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Abstract

We propose a new method of document clustering with character N-grams. Tra-

ditionally, in vector-space model, each dimension corresponds to a word, with an

associated weight equal to a word or term frequency measure (e.g. TFIDF). In our

method, N-grams are used to define the dimensions, with weights equal to the nor-

malized N-gram frequencies. We further introduce a new measure of the distance

between two vectors based on the N-gram representation. In addition, we compare

N-gram representation with a representation based on automatically extracted terms.

Entropy and accuracy are our evaluation methods. T-test is used to prove there is

significant differences between two results. From our experimental results, we find

document clustering using character N-grams produces the best results.
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Chapter 1

Introduction

Information retrieval through inverted indexing of document collection is widely used

to retrieve documents from large electronic document collections, including the Word

Wide Web. Conventionally, the results are represented as a list of documents, ordered

by relevance. An alternative way of presenting the results is organizing them into

clusters. Document clustering is an effective way to help people discover the required

documents [16].

Clustering is the process of grouping a set of objects in to classes of similar ob-

jects [10]. A kind of traditional clustering methods is K-Means [18] and its varia-

tions [25]. For document clustering, the Vector-space model [24] can be used. In

the vector-space model, each document is represented as a vector, where vector com-

ponents represent certain feature weights. Traditionally, components of vectors are

unique words. However, it has the challenge of high dimensionality. For the 8654 doc-

uments used in this thesis, which is a subset of Reuters-21578 [17], there are 32,769

unique words after stopword elimination and stemming. After removing numeral,

there are still 18,276 words left. Because of the large and sparse document matrix,

the distance between two documents approximately to be constant [9], which leads

worse clustering quality. The high dimensionality also makes document clustering

tasks take long time to get clustering results. Selection of words based on ad fre-

quency criterion is commonly used to solve the high dimensionality problem [2]. We

can also choose words based on their document frequency. The words appearing in

too few or too many documents are not as important as other words and can be

removed to reduce dimensionality.

Another approach to is using N-gram or term representation. Recent research

shows that N-grams can be used for computer-assisted authorship attribution based

on N-gram profiles [14]. Normalized N-gram frequencies are used to build author

profiles with a new distance measure. Since the N-grams can be used in document

classification and give good results, it is possible that N-gram is a better represen-
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tation than word. We used a similar way to build a vector space for the documents

and revised the distance measure to make it is suitable for document clustering. We

performed experiments

In addition, we compare N-gram representation with a representation based on

automatic term extraction. It is based on the idea that terms should contain more

semantic information than words. Recent research shows the automatically extracted

terms based on C/NC Value can be used as vector features and may lead to better

clustering performance with lower dimensionality than word representation [20, 28].

However, the experiments in [20, 28] were performed on narrow domain text corpora

(computer science, medical and web pages crawled from the .GOV Web site). We are

interested in clustering performance of term representation on more generic data set,

such as newswire stories.

In summary, this thesis addresses the following questions:

• Document clustering using N-grams: Is it meaningful to use N-grams as fea-

tures?

• Document clustering using Terms: Is document clustering using automatic term

extraction based on C/NC Value better on a generic text corpus than using

unique words?

• How does feature selection based on document frequency compare with feature

selection based on frequency on whole corpus?

• How do document clustering with N-grams, terms and words in different di-

mensionality compare?

The organization of the rest of the thesis is: Chapter 2 gives a brief review of docu-

ment clustering, automatic term extraction with C/NC value and N-grams.Chapter 3

describes the details of document clustering with N-gram and term representation and

the implementation of clustering method. Chapter 4 shows the experimental results

and Chapter 5 summarizes the paper and describes the future work.



Chapter 2

Related Work

In this Chapter, some necessary background knowledge will be introduced. First we

define what is clustering and introduce some existing clustering methods. We mainly

describe the K-Means clustering algorithm and some of its variations since the K-

Means algorithm is the base clustering algorithm we used. Second we describe the

specific tasks for document clustering including document preprocessing, vector-space

model, distance measures and evaluation measures. Third we describe the automatic

term extraction based on C/NC value. At last of the Chapter we introduce N-grams

and the applications of N-grams on text mining.

2.1 Clustering

Clustering is the process of grouping a set of objects into sets of similar objects. A

cluster is a collection of data objects which are similar to one another within the same

cluster and dissimilar to the objects in other clusters [10]. From the definition we see

that the distance measure is essential to clustering. The details of choosing distance

measure is described in 2.2.

Clustering analysis helps us discover overall distribution patterns and relationship

among data attributes. Clustering is applied widely in many areas, including pattern

recognition, data analysis, image processing, market research. Clustering can also be

used in presenting search results [16]. It is more efficient for a user to locate relevant

information among the retrieved documents than the traditional ranked list.

There exist many clustering algorithms, which can be classified into several cate-

gories, including partitioning methods, hierarchical methods and density-based meth-

ods. A partitioning method classifies objects into several one-level partitions. Each

partition should contain at least one object. If each object belongs to only one clus-

ter, it is called hard clustering; otherwise, it is call soft clustering. On the other

hand, hierarchical methods create hierarchical decomposition of objects (e.g., a tree).
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Two approaches for building hierarchy are bottom-up and top-down. The bottom-up

approach, also called agglomerative approach, merges objects into small groups and

small groups into larger groups until only one group is left. The top-down or divisive

approach, splits whole data set into several groups. Then a large group is iteratively

split up into smaller groups till every object is in only one group. A density-based

method introduced the notion of density, the number of objects in the “neighborhood”

of a object. A given cluster continues growing until its density exceeds a threshold.

