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Abstract

In natural language processing, sequences of n characters or words known as n-grams

are used for authorship attribution, text clustering, and other types of text analysis.

Given a text corpus and a word n-gram table, we examine the problem of generating

tables of character n-grams from tables of word n-grams and vice versa. We also

present a framework for analysing this problem and develop techniques to solve some

of the more common instances of the problem.

Given a table of word n-grams, we describe how to derive the equivalent charac-

ter n-gram table. For character n-gram table to word n-gram table conversion, we

develop a new technique based on Eulerian circuits in directed graphs. We test a

proof-of-concept implementation of this technique and evaluate its effectiveness in

guessing words from the original text. We also suggest ways in which this technique

may be extended and improved for future work with n-grams in NLP and other areas

of text processing.

viii



Chapter 1

Introduction

1.1 History

Statistical methods for analysing language are not new. For centuries, code-breakers

have used statistical methods for analysing the underlying structure in natural lan-

guage in order to discern meaning. In particular, sequences of n characters or words

known as n-grams have been used in frequency analysis and other methods of attack-

ing cryptographic ciphers [6].

While modern cryptography has come to rely more on probability and number

theory, n-gram analysis is now used in natural language processing (NLP). Tables of

n-gram counts are collected from bodies of text (known as corpora) for use in tasks

such as speech recognition, error-correction, and formal language theory. The two

most common types of n-grams are word n-grams and character n-grams.

1.2 Motivation

In some instances it may be useful to have tables of both character n-grams and

word n-grams, but only one table may be on hand. For example, in authorship

attribution, distributions of word and character n-grams throughout the text can

be used to develop statistical profiles of known authors. For an anonymous sample

of text, n-gram distributions are collected and compared with known profiles. If

the distributions happen to suit a particular author’s profile, that author may be

attributed with having written that text sample. However, if word n-gram analysis

proves inconclusive, character n-gram analysis may be used instead. If character n-

gram profiles are not available for certain authors, it would be useful to be able to

generate a character n-gram profile from only the word n-gram profile.

In addition to helping with authorship attribution, n-gram table conversion can be

1
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useful when studying languages without spaces (e.g. Japanese). Like English, words

in Japanese may have one, two, three, or more characters. Unlike English however,

extracting word n-grams from Japanese is not as straightforward as extracting groups

of letters from in-between spaces or some other delimiting character. Humans who

can read Japanese distinguish between different words based on their intuition and

understanding of the language. Because computers cannot yet understand human

language to a great extent, alternative ways of determining words in Japanese must

be sought out.

In general, reconstructing long, meaningful strings from shorter ones could be

useful not only in NLP, but other areas as well. Data mining and information retrieval,

for instance, rely heavily on deriving meaning from large sets of relatively small data.

Our DNA is constructed from only four nucleotide bases: adenine, thymine, guanine,

and cytosine. These four bases are often represented by the letters A, T, G, and C.

Reconstructing large sequences of these letters can help in molecular genetics and

other areas of bioinformatics [10].

1.3 General Problem

n-gram tables list the number of occurrences of unique n-grams (for both characters

and words). To help solve the aforementioned kinds of problems, we examine the

general question of whether or not it is possible to generate the character n-gram

table from only the word n-gram table for a particular text corpus, and vice versa. We

present a framework for analysing the overall problem and develop a new technique

using random Eulerian circuits in an attempt to solve some of the sub-problems within

that framework.

1.4 Research Objectives

In order to evaluate our solutions, we apply them to the simple task of generating a

table of single words from tables of character n-grams. We select our text corpora

from famous works of English literature and compare our table of guessed words to

tables of known words. Because we do not want to neglect any correct words, we test
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our solution for completeness. We also evaluate how many of our guesses are either

absent from the original corpus or simply not words at all. The fewer mistakes of

either kind, the better. In order to evaluate our solution for speed, we measure the

running time in seconds of each trial.



Chapter 2

Background

2.1 Related Work

In recent years, n-grams have gained a lot of popularity in NLP. They have been used

for word prediction in both statistical [5] and grammatical [14] speech recognition

systems. They have also been studied in conjunction with context-free grammars

[12]. More recently, they have been successful in authorship attribution [9] and anti-

virus techniques [8].

Similar research has also been done in bioinformatics. In certain molecular struc-

tures, nucleotide bases are organised into groups of three. These short sequences are

associated with amino acids, which in turn are chained together to form proteins

[10]. These structures resemble letters, words, and sentences in natural language.

In particular, work done in protein sequence representation [4] and DNA fragment

reassembly [11] demonstrate this resemblance.

