
1 , s

(t)
A , ‖s(t)‖2, σ(t)) 7→ (ρ(t+1), s

(t+1)
1 , s

(t+1)
A , ‖s(t+1)‖2, σ(t+1))

that determines the behaviour of the strategy. The exact form of the
mapping can be inferred from Eqs. (3) and (4). The approach to com-
puting stationary values is the same as that used in [1, 5] for the sphere
model and in Section 3 for the case of static step length: replace all
quantities by their mean values and demand stationarity in that no
change occurs between time steps t and t + 1. Any terms that vanish
in the limit N →∞ are dropped from the calculations. The approach
yields useful approximations for large enough N as it can be observed
that fluctuations (quantified by the variation coefficients of the state
variables) decrease with increasing search space dimensionality. As in
Section 3, computer experiments will be used to verify the quality of
the approximations.

From Eq. (3), the evolution rule for the signed length of the axial
component of the accumulated progress vector reads

s
(t+1)
1 = (1− c)s

(t)
1 +

√

µc(2− c)z
(avg)
1 .

Demanding stationarity yields

s1
N→∞

=

√

µ(2− c)

c
z
(avg)
1 (23)
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for the mean value of that quantity, where z
(avg)
1 is given by Eq. (12).

Determining the signed length of the central component of the ac-
cumulated progress vector is complicated by the fact that the direction
of that component changes from one time step to the next. Similar to
Eq. (6), the signed length of the central component of the accumulated
progress vector can be computed as

sA =
s · (x̂− x)

R

where x̂ = (x1, 0, . . . , 0) and where · denotes the inner product of two
vectors. Using the assumption that the distance R from the ridge axis
does not change along with Eq. (3) and the fact that according to Step 3
of the algorithm in Section 2.1

x̂(t+1) − x(t+1) = x̂(t) − x(t) − σ(t)z
(avg)
2...N

it follows that

s
(t+1)
A =

1

R

(

(1− c)s(t) +
√

µc(2 − c)z(avg)
)

·
(

x̂(t) − x(t) − σ(t)z
(avg)
2...N

)

= (1− c)

(

s
(t)
A −

σ(t)

R
s(t) · z(avg)

2...N

)

+
√

µc(2− c)

(

z
(avg)
A − σ(t)

R
‖z(avg)

2...N ‖2
)

.

Considering the first pair of parentheses on the right hand side, as
the direction of the lateral component of the progress vector z(avg) is

random, the product s(t) ·z(avg)
2...N in the mean equals s

(t)
A z

(avg)
A . Moreover,

from Eq. (17) with ρ = 2Rd/N it follows that σ/R ≤ 2µcµ/µ,λ/N . Thus,

as 2µcµ/µ,λz
(avg)
A /N � 1, the second term in the pair of parentheses

disappears compared to the first in the limit N →∞ and can thus be
dropped from the calculations. As a consequence, from the stationarity
requirement on the signed length of the accumulated progress vector’s
central component it follows that

sA
N→∞

=

√

µ(2− c)

c

(

z
(avg)
A − σ

R
‖z(avg)

2...N ‖2
)

(24)

where z
(avg)
A and ‖z2...N‖2 are given by Eqs. (13) and (14), respectively.

Finally, again from Eq. (3), the overall squared length of the accu-
mulated progress vector at time t + 1 is

‖s(t+1)‖2 = (1− c)2‖s(t)‖2

+ 2(1− c)
√

µc(2− c)s(t) · z(avg) + µc(2 − c)‖z(avg)‖2.
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As the direction of the lateral component of the progress vector z(avg) is

random, the product s(t) ·z(avg) in the mean equals s
(t)
1 z

(avg)
1 +s

(t)
A z

(avg)
A ,

and, using Eqs. (23) and (24),

s
(t)
1 z

(avg)
1 + s

(t)
A z

(avg)
A

N→∞

=

√

µ(2− c)

c

(

z
(avg)
1

2
+ z

(avg)
A

2
− σ(t)

R
z
(avg)
A ‖z(avg)

2...N ‖2
)

.

Demanding stationarity and solving for the squared length of the ac-
cumulated progress vector thus yields

‖s‖2 N→∞

=
2(1− c)

c
µ

(

z
(avg)
1

2
+ z

(avg)
A

2
− σ

R
z
(avg)
A ‖z(avg)

2...N ‖2
)

+ µ‖z(avg)‖2. (25)

Altogether, Eqs (23), (24), and (25) together with Eqs. (12), (13),
and (14) characterise the accumulated progress vector of the (µ/µ, λ)-
CSA-ES on the noisy parabolic ridge for high search space dimension-
ality.