Density-based methods can build clusters of arbitrary shape and filter out outliers as

noise.

One of the widely used clustering methods is K-Means [18], a partitioning cluster-

ing method. Given a cluster number k, K-Means randomly selects k positions in the

same vector space as the objet representation as clusters centroids. K-Means assigns

all objects to their nearest cluster, based on the distance between the objects and

cluster centroids. Then the K-Means algorithms computes new centroids and adjusts

clusters iteratively until all objects are converged or the maximum number of itera-

tions is reached. The centroid can be mean point if the data objects are presented as

vectors.

K-Means is a relatively scalable efficient clustering algorithm. Let n be the number

of objects, k be the number of clusters and t be the iteration times, the computational

complexity of K-Means is O(n · k · t) [10]. Normally, k and t are much smaller than

n, so the running time is linear with the number of data objects. On the other hand,

K-Means has some weaknesses. It cannot handle noisy data and outliers. As well,

the initial points are chosen randomly, so a poor choice of initial points may lead to

a poor result. Moreover, k, the number of clusters, should be specified in advance.

Selecting the best k is often ad-hoc [8].

A lot of research has been performed on improving K-Means. Instead of using

random initial points, we can give a good guess of starting points from clustering of

a small subset of the data [3]. Multiple subsamples, say J, are chosen and clustered

producing J × k centers. Then K-Means is applied to these centers J times to get

the best mean as the initial points for whole data set. It is claimed that using this

method can lead to better clustering results as well as reduce iterating times [3].

Another extension of K-Means is Bisecting K-Means [25], which is a top-down hierar-

chical clustering method using basic K-Means. At first, Bisecting K-Means groups all

objects in a single cluster. Then it iteratively splits the largest cluster into two clus-

ters using the basic K-Means until it reaches the desired number of clusters. Since the

largest cluster is split in every iteration, Bisecting K-Means tends to produce clusters
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of similar size, which may not always be appropriate. We can use other ways to choose

which cluster should be split, such as picking the one with the least overall similarity,

or use a criterion based on both size and overall similarity. However, different ways

of splitting have only slight effects on clustering results [25].

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [6], is a

density-based clustering method. Density of an object is based on how many other ob-

jects exist around it. DBSCAN treats a cluster as a maximal set of density-connected

objects, whose density should be under a fixed threshold value given in advance.

An object not in any cluster is considered as a noise. Given a radius value ε and

a number of minimal points that should occur in around a dense object MinPts,

DBSCAN scans through data set only one time, grouping neighboring objects into

clusters. One of the advantages of DBSCAN is the ability of discovering clusters

of arbitrary shape clusters as well as noise. In addition, unlike K-Means, DBSCAN

can find out the cluster number automatically. Moreover, if R*-tree [21] is used,

DBSCAN is efficient with run time complexity O(n× log n). However, it is hard to

tune DBSCAN’s ε and MinPts. A bad pair of ε and MinPts may produce a single,

giant cluster. RDBC(Recursive Density Based Clustering) algorithm [27] improves

DBSCAN by calling DBSCAN recursively and adaptively changing its parameters.

Comparing with DBSCAN, RDBC has same runtime complexity and is reported to

give superior clustering results [27].

2.2 Document Clustering

Before clustering documents, several preprocessing steps may be needed, depending

on the document representation chosen and the nature of the documents. First,

HTML, XML or SGML tags should be removed. Second step is stopword elimination.

Stopwords, such as “to”, “of”, and “is”, are very common words. At last, word

stemming is applied on corpus to get the stem of a word by removing the word prefix

or suffix. Porter’s stemming algorithm [22] is a widely used stemming algorithm for

English language. The last two steps are required for word representation. In N-gram

representation, the stopword elimination and word stemming are not required from

our experimental results.

Vector-space model [23] is widely used in document clustering. In the Vector-space

model, each document is represented by a vector of weights of n “features” (words,

terms or N-grams) :

di = (tf1, tf2, . . . , tfm),
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where m is the number of features and tfi is the weight of ith feature. If there are n

documents in total, the corpus is represented by a n×m matrix X.

The weight of features should be calculated to build the matrix X. One of the fea-

ture weighting schemes is TFIDF , which combines the term frequency and document

frequency. Term frequency is the frequency of a feature in a certain document, while

document frequency is the number of documents where the feature appears. TFIDF

is based on the idea that if a feature appears many times in a document, the feature is

important to this document and should have more weight. A feature that appears in

many documents is not important since it is not very useful in distinguishing different

documents. Hence, it should have lower weight. Let tf(i, j) be the term frequency of

feature j in a document di , df(j) be the document frequency of feature j and N be

the number of documents in the whole collection, TFIDF is defined as [24]:

TFIDF (i, j) = tf(i, j) · log (
N

df (j)
)

Distance or similarity is fundamental of defining a cluster. Euclidean distance is

one of the most popular distance measures. Given two vectors d1 = (d1,1, d1,2, . . . , d1,m)

and d2 = (d2,1, d2,2, . . . , d2,m), their Euclidean distance is [26]:

√

√

√

√

m
∑

i=1

(d1,i − d2,i)2,

which is one of the standard metrics for geometrical problems. The cosine measure,

however, is more popular in document clustering, because it factors out differences in

length between vectors [26]. Cosine measures the similarity between two documents

d1 and d2 [26] as:

cosine(d1, d2) =
(d1 · d2)

‖d1‖ · ‖d2‖

where “·” denotes the vector dot product and “‖” denotes the length of a vector. It

is the cosine of the angle between two vectors in n-dimension space. Euclidean and

cosine are equivalent if the vectors are normalized to unit length.