In both of the aforementioned techniques from bioinformatics, graph theory plays

a significant role, Eulerian circuits (i.e. circuits which use each edge exactly once)

in particular. Eulerian circuits are understood quite well in graph theory [1]; what

undergraduate math student has not encountered Euler’s famous Seven Bridges of

Königsberg? We take advantage of this knowledge and apply it to the general problem

of n-gram table conversion. In particular, our research makes use of directed graphs

and their Eulerian circuits.

4
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2.2 Problem Framework

We identify various instances in which n-gram table conversion may be necessary:

1. Generating character n-gram tables from word n-grams

(a) With known delimiters

(b) With unknown delimiters

(c) Without delimiters

2. Word n-grams from Character n-grams

(a) With known delimiters

(b) With unknown delimiters

(c) Without delimiters

The length of the source n-grams is important in n-gram table conversion. Given

source n-grams longer than the n-grams we wish to generate, generating the other

n-gram table is straightforward. Unfortunately, we do not always have these large

source n-grams.

Generally speaking, word n-grams will be made up of more characters than char-

acter n-grams. Thus, for most practical data sets, character n-gram to word n-gram

table conversion will be more difficult than word n-gram to character n-gram table

conversion. We present techniques for these conversions with “long” n-grams and

“short” character n-grams.



Chapter 3

Formalisms

3.1 Conventions

In the algorithms that follow, we treat n-grams and text corpora as arrays. Array

elements are referenced with the traditional square braces [ ] and integer indices

beginning with 1 (not 0, as with some programming languages). Individual symbols

within an n-gram are indexed with subscripts: ωj refers to the jth symbol in the

n-gram and is equivalent to ω[j] (but is easier to read). To reference the length of

an array, we append “.length” to the array name (e.g. for an array A of 10 elements,

A.length = 10).

We use hash tables (or simply “hashes”) to represent tables of n-grams. Hash

elements are referenced with the familiar curly braces { } and keys of arbitrary length.

We assume that all of our hashes have worst-cast insertion and search times of O(n)

where n is the number of items currently stored in the hash. Additionally, we assume

that hash tables of integers are initialised to 0.

We also use a list data structure that behaves as a double-ended stack (LIFO:

Last In, First Out). The familiar stack operations push and pop operate on one end

of the list (the “front”), while add and remove operate on the other end (the “back”).

Note that we can emulate a queue (a FIFO) by pushing elements onto the front and

removing them from the back, or adding them to the back and popping them from

the front.

The character length of a word n-gram is its length in characters.

6
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3.2 N-grams

3.2.1 Definitions

n-grams are sequences of words or characters. More formally,

Definition 3.2.1 Given a set Σ of symbols and a natural number N , an n-gram is

a sequence

ω = ω1ω2 . . . ωN−1ωN (3.1)

where ωj ∈ Σ for 1 ≤ j ≤ N , |ω| = N . The words unigrams, bigrams, and

trigrams are often used to refer to 1-grams, 2-grams, and 3-grams respectively.

Symbols in Σ are usually characters (i.e. single letters) or words. Character n-

grams are sequences of N characters (e.g. atfa is an example of a character 4-gram).

When collecting character n-grams, the “space” character t is considered a valid

symbol (t ∈ Σ). Similarly, sequences of N words are known as word n-grams (e.g.

atfasttGermantcar).

The character length of an n-gram is the number of characters needed to encode

the n-gram. For character n-grams of length N , the character length is exactly N .

The character length of word n-grams, however, varies with the size of each word.

AtfasttGermantcar has a character length of 17.

3.2.2 N-gram Collection from Text Corpora

Tables of n-gram counts are generated from text corpora using the sliding window

method. Consider collecting character 4-grams from the phrase a fast German car :

a fa st German car

a fas t German car

a fast German car

a f ast German car

a fa st G erman car

.

.

.

a fast German car
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At each step, the characters inside the box constitute the character 4-gram. Word

n-grams are collected in a similar way:

a fast German car

a fast German car

a fast German car

Our convention will be to treat all letters as uppercase and all punctuation marks as

t. We also treat contiguous sections of whitespace as t. We assume that our text

corpora have been pre-processed to reflect these conventions.

As we collect n-grams, we count the number of instances of each one in the cor-

pus. We also mark the first and last n-grams as such. Tables of n-grams have entries

for all but the last n − 1 symbols. Given a text corpus L, the following algorithm

returns a hash table T of integers having n-grams as keys:

Collect N-grams(L)

1 for i← 1 to T.length−N + 1

2 do current ngram← L[i..i + N − 1]

3 T{current ngram} ← T{current ngram}+ 1

4 return T

The character 4-gram table corresponding to the corpus “a fast German car” is

as follows:

The order of the table entries is not important. Generally, they are sorted accord-

ing to their counts, but our example is too small to have repeated n-grams.