4.2. Mutation Strength and Progress Rate

From Eq. (4), the stationarity requirement for the mutation strength is
satisfied if and only if ‖s‖2 = N . The rightmost term on the right hand

side of Eq. (25) equals µ(z
(avg)
1

2
+ ‖z(avg)

2...N ‖2), where z
(avg)
1 and ‖z(avg)

2...N ‖2
are given by Eqs. (12) and (14), respectively. Due to the choice of the

cumulation coefficient c, the term involving z
(avg)
1 thus disappears for

N →∞ compared to both that involving ‖z(avg)
2...N ‖2 and the first term on

the right hand side of Eq. (25). For large N , the stationarity condition
thus requires that

z
(avg)
1

2
+ z

(avg)
A

2
=

σ

R
z
(avg)
A ‖z(avg)

2...N ‖2

and therefore, with Eqs. (12), (13), and (14) and the definition of ρ,
that

(1 + ρ2)c2
µ/µ,λ

1 + ϑ2 + ρ2
=

2dσ

µ

cµ/µ,λ
√

1 + ϑ2 + ρ2
.

Using the definition of σ∗ and squaring both sides, this condition can
be written as

1 + 2ρ2 + ρ4 = 4σ∗2 + 4σ∗

ε
2 + 4σ∗2ρ2.
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Using Eq. (16) to eliminate the normalised noise strength σ∗

ε finally
yields condition

1 + 2ρ2 − 3ρ4 = 0

the only positive root of which is ρ2 = 1. That is, independently of
how the noise strength depends on the distance from the ridge axis,
cumulative step length adaptation on the parabolic ridge generates
mutation strengths such that the resulting standardised distance from
the ridge axis is 1. If the standardised distance from the ridge axis
exceeds 1, then Eq. (4) acts to reduce the mutation strength and vice
versa.

Using ρ2 = 1 in Eq. (16) and solving for σ∗ yields

σ∗ N→∞

=

√

1− σ∗

ε
2

2
(26)

for the stationary normalised mutation strength that the (µ/µ, λ)-CSA-
ES employs on the noisy quadratic ridge in the limit N → ∞. Notice
that as ρ = 1, for the quadratic and cubic cases it follows that ζ ∗ ≈ σ∗

ε .
From Eq. (18) the resulting normalised progress rate is

ϕ∗ N→∞

=
1− σ∗

ε
2

2
. (27)

Thus, in the absence of noise, the mutation strength generated by
cumulative step length adaptation results in a progress rate that is
half of the optimal progress rate that would be obtained if large values
of σ∗ were used. While for uniform noise strength and N → ∞, the
same progress rate as in the absence of noise could be achieved for
any level of noise present, cumulative step length adaptation instead
generates smaller mutation strengths as the noise strength increases
and fails to track the ridge for σ∗

ε ≥ 1. Similarly, in the case that the
noise strength varies quadratically with the distance from the ridge
axis, the (µ/µ, λ)-CSA-ES fails to track the ridge for ζ ∗ ≥ 1; however,
this failure is unavoidable as it has been seen in Section 3 that for
values of ζ∗ greater than 1, a positive progress rate cannot be achieved
with any mutation strength. Finally, for the case of a cubic dependence
of the noise strength on the distance from the ridge axis, positive (al-
beit small) progress could be achieved for high levels of noise present,
but cumulative step length adaptation fails to generate the small step
lengths necessary for that purpose.

Figures 11, 12, and 13 compare predictions from Eqs. (26) and (27)
that hold for N →∞ with measurements made in runs of the (µ/µ, λ)-
CSA-ES on the noisy parabolic ridge for finite search space dimension-
ality. The figures illustrate that the accuracy of the predictions is not
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Figure 11. Average normalised mutation strength σ∗ and normalised progress
rate ϕ∗ of the (µ/µ, λ)-CSA-ES plotted against normalised noise strength σ∗

ε for the
case of uniform noise strength. The solid lines have been obtained from Eqs. (26)
and (27), respectively. The points represent results measured in runs of the strat-
egy on the parabolic ridge in search spaces with N = 40 (+) and N = 400 (×).
Measurements have been made for µ = 3, λ = 10, and d = 1.0.
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Figure 12. Average normalised mutation strength σ∗ and normalised progress
rate ϕ∗ of the (µ/µ, λ)-CSA-ES plotted against normalised noise level ζ∗ for the
case that the noise strength increases quadratically with the distance from the ridge
axis. The solid lines have been obtained from Eqs. (26) and (27), respectively. The
points represent results measured in runs of the strategy on the parabolic ridge in
search spaces with N = 40 (+) and N = 400 (×). Measurements have been made
for µ = 3, λ = 10, and d = 1.0.