2.3 Evaluation Measures

There are two kinds of evaluation measures: internal quality measure and external

quality measure [25]. An internal quality measure references none external knowledge.

It is used if the class label of each document is unknown. On the other hand, if an
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external quality measure compares clustering results with given classes to measure the

clustering quality. Some of external quality measures are: Entropy [2], F-measure [15]

and Accuracy.

Let C = {c1, c2, . . . , cl} be the set of clusters, K = {k1, k2, . . . , km} be the set of

given classes and D be the set of documents, the entropy E(C) is defined as

E(C) =
∑

cj

|cj|

|D|

∑

i

−pij ln(pij), (2.1)

where pij is the “probability” that a member of cluster cj belongs to class ki. The

formal definition of pij is

pij =
|cj ∩ ki|

|cj |
(2.2)

The range of entropy is (0, ln |K|)[2]. Entropy measures the “purity” of the clusters

with respect to the given classes. The smaller the entropy, the purer are the clusters.

Accuracy A(C) is defined as:

A(C) =
1

|D|

∑

Cj

max
i
|cj ∩ ki| (2.3)

Accuracy shows the clustering results with respect to the main classes. The basic

idea of Accuracy is try to find a “main ” class of each cluster. The main class of a

cluster is the class which gives the largest intersection with the cluster. The value of

accuracy lies in (maxi |ki|
|D|

, 1). The larger the accuracy, the better is the result.

2.4 Automatic Term Extraction based on C/NC Value

The C/NC Value, a state-of-the-art method for automatic term extraction, combines

both linguistic (linguistic filter and part-of-speech tagging [4]) and statistical informa-

tion (frequency analysis and C/NC value) [7, 20]. The C V alue aims to improve the

extraction of nested multi-word terms while the NC V alue aims to improve multi-

word terms extraction in general by incorporating context information into C V alue

method.

The linguistic part of C V alue computation includes part-of-speech (POS) tagging

and a linguistic filter. The POS tagging program assigns to each word of a text a

POS tag, such as Noun, Verb or Adjective. Then, one the following linguistic filters

is used to extracted word sequence.

1. Noun+Noun
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2. (Adj|Noun)+Noun

3. ((Adj|Noun)+|((Adj|Noun)∗(NounPrep)?)(Adj|Noun)∗)Noun

The meanings of “?”, “+”and “∗” , as shown in Table 2.1 are same as their

meanings in regular expressions.

Symbol Meaning

? Matches the preceding element zero or one times
+ Matches the preceding element one or more times
∗ Matches the preceding element zero or more times

Table 2.1: Meanings of ?, + and ∗ in linguistic filters for C/NCV alue

The first filter is “closed filter” and gives higher precision but lower recall. The

last two filters are “open filters” and produce higher recall but lower precision.

After POS tagging and linguistic filtering, we calculate the C V alue:

C value(α) =







log2 |α|f(α) αis not nested

log2 |α|(f(α)− 1
P (Tα)

∑

β∈Tα
f(β)) otherwise

where α is the candidate string, |α| is the number of words in string α, f(α) is the

frequency of occurrence of α in the corpus, Tα is the set of extracted candidate terms

that contain a, and P (Tα) is the number of these terms which contain α. Nested

terms are terms which appear within other longer terms.

The NC V alue extended C V alue by using context word information into term

extraction. Context words are those that appear in the vicinity of candidate terms,

i.e. nouns, verbs and adjectives that either precede or follow the candidate term.

Automatic term extraction based on C/NC Value performs well on domain specific

document sets [7, 20]. The terms can be used as features in document vectors. Using

term representation has the potential of reducing significantly reduce the dimension-

ality and giving better results than word representation in special text corpora [28].

Recent research on parallel term extraction makes it possible to perform automatic

term extraction on large(Gigabyte-sized) text corpora [29] .

2.5 N-gram application in text mining

An N-gram is a sequence of symbols extracted from a long string [5]. The symbol can

be a byte, character or word. Extracting character N-grams from a document is like

moving a n character wide “window” across the document character by character.
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Each window position covers n characters, defining a single N-gram. In this process,

any non-letter character is replaced by a space and two or more consecutive spaces are

treated as a single one. The byte N-grams are N-grams retrieved from the sequence

of the raw bytes as they appear in data files, without any kind of preprocessing.

Table 2.2 shows examples of byte, character and word Bi-grams extracted from the

string ”byte n-grams”.

Samples

Byte Bi-grams n -g am by e gr m\n n- ra te yt
Character Bi-grams G N AM BY E GR M N RA TE YT

Words Bi-grams byte n n gram

Table 2.2: Examples of byte, character and word N-grams

A N-gram representation was used in authorship attribution [14]. The author pro-

file is generated from training data as a set of L pairs {(x1, f1), (x2, f2), . . . , (xL, fL)},

where xj is a most frequent N-gram and fj is the normalized frequency of xj (j =

1, 2, . . . , L). The N-gram frequency is normalized by dividing by the sum of all N-

gram frequencies of the same N-gram size and in the same document. The distance

between two profiles is defined as:

∑

n∈profile





f1(n)− f2(n)
f1(n)+f2(n)

2





2

(2.4)

where fi(n) = 0 if n is not in the profile.

Experiments of byte N-gram based authorship attribution shows that it perform

well on English, Greece and Chinese corpora [14]. The accuracy on Chinese corpora

is not as high as other corpora. The restricted profile size and the fact that Chi-

nese characters use two bytes may be the reason. The advantages of N-gram based

authorship attribution also include controllable profile size and a simple algorithm.