Note that the length of our corpus L must be greater than the length of our

n-grams; we cannot collect an n-gram with length N from fewer than N symbols.

Additionally, two different corpora might produce the same n-gram tables, though
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4-gram Count

tCAR 1 last

tFAS 1

tGER 1
AtFA 1 first
ANtC 1
ASTt 1
ERMA 1
FAST 1
GERM 1
MANt 1
NtCA 1
RMAN 1
STtG 1
TtGE 1

Table 3.1: Character 4-grams for a fast German car

in practice this rarely happens. Finally, given a table of n-grams we can generate

the equivalent table of (n − 1)-grams of the same type. Recall that n-grams having

length N are collected from all but the last N − 1 symbols. (n− 1)-grams, then, are

collected from all but the last (N − 1)− 1 = N − 2 symbols. To generate a table of

(n− 1)-grams, we can just copy each entry in the table of n-grams, omitting the last

symbol in each entry and adding counts for duplicate entries (for example, fast and

fash would both become fas). This produces a table of almost all of the (n−1)-grams.

The only remaining (n− 1)-gram, the last one, can be collected from the last n-gram

in the original table, starting with the second symbol.

3.3 Graph Theory

Let Γ be a directed graph (also known as a digraph). Let V (Γ) denote the vertex

set of Γ and E(Γ) denote the edge set. For two vertices u, v ∈ V (Γ), we denote the

edge from u to v by (u, v) ∈ E(Γ). We say that Γ is Eulerian if and only if for every

vertex v of Γ, the number of edges having v as head (the indegree) and the number
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Trigram Count

tCA 1

tFA 1

tGE 1
AtF 1 first
ANt 1
AST 1
CAR 1 last
ERM 1
FAS 1
GER 1
MAN 1
NtC 1
RMA 1
STt 1
TtG 1

Table 3.2: Character trigrams for a fast German car

of edges having v as tail (the outdegree) are the same (indegree(v) = outdegree(v)).

Eulerian digraphs contain Eulerian Circuits — circuits which use each edge in the

graph exactly once. That is, the condition indegree(v) = outdegree(v) for all v ∈ V (Γ)

is sufficient to guarantee the existence of an Eulerian circuit [13].

A spanning arborescence of Γ is a spanning tree of Γ in which all edges point

towards (or away from) a root vertex r. In any Eulerian circuit C of Γ, the subgraph

obtained by collecting at each vertex v ∈ V (Γ), v 6= r the first edge in C having v

as head forms a spanning arborescence [13]. This spanning arborescence is known as

the residual arborescence of C [1].

Note: we have only briefly covered the necessary topics from graph theory. For a

more formal and complete exposition, see Tutte, [13].

3.4 Precision and Recall

Given a list L of words, we measure how accurate our guesses have been and how

much of L we have managed to guess (known as true positives). Words that we guess

to be true but are not in L are known as false positives, while words in L that we fail
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to guess are known as false negatives. We denote the number of true positives by tp,

the number of false positives by fp, and number of false negatives by fn. Precision

and recall, then, are defined as follows:

precision =
tp

tp + fp
(3.2)

recall =
tp

tp + fn
(3.3)

For our purposes, precision is a measure of how many of our guessed words are correct.

Recall is a measure of how many correct words out of L we managed to find.



Chapter 4

Methodology

4.1 General Overview

For word n-gram table to character n-gram table conversion, our approach is to collect

character n-grams from the first word of each word n-gram except for the last n-gram

(in which we collect character n-grams from the entire word n-gram). For character

n-gram table to word n-gram table conversion, we build an Eulerian graph from the

character n-gram table which associates potential words with cycles in the graph,

starting and ending with t. We then follow these cycles and compare the words

associated with them to words collected from the original corpus.

4.2 Assumptions

We make some assumptions about our source n-grams before attempting the conver-

sion:

1. The first n-gram and last n-gram are known. We need to know which

n-grams occur first and last in the original corpus for both types of n-gram

conversion. When converting word n-grams to character n-grams, we need to

know the last word n-gram so that we do not miss the last few character n-

grams contained in that word n-gram. For character n-gram to word n-gram

conversion, we build an Eulerian graph. We need the first and last character

n-grams in order to ensure that our graph is indeed Eulerian.

2. The table is complete. By “complete” we mean that each n-gram in the

original corpus is accounted for in the table.

3. The language has word delimiters. We use word delimiters in character

n-grams to determine where our word guesses begin and end.

12
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4. We do not have access to the original text. If we had access to the original

text, we would just be able to generate the required n-grams from it instead of

from another table of n-grams.

5. We do not know anything else about the language. Additional heuristics

such as dictionaries and grammars could be used to verify our results. How-

ever, we are interested in what is theoretically possible using only the n-grams

themselves. In a production environment, other language aids would certainly

be used.