as good as it is for the case of static step length. Especially for the
case of cubic dependence of the noise strength on the distance from
the ridge axis and N = 40 is the dynamic adaptation process unstable
except for the smallest noise levels. However, it can also be seen that
the accuracy of the predictions increases for increasing search space
dimensionality as expected, and that the qualitative dependence on the
mutation strength is described properly by Eqs. (26) and (27). Taking
N -dependent terms into account in future work will allow making more
accurate predictions and making quantitative recommendations with
regard to the choice of µ and λ.
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Figure 13. Average normalised mutation strength σ∗ and normalised progress
rate ϕ∗ of the (µ/µ, λ)-CSA-ES plotted against normalised noise level ζ∗ for the
case that the noise strength increases cubically with the distance from the ridge
axis. The solid lines have been obtained from Eqs. (26) and (27), respectively. The
points represent results measured in runs of the strategy on the parabolic ridge in
search spaces with N = 40 (+) and N = 400 (×). Measurements have been made
for µ = 3, λ = 10, and d = 1.0.

5. Conclusions and Outlook

This paper has examined the effects of noise on the performance of
the (µ/µ, λ)-ES on the quadratic ridge function class. Three forms of
noise have been considered: uniform noise that has the same strength
throughout the search space, noise that increases quadratically with the
distance from the ridge axis, and noise where that dependence is cubic.
Quantitative results have been derived in the limit N →∞, and their
accuracy has been tested experimentally in finite-dimensional search
spaces. It has been seen that uniform noise can be effectively eliminated
by working with a large mutation strength and tracking the ridge at
a great distance. If the noise increases quadratically with the distance
from the ridge, then it is no longer possible to drive the noise-to-signal
ratio to zero by increasing the mutation strength, and above a certain
noise level tracking the ridge becomes impossible unless µ and λ are
increased. If the increase of the noise strength with the distance from
the ridge is cubic, then positive progress can always be achieved, albeit
only with very small mutation strengths. Altogether, the three cases
considered provide scenarios with widely differing characteristics that
pose different demands to step length adaptation mechanisms.

Then, the performance of cumulative step length adaptation has
been investigated for the three scenarios. It has been seen that inde-
pendently of how the noise varies with the distance from the ridge axis,
cumulative step length adaptation always generates mutation strengths
that lead to the ridge being tracked at unit standardised distance. In the
absence of noise, the progress rate that is achieved is half of the optimal
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progress rate. If there is noise present, then cumulative step length
adaptation fails to generate useful step lengths if the noise exceeds unit
strength. The point where cumulative step length adaptation starts to
fail can be deferred by increasing µ and λ.

This paper is but a first step toward an understanding of the be-
haviour of adaptive evolution strategies on the ridge function class.
The directions in which the results presented here can be extended are
numerous. First, it is desirable to obtain an improved understanding
in finite-dimensional search spaces. Finite values of N place limits on
how far the population size parameters can beneficially be increased
and are instrumental for deriving recommendations with regard to the
choice of µ and λ. Such an understanding can be obtained by including
some of the terms that have been dropped here in the analysis. The
challenge is to determine what terms need to be considered, as well as
the treatment of fluctuations (i.e., of quantities that cannot simply be
replaced by their average values). Second, different forms of step length
adaptation, such as mutative self-adaptation [9] or meta-ES [23] remain
to be studied and compared with cumulative step length adaptation.
For meta-ES, Herdy [17] provides empirical evidence for their usefulness
for step length adaptation on the ridge. Third, other strategy variants,
such as evolutionary gradient search strategies [24] or the (λ)opt-ES
studied in [2] on the sphere model remain to be considered. Of interest
as well is the examination of ridge topologies other than the quadratic
one. In the absence of noise and not considering step length adaptation,
such an analysis has been presented in [10]. An finally, as pointed out
by Whitley, Lunacek, and Knight [26], the ridge is a prime example for
the usefulness of nonisotropic mutations. Strategies such as the CMA-
ES [16] are capable of learning the direction of the ridge axis. After
adaptation of the covariance matrix is complete, the CMA-ES can track
the ridge by generating mutation vectors that have large components
in direction of the ridge and much smaller components in other direc-
tions. This should prove especially useful if there is noise present that
increases superquadratically with the distance from the ridge axis, and
it will be interesting to see how noise affects the adaptation of the
covariance matrix.
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