Chapter 3

Methodology and Implementation

In this chapter, we will introduce how N-gram representation is used in document

clustering. Document clustering using terms and words are also describes. Finally,

we described limitations of some existing K-Means algorithms, which is why we im-

plemented K-Means algorithm.

3.1 Document Clustering using N-grams

In our approach, we attempted to follow the idea proposed in [14]. We retrieve the

most frequent N-grams and their frequencies from each document as its profile. To

measure the distance between two documents, we revise Eq. (2.4) to Eq. (3.1):

∑

1≤j≤L

(v1(j)− v2(j))
2

(

(v1(j)+v2(j))
2

)α (3.1)

When α = 2, Eq. (3.2) is same as Eq. (2.4) and when α = 0, Eq. (3.2) is the

square of Euclidean distance. However, from our experimental results, we find that

α = 1 produces the best result. So the distance formula is:

∑

1≤j≤L

(v1(j)− v2(j))
2

(v1(j)+v2(j))
2

=
∑

1≤j≤L

2 · (v1(j)− v2(j))
2

(v1(j) + v2(j))
(3.2)

Algorithm 1 gives the algorithm of document clustering with N-grams. For each

document, a profile is built using most frequent N-grams in the document. All unique

N-grams in these profiles are used as vector components. Thus, the vector space can

be built to be used in the K-Means algorithm.

3.2 Document Clustering using Terms

Terms are extracted automatically based on their C/NC Value. In order to reduce

the dimensionality, m terms with highest C/NC Value are chosen as vector features.

10
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Algorithm 1 Document Clustering using N-grams

V: Vocabulary of N-grams
for all document di do

V ← V
⋃

the most frequent N-grams of di

end for
M: The document Matrix, the columns of which are the document vectors
for all document di do

Build Profile Pi as {(x1, w1), (x2, w2), . . . , (xL, wL)}
// xi is the n-gram and wi is the weight of xi

for all ej ∈ V do
if ej ∈ Pi, where ej == xk then

M [i][j] = wk

else
M [i][j] = 0

end if
end for

end for
Feature selection on M based on document frequency
Clustering M using K-means with Formula 3.2 as distance formula.

TFIDF is used as the weighting scheme.

We can use cosine as similarity measure or sine as distance measure, which is

claimed to be better than Euclidean distance in document clustering [26]. When

calculate cosine or sine between two document vectors, each vector corresponds to a

point on the unit sphere. So real distance between two vectors is the length of curve

between the two corresponding points and it is arcsin. Hence, we use Eq. (3.3) to

measure distance.

arcsin(d1, d2) =
π

180
·
√

1− cosine(d1, d2)2 (3.3)

3.3 Document Clustering using Words

Stopword elimination and word stemming are required for word representation. Only

the most frequent words are used to reduce dimensionality. The weighting scheme is

TFIDF. The arcsin is used as distance measure

3.4 K-Means Implementation

We use K-Means as base clustering method in this project since K-Means is a widely

used, relatively efficient clustering method. In addition, simple K-Means can be easily
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revised to Bisecting K-Means to generate hierarchical clusters.

Algorithm 2 shows the details of K-means algorithm [10]. We considered but did

not use initial point refinement method described in [3] since, in our experiments, us-

ing the initial point refinement does not produce better clustering quality, nor smaller

iteration times than randomly choosing initial points. Moreover, the experiment in [3]

is built on 10 sub samples(J = 10) and only one sub sample(J = 1). When J = 10,

each sample size is 10% of the whole data set. In this case the running time of looking

for initial points is nearly the same as the running time of applying the simple K-

Means on whole data set, since K-Means time-complexity is linear with the number

of objects. When J = 1, the performance is not significantly better or it is it may be

even worse than randomly choosing initial points on “high” dimensionality. For this

reason we decided not to use this method.

Algorithm 2 K-means

Partition objects into k nonempty subsets randomly.
repeat

Compute the centroids of the clusters.
Assign each object to the cluster with the nearest centroid.

until No object is moved or reach the maximum number of iterations

The K-Means algorithm is implemented in several software packages, including

Weka [11], Matlab and CLUTO [12]:

• Weka: Weka is a widely used Machine learning toolkit implemented in Java.

Weka contains many machine learning tools for classification, regression, clus-

tering and association rules. It is an open source software issued under GNU

General Public License, so we can easily revise its K-Means implementation to

use Eq. 3.2 as the distance measure. Weka also stores sparse data efficiently.

Another advantage of Weka is that it implements several clustering methods

besides K-Means, such as EM. That makes it easier to perform tests on dif-

ferent clustering methods. Scalability, however, is the main problem of Weka.

For large data sets, it took several days to perform clustering. That is why we

decided to use faster software to conduct our experiments.

• Matlab: A K-Means clustering implementation in Matlab is available [19]. It

supports several distance measures including squared Euclidean distance and

cosine. When we used cosine as distance measure, however, differences of dis-

tances were so small that Matlab gave out error messages and stopped. In ad-
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dition, we found Matlab was even slower than Weka when we used the Eq. 3.2

as the distance measure.

• CLUTO: CLUTO is another software package for clustering. CLUTO claims

that it can scale to the large data set containing hundreds of thousands of

objects and tens of thousands of dimensions. Unfortunately, CLUTO is not an

open source software. We cannot revise it to use Eq. 3.2 as distance measure.

Since none of these implementations satisfy our requirement of speed and modifi-

ability, we implemented K-Means algorithm in C++ by ourselves.