4.3 Character n-grams from Word n-grams.

Generating character n-gram tables from word n-gram tables is relatively straight-

forward. In our word n-gram table where each n-gram has length N , there is an

entry which begins with each word in our corpus (except for the last N − 1). Thus,

collecting character n-grams from the first word in each word n-gram is equivalent to

collecting them from all but the last N − 1 words in the corpus. For the last n − 1

words, we collect character n-grams from all n words until we have collected the last

few characters. For example, consider collecting character 4-grams from a table of

word bigrams of the phrase a fast German car :

Word bigram Count
FASTtGERMAN 1
AtFAST 1 first
GERMANtCAR 1 last

Table 4.1: Word bigrams for a fast German car

The order of the n-grams is unimportant; we present them here with no particular

order. In all bigrams except for the last one (GERMANtCAR), we collect character

4-grams up until the first t. From the last bigram, we collect character 4-grams from

the entire bigram:
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Word bigram Count Character 4-gram Count
FASTtGERMAN 1 FAST 1

ASTt 1
STtG 1
TtGE 1

tGER 1
AtFAST 1 AtFA 1 first

tFAS 1
GERMANtCAR 1 GERM 1

ERMA 1
RMAN 1
MANt 1
ANtC 1
NtCA 1

tCAR 1 last

Table 4.2: Character 4-grams from word bigrams

Aside from the ordering, the resulting character 4-gram table is identical to Ta-

ble 3.1.

For the following algorithm, we are collecting character n-grams of length N from

a table of word n-grams. The input is T , a hash table of integers with word n-grams

as keys. The output is c, a hash table of integers with character n-grams as keys.

Note that each word N -gram is assumed to have enough characters.

Chars-From-Words(T )

1 for each wgram in T

2 do if wgram is the last one

3 then for i← 1 to wgram.length−N + 1

4 do c{wgram[i..i + N − 1]} ← c{wgram[i..i + N − 1]}+ T{wgram}

5 else for i← 1 to wgram1.length + 1

6 do c{wgram[i..i + N − 1]} ← c{wgram[i..i + N − 1]}+ T{wgram}

7 return c
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4.4 Word n-grams from Character n-grams

When generating word n-grams from character n-grams, the first task is to try to dis-

cover possible words (word unigrams). Our technique is summarised in the following

steps:

1. Collect and classify n-grams

2. Build an Eulerian graph

3. Generate a spanning arborescence T rooted at the delimiter (t)

4. Find an Eulerian circuit C having T as its arborescence

5. Traverse C, collecting words as cycles which begin and end with the delimiter

To illustrate the process, we will convert a table of character 4-grams from the

phrase abcd ebcdf to word unigrams. While abcd ebcdf is not a realistic phrase, it a

suitable example. Table 4.3 lists the character 4-grams and their counts.

Character 4-gram Count

tEBC 1
ABCD 1 first
BCDt 1
BCDF 1 last
CDtE 1
DtEB 1
EBCD 1

Table 4.3: Character 4-grams from abcd ebcdf

The word unigrams we want are ABCD and EBCDF.
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4.4.1 N-gram classification

In order to generate a word n-gram table from a character n-gram table, we need to

take a closer look at the character n-grams. Some character n-grams will have no

delimiters in them at all. We call these fragments. Some will only have one delimiter

at the beginning or at the end; we call these prefixes and suffixes respectively. Some

will have exactly two delimiters, one at the beginning and one at the end. We call

these explicit n-grams. Other n-grams will have delimiters in other places, and may

have more than one. For the initial word unigram discovery, we only need to consider

the fragments, prefixes, suffixes, and explicit n-grams.

Classification General Form
fragments ω1ω2 . . . ωn−1ωn

prefixes tω2 . . . ωn−1ωn

suffixes ω1ω2 . . . ωn−1t

explicit words tω2 . . . ωn−1t

Table 4.4: A character n-gram classification scheme

Given character n-grams of length N , we can read word unigrams directly from

the explicit n-grams. Each of these words will be N − 2 characters long. Because we

can also generate a table of n-grams of length N − 1 from n-grams of length N , we

can continue reading word unigrams directly from the explicit n-grams. We can then

simply read our word unigrams from the explicit word n-grams just generated.

With this scheme, we classify our example character 4-grams as in Table 4.5.

Because both words are longer than 2 characters, we have no explicit words to

read. We also ignore CDtE and DtEB as indicated above.
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Character 4-gram Count Type

tEBC 1 prefix
ABCD 1 fragment first
BCDt 1 suffix
BCDF 1 fragment last
CDtE 1
DtEB 1
EBCD 1 fragment

Table 4.5: Example 4-grams classified

4.4.2 Building directed graphs from n-grams

For words having character length N − 1 and greater, we build a directed Eulerian

graph in such a way that each word in the original text corresponds to one cycle in

the graph, beginning and ending with the delimiter.

We construct our graph by using a simple mapping of fragment, prefix, and suffix

n-grams to edges in the graph. Conceptually, edges in the graph correspond to pairs

of (n − 1)-grams which overlap. Assume our n-grams have length N . For a given

fragment n-gram ω, the corresponding edge is (ω1..N−1, ω2..N). Prefix n-grams map

to (t, ω2..N) and suffix n-grams map to (ω1..N−1, t). If the first and last n-grams are

fragment n-grams, we add (t, ω1..N−1) for the first n-gram and (ω2..N , t) for the last

n-gram. This simulates whitespace at the beginning and end of our corpus if it does

not already exist. Figure 4.1 shows examples for the character 4-grams tFAS, FAST,

and ASTt.

t // FAS FAS // AST AST // t

Figure 4.1: Directed edges made from prefixes, fragments, and suffixes

For each instance of these edges, we implicitly add the vertices ω1..N−1 and ω2..N

if they do not already exist. Note that the graph contains multiple duplicate edges.
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Due to its construction, the multiplicity of these edges guarantees that we will always

generate the same number of words as in the original text. Specifically, there is one

edge coming from and going to the delimiter vertex for each word in our corpus.

Because different corpora can produce the same n-gram tables, they can also pro-

duce the same graph structure. This can occur when two or more words in the original

corpus share a common substring of length ≥ n − 1. We refer to this situation as

a word collision. Figure 4.2 shows an example subgraph which illustrates the word

collision caused by the common substring “ldi” shared by “soldier” and “balding”:

sol // old

!!CC
CC

CC
CC

din // ing

ldi

=={{{{{{{{

""DD
DD

DD
DD

bal // ald

==zzzzzzzz
die // ier

Figure 4.2: Word collision between soldier and balding

In such situations, there is no way to know which possibility is correct without

some type of additional information (such as a dictionary of valid words).

Continuing with our example, we build a graph from Table 4.5:

•t

||xx
xx

xx
xx

""FF
FFF

FFF

FBC•

))SSSSSSSSSSSSSSS •ABC

��
CDE•

EE����������������
•BCD

YY3333333333333333
oo

Figure 4.3: An example graph built from character 4-grams
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4.4.3 Spanning arborescence using Wilson’s Algorithm

While several methods of generating spanning arborescences exist [2], we chose Wil-

son’s Algorithm because it provides a completely random arborescence in the sense

that any possible spanning arborescence can be generated. This allows for the widest

range of possible words to discover. Although Wilson’s Algorithm generates a con-

verging spanning arborescence by default, we can simply reverse each edge to form a

diverging arborescence. Alternately, the random walk in Wilson’s could be a back-

wards walk. For our example, shown in Figure 4.4, we use a diverging arborescence

so that its relationship to Eulerian circuits is more clear.

•t

||xx
xx

xx
xx

""FF
FFF

FFF

FBC• •ABC

��
CDE• •BCDoo

Figure 4.4: An example spanning arborescence

Given a digraph Γ and a vertex r of Γ, Wilson’s Algorithm returns a random

spanning arborescence T having r as root [2]. Starting with the root vertex, it works

by choosing random unvisited vertices and tracing random paths (branches) to the

current tree, terminating when all vertices have been visited. It makes use of the loop

erasure of a path P . Informally, loop erasure(P ) is the path P with cycles removed

(see Gulwani [2]).
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Wilson-Tree(Γ, r)

1 T ← r

2 unvisited vertices← V (Γ)− {r}

3 while unvisited vertices 6= φ

4 do v ← a random unvisited vertex

5 P ← random walk from v to current tree

6 current tree← current tree + loop erasure(P )

7 return current tree

4.4.4 Eulerian Circuit Construction

Now that we have used Wilson’s algorithm to generate our spanning arborescence T of

Γ, we now generate an Eulerian circuit C in Γ having T as its residual arborescence.

Recall from Section 3.3 that a residual arborescence of an Eulerian circuit is the

collection of the first edges that visit each vertex in that circuit. Therefore, to find an

Eulerian circuit which corresponds to T , we trace edges backwards from r (the root

of the tree), ensuring that each branch of the tree is the last edge we traverse from

each vertex. Because no branch enters the root, the initial edge choice is completely

random. When we reverse this random walk, we will have and Eulerian circuit having

T as its spanning arborescence [13].