Chapter 4

Experimental Results

4.1 Data Set and Clustering Method

We used Reuters-21578, Distribution 1.0 [17] and cisi-cran-med [1] data sets to test

and compare our clustering algorithms. Reuters-21578 contains 21,578 Reuters newswire

stories. After removing the articles having less or more than one topic, 8,654 doc-

uments are remain which belong to 65 topics. We took topics as class label, so

there are 65 given classes. The cisi-cran-med data set contains the Information Re-

trieval abstract(cisi), Aeronautics abstracts(cran) and Medline abstracts(med). The

cisi-cran-med data set has 3,891 documents.

Documents in the Reuters data set are not spread in the 65 given classes evenly.

The two largest classes contain 5,860 documents and there are 23 classes have less

then 10 documents. About 86.93% documents are in the 10 largest classes, while only

about 0.64% documents are in the 20 smallest classes.

For N-gram and term representation, the documents are used without any pre-

processing. For word representation, we removed stop-words and did word stemming

using Porter’s stemming algorithm [22].

K-Means is the base clustering method to compare the three representations. In

order to decrease the random seed impact on K-Means, we ran each test 10 or 30

times and used the mean as the final result. Ten or thirty, however, is still a small

number. So the t-test is used to prove one group of results is better than another

group of results.

The ten most frequent character Tri-grams, terms and words retrieved from the

Reuters and cisi-cran-med are shown in Table 4.1 and Table 4.2. These examples give

us a general idea of retrieved N-grams, terms and words. The “ ” in n-grams means

the space character. The word “the” is so frequent that it produces the first three

Tri-grams. In word representation, whereas, “the” is removed as a stopword. We can

see that many extracted terms are not real terms.

14
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Also automatic term extraction based on C/NC Value performs well in domain-

specific corpora such as computer science and medical articles [20], but it seems to

have a lower accuracy on the newswire articles. We will show it later that document

clustering with terms, nevertheless, still gives better clustering performance than with

words.

Samples

Tri-grams TH THE HE IN ER ED OF TO RE CO
Terms mln dlr, mln vs, oil india ltd ,cts vs, oil india,

india ltd, vs loss, dlrs vs, avg shr, mln avg shr
Words said mln dlr ct vs year net compani pct shr

Table 4.1: The most frequent Tri-grams, Terms and Words from the Reuters data set

Samples

Tri-grams TH THE HE OF OF IN ION ED TIO ON
Terms mach number, boundary layer,heat transfer,

laminar boundary layer, pressure distribution,
shock wave, growth hormone, laminar boundary,
leading edge, turbulent boundary layer

Words flow, result, number, effect, librari, pressur,
inform, method, present, studi

Table 4.2: The most frequent Tri-grams, Terms and Words from the cisi-cran-med
data set

4.2 Zipf’s Law

Zipf’s law [30] describes the distribution of words used in human generated texts. If

we count how many times each word appears in the whole corpus, then we can sort

words by their frequencies. We can give the most frequent word rank 1, the second

most frequent word rank 2 and up to the least frequent word rank n if there are n

unique words. Let ri be the ith word in the sorted list, fi be the frequency of ri and

C is a constant, then the Zipf’s law is:

ri × fi = C, (4.1)

where i = 1, 2, . . . , n. If we take the log to each side of Equation (4.1), then we get:

log ri + log fi = C2, (4.2)
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where C2 = log C is a constant too. So if ri and fi are plotted on a log-log scale, we

should get a straight line with gradient −1.

The distribution of unique words obeys Zipf’s law, as shown in Fig. 4.1, in Reuters

data set.The distribution of N-grams on Reuters data set, is shown in Fig. 4.2, for

1 ≤ N ≤ 10. We can find that for N ≥ 3, N-grams obey Zipf’s law in a rough

approximation. The gradients of lines are not −1, which implies that a more general

rule must be used: rβ
i × fβ

i = C, where β is a constant. Another fact we can deduce

from Fig. 4.2 is that the curves representing larger N are always lower than curves

representing smaller N. It means the larger the N, the less are there less common

N-grams. That is why in Table 4.4, the sparsity of document matrix is increasing

with increasing the N-gram size.
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Figure 4.1: Distribution of unique words on a log-log scale (Zipf’s Law)

4.3 Experimental Results

In this section, we show our experimental results of document clustering using N-

grams, terms and words. For document clustering with N-gram representation, clus-

tering results are influenced by:

• α in Eq. (3.1)

• N-gram size
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Figure 4.2: Distribution of N-grams on a log-log scale (Zipf’s Law)

• Byte N-gram representation or character N-gram representation

• Number of clusters(k)

The experimental results for turning document clustering with N-grams are shown

in 4.3.1. Furthermore, we performed experiments with feature selection based on

document frequency for N-gram, term and word representation and show the results

in 4.3.2. At last, we shows the results of comparing document clustering using N-

grams, terms and words in different dimensionality in 4.3.3

4.3.1 Document clustering with N-grams

In Eq.(3.1), we introduced α. The best clustering results, as shown in Table 4.3,is

deduced when α = 1. The result of α = 2 is not included in Table 4.3 since in this

case all documents converge to a single cluster after iterating enough times. When

α = 0, Eq. (3.2) is same as the squared Euclidean distance, and gives worse results

than α = 1. That is why we use Eq. (3.2) as our distance measure.

N-grams size, as shown Table 4.4, has impacts on clustering quality as well as

vector dimensionality. Due to the time and memory limitation, N-grams appearing in

less than 0.2% documents are deleted for n ≥ 4. Dimensionality and sparsity increase

with increasing N-gram size. In other words, the larger the N-gram size, the less
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α Entropy Accuracy

0 1.116 0.678
1 0.689 0.803

Table 4.3: Clustering performance w.r.t. α

are there the common N-grams among documents. Quad-gram representation gives

the best entropy and accuracy on the Reuters data set, while on cisi-cran-med data

set, the 5-ngrams gives the best clustering quality. Tri-gram representation, however

produces comparable entropy and accuracy with a more practical dimensionality.