The following algorithm performs this process traversal. Inputs are Γ our graph,

T our spanning arborescence, and r the root vertex of T . Recall that for our purposes,

r is the delimiter vertex t. I is a hash table of lists of edges (a, v) ∈ E(Γ), a ∈ V (Γ)

where vertices v ∈ V (Γ) are keys. The subroutine “shuffle” randomises the order of

the elements in its argument (usually a list).
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Build-Euler-Circuit(Γ, T, r)

1 I{r} ← list of edges (a, r) where a ∈ V − {r}

2 shuffle(I{r})

3 for each v ∈ V (Γ)− {r}

4 do I{v} ← list of edges (a, v) where a ∈ V − {v}

5 I{v} ← I{v} − {e} where e ∈ E(T )

6 shuffle(I{v})

7 I{v}.add(e)

8

9 C ← { }

10 current vertex← r

11 while I not empty

12 do (a, v)← I{current vertex}.pop()

13 current vertex← a

14 C ← C.push(current vertex)

15 return C

The return value C is a list of edges which, when reversed (i.e. by pop()-ing them),

form an Eulerian Circuit starting and ending with r.

Figure 4.5 shows two example Eulerian circuits: one in which (CDE, t) is chosen

first, the other with (BCD, t) chosen first. Edges are labeled as they would occur in

the final circuit traversal.

4.4.5 Circuit Traversal

Now that we have our Eulerian circuit C, we can traverse the edges and generate

word unigrams as we visit r, where r = t. Let W be a hash of integers with word

unigrams (strings of various lengths) as keys.
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Circuit A Circuit B

Figure 4.5: Two example Eulerian circuits

Generate-Word-Ngram-Table(C)

1 current word← nil

2 while C 6= φ

3 do (u, v)← C.pop()

4 switch

5 case u = t :

6 current word← v

7

8 case v = t :

9 W{current word} ← W{current word}+ 1

10 current word← nil

11 case default :

12 current word← current word + v[v.length]

13 return W

Our return value W will be a hash table of possible word n-grams which we can

compare to our initial table. Potential first and last n-grams can be determined from

the source character n-gram table.
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Our two example circuits A and B give us different unigram guesses. As we tra-

verse circuit A we get the circuit shown in Figure 4.6:

t // ABC // BCD // t // EBC // BCD // CDF // t

Figure 4.6: Example circuit A

It is easy to see that this circuit generates the word unigrams ABCD and EBCDF,

as shown in Table 4.6.

Word unigram Count
ABCD 1
EBCDF 1

Table 4.6: Word unigrams from circuit A

Circuit B however, shown in Figure 4.7, generates another possibility.

t // ABC // BCD // CDF // t // EBC // BCD // t

Figure 4.7: Example circuit B

From this circuit, our word unigrams would be ABCDF and EBCD, as shown in

Table 4.7.
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Word unigram Count
EBCD 1
ABCDF 1

Table 4.7: Word unigrams from circuit B

Because of the word collision surrounding BCD, the original corpus is ambiguous.

If character 5-grams were to be used, the graph simplifies considerably:

•EBCD

��

ABCD• 44 •t
qq

;;wwwwwwwww

•BCDF

ccHHHHHHHHH

Figure 4.8: Example graph built from character 5-grams

With this graph, there is no ambiguity; the only possible word unigrams are ABCD

and EBCDF.



Chapter 5

Experiments

5.1 Experiment Setup

We tested a Perl implementation of our technique with the following corpora from

English literature:

• Wuthering Heights, by Emily Brontë

• Tarzan, by Edgar Rice Burroughs

• The Warlord of Mars, by Edgar Rice Burroughs

• Alice’s Adventures in Wonderland, by Lewis Carroll

• Through the Looking Glass, by Lewis Carroll

• Fanny Hill, by John Cleland

• A Tale of Two Cities, by Charles Dickens

• A Christmas Carol, by Charles Dickens

• King Solomon’s Mines, by H. Rider Haggard

• The Legend of Sleepy Hollow, by Washington Irving

• Act III of Hamlet, by William Shakespeare

• Tom Sawyer, by Mark Twain

From each corpus we generated a table of word unigrams and tables of character

n-grams of length N, 3 ≤ N ≤ 14 using the Perl module Text::NGrams [7]. We

then used our technique with the tables of character n-grams to generate tables of

25
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word unigram “guesses.” The root vertex chosen was the delimiter, t. Precision

and recall measurements were calculated for each trial for both unique words and all

words (i.e. with word counts taken into consideration). We also calculated precision

and recall for the overall technique and compared it to results generated only by the

Eulerian circuit. Finally, we measure the average running time in seconds by using

the time command found on UNIX systems; we took our measurements from the

user field.
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5.2 Experiment Results

Note: For each experiment, we performed three trials and calculated the standard

deviation σ. However, in all experiments, σ ≤ 10−5. While we do not show it in our

data plots, it is interesting to note that the technique is so consistent.

5.2.1 Unique Words

The overall technique performs better in precision and recall measurements as the

size of the n-grams increases. The precision and recall measurements are shown in

Figure 5.1 for the overall technique for unique words.
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Figure 5.1: n-gram size vs. Precision (unique words)

The most dramatic increases are between n = 4 and n = 6. For texts with lower

average word length (see Appendix A), most notably Through the Looking Glass and

Alice’s Adventures in Wonderland, the technique performs substantially better. The

recall graph more accurately reflects these differences in word length, as shown in
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Figure 5.2:
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Figure 5.2: n-gram size vs. Recall (unique words)
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5.2.2 All Words

Our technique performs better in precision and recall measurements when all words

are considered, rather than just unique words. Figure 5.3 shows this increased per-

formance:
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Figure 5.3: n-gram size vs. Precision/Recall (all words)

This change is due to the fact that the average word length is lower when we

consider all words in the corpus (see Appendix A). We also note that with word

counts taken into consideration, precision and recall are equal. This is due to the fact

that our algorithm attempts to reconstruct every word in the original text instead of

guessing the distribution. Each failed attempt becomes both a false positive as well

as a false negative, thus precision = recall.
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5.2.3 Unique Words vs. All Words

For comparison, Figure 5.4 displays the average precision and recall over all corpora

for both unique words and all words:
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Figure 5.4: Precision and Recall for unique words and all words

While performance for all words is better overall, when the average word length is

close to the source character n-gram length, precision and recall are high for unique

words. For our corpora, average overall word length for unique words is 6.97 letters

per word. In our graph, precision and recall are both 0.95 (95%) when n = 7. For all

words however, with an average word length of 4.47 letters per word, precision and

recall are only 0.8 (80%). This suggests that our technique might be more suitable

for raw word discovery than for overall table recovery.
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5.2.4 Overall Technique vs. Eulerian Circuit

For n-grams of length N , because the overall technique is guaranteed to be correct

for words having character length ≤ N − 2, we compare average precision and recall

for only those words generated by the Eulerian circuit (i.e. for words having length

≥ N − 1).
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Figure 5.5: Overall vs. Eulerian Circuit

As shown in Figure 5.5, the Eulerian circuit part of our technique performs quite

well (the bottom two curves), and traces a curve much like that of the technique

overall. This is unsurprising as all words of a certain length (≤ n− 2) are guaranteed

to be found, and thus the shape of the curve overall is determined by the performance

of circuit part.
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5.2.5 Running Time

The running time for our algorithm increases sharply in roughly the same range in

which the precision and recall count increase:
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Figure 5.6: n-gram size vs. running time

As n increases, the number of potential n-grams increases exponentially, increasing

the size and complexity (i.e. number of potential circuits) of the graph. As a result,

the running time increases. However, as the n-gram size increases, the number of

actual n-grams collected from the text decreases. Thus the running time goes back

down. The running time generally peaks at n = 6.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have presented a framework for the problem of converting tables of one type of n-

gram to another. Within that framework, we present techniques for solving the most

common real-world scenario of having “long” word n-grams and “short” character

n-grams. Not only does our technique recover words from the initial text, but it

performs particularly well at retrieving the frequency of those words.

The strengths of our technique lie in its consistency and its completeness. In

effect, the Eulerian circuit traversal explores a wide range of possible ways in which

the source n-grams overlap.

In general, Eulerian circuits and graph theory seem to be promising areas for

future research with statistical and computational linguistics, and with future work

could lead to very successful word discovery techniques.

6.2 Future Work

6.2.1 Improving Word Discovery

This technique relies on the fact that the graph is Eulerian, i.e. that the original text

is composed of words separated by spaces, which can be translated to cycles in the

graph. If applied to other data sets (incomplete tables, for instance), there would have

to be an Eulerian circuit in the graph. This can be verified by checking the indegree

and outdegree of every vertex, adding edges if necessary to ensure an Eulerian circuit.

As well, certain heuristics about the language could be applied when generating the

graph. If a cycle is too long to be a potential word, it can be rejected and the edges

replaced. A dictionary might also be used, which should guarantee that all words will

eventually be found.
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Our technique uses both a random spanning arborescence and a random Eulerian

circuit in the graph. The spanning arborescence need not be completely random;

any spanning arborescence will give rise to many Eulerian circuits in the graph [13].

Generating a spanning arborescence that does not trace any “bad” words will at

least slightly improve precision and recall measurements. There is more potential for

improvement with the Eulerian circuit and it may be possible to generate the circuit

in such a way as to decrease the number of non-word cycles.

The technique can also be applied to tables of n-gram probabilities (rather than

discrete counts). In this case, random cycles could be generated until the distribution

of words resembles that found in the original text.