N Dimensionality Sparsity Entropy Accuracy

2 671 78.45% 0.821 0.774
3 7978 96.05% 0.689 0.803
4 12559 96.79% 0.645 0.814
5 24760 98.29% 0.683 0.803
6 32160 98.78% 0.924 0.790

Table 4.4: Clustering performance w.r.t. character N-gram size on Reuters data set

N Dimensionality Sparsity Entropy Accuracy

2 516 63.16% 0.382 0.890
3 4066 89.35% 0.368 0.890
4 14968 96.22% 0.327 0.905
5 32418 98.11% 0.288 0.920
6 47940 98.75% 0.330 0.890

Table 4.5: Clustering performance w.r.t. character N-gram size on cisi-cran-med data
set(The N-grams appearing in less than 8 documents are deleted)

Experiments using byte and character N-grams are performed. These two types

of N-grams are adopted from the software tool Ngrams [13]. The byte N-grams

are N-grams retrieved from the sequence of the raw bytes as they appear in data

files, without any kind of preprocessing. The character N-grams are retrieved after

translating all letters into their upper-case forms, and any sequence of non-letter bytes

is replaced by a space.

Byte N-grams representation gives different results with Reuters data set and cisi-

cran-med date set, as shown in Table 4.6 and Table 4.7. On Reuters data set, it

produces better results than on cisi-cran-med data set. Generally, character N-grams

produce better results than byte N-grams. Moreover, dimensionality and sparsity with
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character N-gram representation are lower than with byte N-gram representation. Our

remaining experiments were performed on character Tri-grams.

N Dimensionality Sparsity Entropy Accuracy

2 1473 87.77% 0.869 0.761
3 16114 97.72% 0.705 0.801
4 17914 97.53% 0.657 0.811
5 29828 98.51% 0.752 0.796
6 34909 98.86% 0.752 0.778

Table 4.6: Clustering performance w.r.t. byte N-grams size on Reuters data set

N Dimensionality Sparsity Entropy Accuracy

2 1473 87.77% 1.069 0.418
3 16114 97.72% 1.077 0.398
4 17914 97.53% 1.079 0.391
5 29828 98.51% 1.073 0.393
6 34909 98.86% 1.030 0.422

Table 4.7: Clustering performance w.r.t. byte N-grams size on cisi-cran-med data set

In K-Means algorithm, the number of clusters, k, should be given in advance.

Selecting the best k, however, is done by trial and error. Experiments using different

cluster numbers (k) are performed and shown in Fig. 4.3. We see that result is

becoming better when the number of clusters increases. The curve of entropy drops

very quickly at first. However, after the number of clusters gets larger than 55, the

curve drops slowly. The difference of entropies with 55 clusters and 85 clusters is only

about 0.056. In other words, we can choose any k between 55 and 85. Our remaining

experiments were performed with k = 65 for the Reuters data set and k = 3 for the

cisi-cran-med data set.

4.3.2 Feature selection based on document frequency

Both character N-gram and byte N-gram representation produce high dimensionality

and spars data. The high dimensionality does not only affect clustering quality,

but also results in long running time. The running time per iteration, as shown in

Fig. 4.4, increases linearly with increasing the dimensionality. So if we can reduce

the dimensionality, we also decrease the running time effectively. This is one of the

motivations of feature selection.

We performed experiments on feature selection based on document frequency.

The experiments were performed with N-gram, term and word representation to see
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of clusters on Reuters data set
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how document frequency affects on clustering results and the differences for the three

representations.

We changed two values of their document frequency: minimum document fre-

quency dfmin and maximum document frequency dfmax. Minimum document fre-

quency means for an N-gram to be included in the vector space definition, it should

appear in at least dfmin documents while maximum document frequency means it

should appear in at most dfmax documents.

The clustering quality becomes worse with the increasing of minimum document

frequency on the Reuters data set, as shown in Fig. 4.5 and Fig. 4.6. For each

curve in these two figures, the maximum df is fixed. The length of a error bar

corresponds to the standard deviation of ten times running results in the certain

point. However, there is only little difference when minimum df is between (0, 270).

For same minimum df, a lower maximum df produces better results when maximum

df is in (3000, 8654). The dimensionality, as shown in Fig. 4.7, shrinks very quickly

with increasing minimum df . More than 7000 Tri-grams only appear in less than 800

documents. On the other hand, the maximum df has little impact on dimensionality.

In fact, only 170 Tri-grams appears in more than 3,000 documents and 83 Tri-grams

appears in more than 4,000 documents.

The cisi-cran-med data set has similar results, as shown on Fig. 4.8, Fig. 4.9 and

Fig. 4.10. When increase the minimum document frequency, the quality of clustering

results becomes better at first until the minimum document frequency is around 200,

and becomes worse later. We had some informal tests on some small subsets of the

Reuters data set, which give similar results. The results prove that the N-grams with

low document frequency are not important and should be deleted as noises.

The same experiments for term and word representation are performed too. The

results with term representation are shown in Fig. 4.11, Fig. 4.12, Fig. 4.13 and

Fig. 4.14, while results with word representation are shown in Fig. 4.15, Fig. 4.16,

Fig. 4.17 and Fig. 4.18. The length of a error bar corresponds to the standard devi-

ation of ten times running results in the certain point. We see that when minimum

df increases, results with term representation and word representation become worse

quickly. As well, comparing with Tri-gram, there are fewer common terms or words.

More than 7,000 terms (or words) appears only in less than 20 documents in the

Reuters data set.
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Figure 4.5: Clustering performance using Tri-gram representation measured by en-
tropy as a function of the minimum document frequency for feature selection on the
Reuters data set
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racy as a function of the minimum document frequency for feature selection on the
Reuters data set
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Figure 4.7: Dimensionality of feature space as a function of minimum document
frequency for feature selection with Tri-gram representation on the Reuters data set
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Figure 4.8: Clustering performance using Tri-gram representation measured by en-
tropy as a function of the minimum document frequency for feature selection on the
cisi-cran-med data set
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Figure 4.9: Clustering performance using Tri-gram representation measured by accu-
racy as a function of the minimum document frequency for feature selection on the
cisi-cran-med data set
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Figure 4.10: Dimensionality of feature space as a function of minimum document
frequency for feature selection with Tri-gram representation on the cisi-cran-med data
set
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Figure 4.11: Clustering performance using term representation measured by entropy
and accuracy as a function of the minimum document frequency for feature selection
on the Reuters data set
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Figure 4.12: Dimensionality of feature space as a function of minimum document
frequency for feature selection with term representation on the Reuters data set
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Figure 4.13: Clustering performance using term representation measured by entropy
and accuracy as a function of the minimum document frequency for feature selection
on the cisi-cran-med data set
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Figure 4.14: Dimensionality of feature space as a function of minimum document
frequency for feature selection with term representation on the Reuters data set
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Figure 4.15: Clustering performance using word representation measured by entropy
and accuracy as a function of the minimum document frequency for feature selection
on the Reuters data set
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Figure 4.16: Dimensionality of feature space as a function of minimum document
frequency for feature selection with word representation on the Reuters data set
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Figure 4.17: Clustering performance using word representation measured by entropy
and accuracy as a function of the minimum document frequency for feature selection
on the cisi-cran-med data set
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Figure 4.18: Dimensionality of feature space as a function of minimum document
frequency for feature selection with word representation on the cisi-cran-med data set



29

4.3.3 Comparing document clustering using N-grams, terms and words

in different dimensionality

We performed experiments on comparing clustering performance using Tri-gram, term

and word representation with different dimensionality. To get lower dimensionality

for Tri-grams, first we choose the Tri-grams with maximum df = (Total number of

documents) / 2; second, we sorted Tri-grams with their minimum df in the reverse

order(from the largest to the smallest) and choose the first n Tri-grams. For term-

based representation, we use Filter 1, C-Value and choose the n highest C-Value

terms. For word-based representation, we use the n most frequent words. The results

are the means of 30 times running to reduce the impacts from random seeds.

Tri-gram representation, as shown in Table 4.8, Table 4.9, Table 4.10 and Ta-

ble 4.11, produces the best clustering results on both Reuters and cisi-cran-med data

sets. Even the worst clustering result using Tri-gram representation is better than

the best results using term or word representation. Term representation gives better

results than word representation on the Reuters data set, while the only exception

happens when dimensionality is 8,000. On the cisi-cran-med data set, however, term

representation gives worse clustering quality than word representation.

Dimensionality has impacts on the clustering quality. On the Reuters data set,

generally, we get better clustering quality if we increase the dimensionality from 1,000

to 8,000. On the cisi-cran-med data set, however, the dimensionality = 2,000 gives

the best clustering result.

Dimensionality Tri-gram Term Word

1000 0.763 1.023 1.107
2000 0.726 0.985 1.215
4000 0.805 0.971 1.168
6000 0.761 0.969 1.140
8000 0.689 0.965 0.968

Table 4.8: Comparing clustering performance measured by entropy using Tri-grams,
Terms and Words representation w.r.t. different dimensionality on the Reuters data
set

One tail T-test is used to prove one result is really better than another result,

since from our inspection on some smaller data sets we observed that clustering using

N-grams gives better results than using terms and clustering using terms gives better

results than using words. That is, the alternative hypothesis is one result is better

than the other and null hypothesis is the alternative hypothesis is not true.
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Dimensionality Tri-gram Term Word

1000 0.783 0.709 0.697
2000 0.789 0.713 0.657
4000 0.765 0.714 0.673
6000 0.778 0.718 0.682
8000 0.803 0.719 0.717

Table 4.9: Comparing clustering performance measured by accuracy using Tri-grams,
Terms and Words representation w.r.t. different dimensionality on the Reuters data
set

Dimensionality Tri-gram Term Word

1000 0.455 0.704 0.647
2000 0.186 0.677 0.690
3000 0.443 0.696 0.649
4000 0.484 0.689 0.485

Table 4.10: Comparing clustering performance measured by entropy using Tri-grams,
Terms and Words representation w.r.t. different dimensionality on the cisi-cran-med
data set

Dimensionality Tri-gram Term Word

1000 0.796 0.668 0.731
2000 0.955 0.675 0.749
3000 0.840 0.663 0.787
4000 0.827 0.659 0.850

Table 4.11: Comparing clustering performance measured by accuracy using Tri-grams,
Terms and Words representation w.r.t. different dimensionality on the cisi-cran-med
data set
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The result one tail T-test for clustering performance using Tri-grams and terms,

as shown in Table 4.14 and Table 4.15, confirms that clustering performance using

Tri-grams is significantly better than using terms on both of the Reuters and cisi-

cran-med data sets, since all p-value are much smaller than 0.05. Moreover, term

representation generally gives significantly better results than word representation on

the Reuters data set, as shown in Table 4.14. However, there is an exception on the

accuracy measure when dimensionality equals 8,000. On the other hand, there are

not significant differences between the results of term and word representation when

dimensionality is 1,000 or 2,000 on the cisi-cran-med data set, as shown in Table 4.15.

When the dimensionality is 3,000 or 4,000, we see that word representation produces

better clustering quality than term representation on the cisi-cran-med data set.

Dimensionality Entropy Accuracy

1000 0.000 0.000
2000 0.000 0.000
4000 0.000 0.000
6000 0.000 0.000
8000 0.000 0.000

Table 4.12: The p-value of t-test results for clustering performance measured by
entropy with Tri-grams and Terms representation w.r.t. different dimensionality on
the Reuters data set

Dimensionality Entropy Accuracy

1000 0.000 0.000
2000 0.000 0.000
3000 0.000 0.000
4000 0.001 0.001

Table 4.13: The p-value of t-test results for clustering performance measured by
entropy with Tri-grams and Terms representation w.r.t. different dimensionality on
the cisi-cran-med data set

Another way to reduce dimensionality is random projection. However, the way of

using random projection give very worse result especially with the N-gram represen-

tation on the cisi-cran-med data set, which are shown in Table 4.16 and Table 4.17.

For the N-gram representation, it gives the results nearly as bad as the results of

randomly assigning a document to a cluster. The possible reasons of the bad results

may be that random projection suppose the distance measure is Euclidean distance.

So what we get from random projection has nothing related to the normalized N-

gram frequencies and the Eq. 3.2 cannot be used. Also word representation gives
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Dimensionality Entropy Accuracy

1000 0.000 0.000
2000 0.000 0.000
4000 0.000 0.000
6000 0.000 0.000
8000 0.302 0.378

Table 4.14: The p-value of t-test results for clustering performance measured by
entropy with Terms and Words representation w.r.t. different dimensionality on the
Reuters data set

Dimensionality Entropy Accuracy

1000 0.368 0.013
2000 0.033 0.215
3000 0.041 0.001
4000 0.000 0.000

Table 4.15: The p-value of t-test results for clustering performance measured by
entropy with Terms and Words representation w.r.t. different dimensionality on the
cisi-cran-med data set

the best results, they are still worse then using the most frequent words to reduce

dimensionality. Due to the lack of time, we have not performed random projection

with Reuters data set

Dimensionality Tri-gram Term Word

1000 1.087 0.942 0.770
2000 1.087 0.900 0.778
3000 1.087 0.904 0.764
4000 1.087 0.903 0.766

Table 4.16: Clustering performance measured by entropy with character Tri-gram,
term and word representation on cisi-cran-med data set. Random project is used to
reduce dimensionality.
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Dimensionality Tri-gram Term Word

1000 0.377 0.572 0.632
2000 0.377 0.601 0.623
3000 0.376 0.590 0.627
4000 0.377 0.590 0.620

Table 4.17: Clustering performance measured by accuracy with character Tri-gram,
term and word representation on cisi-cran-med data set. Random project is used to
reduce dimensionality.



Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we presented a novel approach for document clustering. We use normal-

ized character N-gram frequencies to define documents vectors and a new equation to

measure distance between two vectors. The data set used in this theses are Reuters-

21578 and cisi-cran-med, while the clustering algorithm is K-Means.

From our experimental results, we see that N-gram representation can be used

for document clustering with the new distance measure. Compared with term or

word representation, character N-gram representation gives the best clustering results

with much lower dimensionality. Term representation gives better results than word

representation only on Reuters data set. The experimental results also shows that

character N-grams give better clustering results with lower dimensionality than byte

N-grams. Moreover, the dimensionality and sparsity of the document matrix increases

while N-gram size is increased. The character tri-gram representation compromise the

clustering quality and dimensionality well.

In addition, The feature selection based on document frequency can be applied to

document clustering with N-gram representation. It can effectively reduce running

time by reducing dimensionality without significantly decreasing clustering quality

if the maximum and minimum document frequency are chosen right. The random

projection, however, produces pool clustering quality with N-gram representation.

Finally, we showed that document clustering using terms, which are chosen auto-

matically based on their C/NC Value, gives better clustering result than using words

only on Reuters data set.

5.2 Future work

The following topics are of considerable research interest for future work:
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• In this thesis, K-Means algorithm is used as the base clustering method. We

would like to perform more experiments with other clustering methods. Since

K-means algorithm is a partition clustering algorithm for hard clustering, we

would like to test heuristic and soft clustering method.

• We used Reuters and cisi-cran-med data sets. N-gram representation produces

the best clustering results on both of them. Term representation, however, gives

different results compared with word representation. More data sets can be used

to compare these three representation.

• To reduce the dimensionality, we used feature selection based on document

frequency and random projection. We are interested in applying other existing

feature selection methods on N-gram representation.

• We tested clustering results with different dimensionality and the lowest dimen-

sionality is 1,000. We do not know what will happen if we continue reducing

dimensionality to only, say, 100. It is possible that a better result will happen

with a lower dimensionality.

• We implemented K-Means on C++, which is much faster then Weka, where

Java is used as programing language. However, the current implementation

does not utilize the properly of the sparse document matrix. We believe that

current implementation of K-Means can be speed up and use less memory if

a data structure is used, which is efficient with the sparse document vector or

matrix.
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[13] Vlado Kešelj. Perl package Text::Ngrams, 2003. Accessed in May 2004.
http://www.cs.dal.ca/~vlado/srcperl/Ngrams or
http://search.cpan.org/author/VLADO/Text-Ngrams-1.1/.
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