6.2.2 Bigrams, Trigrams, and More

Certain types of n-grams are not used in the word discovery algorithm; instead they

are used to discover how the words fit together. This is much more difficult, as one

n-gram is only likely to contain one delimiter, telling us about a word bigram. n-

grams with more delimiters are not nearly as common (though they become more so

as n increases).

The Eulerian circuit technique could work quite well with incomplete tables of

n-grams. If the graph generated from a given n-gram table is not Eulerian (i.e. for at

least one vertex, the indegree and outdegree are different), it suffices to add enough

edges from the delimiter vertex to and from these vertices as required. It may also

be possible to connect these vertices to each other if they are “close enough,” which

could be determined with distance metrics.

Our technique grew conceptually from the fact that Eulerian circuits decompose

into cycles, where each cycle corresponds to a possible word from the original text.

An Eulerian graph could be constructed using the entire character n-gram table.

An Eulerian path may then be traversed from the first character n-gram to the last

character n-gram, which could possibly generate word bigrams, trigrams, and n-grams

for higher values of n.

The Eulerian circuit approach could also be applied to other forms of sequential

data, such as phonemes or syllables in NLP. Incomplete copies of ancient texts might
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also benefit from this kind of approach. Outside of the domain of natural language,

our technique could be applied to music, where notes and phrases correspond to

characters and words. Amino acids and protein sequences in bioinformatics also

bear a strong resemblance to characters and words. Based on the success of our

technique in discovering new potential words from word fragments, Eulerian circuit-

based techniques may have a lot to offer.
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[7] Vlado Kešelj. Text::Ngrams.pl. http://vlado.cs.dal.ca/˜vlado/srcperl/Ngrams/.
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Appendix A

Average Word Length Tables

A.1 Average Unique Word Length

Corpus Word count Average word length (in letters)
Hamlet, Act III 2688 6.00
Through The Looking Glass 5733 6.39
Alice’s Adventures in Wonderland 5305 6.51
A Christmas Carol 6748 6.72
The Legend of Sleepy Hollow 3892 6.82
King Solomon’s Mines 12196 6.93
The Warlord Of Mars 8859 7.06
Tom Sawyer 12532 7.07
Tarzan 12306 7.19
Wuthering Heights 17715 7.46
Fanny Hill 12574 7.56
A Tale Of Two Cities 19142 7.57

Table A.1: Average unique word length

Average word length overall: 6.97
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A.2 Average Overall Word Length

Corpus Word count Average word length (in letters)
Through The Looking Glass 30012 4.31
King Solomon’s Mines 79675 4.35
Alice’s Adventures in Wonderland 26450 4.38
The Warlord Of Mars 57167 4.42
Hamlet, Act III 7643 4.44
Tom Sawyer 71620 4.44
Fanny Hill 84759 4.48
A Christmas Carol 28345 4.49
Wuthering Heights 116051 4.54
A Tale Of Two Cities 135934 4.54
Tarzan 85539 4.57
The Legend of Sleepy Hollow 11811 4.68

Table A.2: Average word length (for all words)

Average word length overall: 4.47



Appendix B

Perl Code

#!/usr/bin/perl

#####################################################################

#

# graphtest.pl

#

# (c) 2004 Aaron Olson

#

# This perl script is an ad-hoc implementation of the technique

# for n-gram table conversion described in the author’s honours

# thesis. It is neither efficient nor bug-free, but is provided

# for curious readers.

#

# The script was developed as the author explored the problem

# and as such is very conceptually laid out.

#

# Certain empirical measurements were taken (see the chapter

# entitled "Experiements"). Most of these accurately reflect

# the effectiveness of the technique, but the increased running

# time measurements are exaggerated by the inefficient

# implementation given here.

#

#####################################################################
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use strict;

use warnings;

use diagnostics;

my $delimiter = "_";

my $edge_delim = "-->";

my $ngramfile = shift @ARGV;

if(!defined($ngramfile)) {

die "Usage: $0 filename\n";

}

#print STDERR "Collecting ngrams...\n";

my %ngrams = &collect_ngrams({ filename => $ngramfile, delimiter => $delimiter });

#print STDERR "Building graph...\n";

my %graph = &build_graph({ ngrams => \%ngrams, delimiter => $delimiter });

#print STDERR "Building tree...\n";

my %tree = &wilson_tree({ graph => \%graph, starting_vertex => $delimiter });

# my %tree = &arborescence({ graph => \%graph, starting_vertex => $delimiter });

#print STDERR "Building path...\n";

my @epath = &euler_path({ graph => \%graph, arborescence => \%tree });
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#print STDERR "Collecting words...\n";

my %results = &collect_words({ path => \@epath, ngrams => \%ngrams });

foreach (keys %results) {

print "$_\t$results{$_}\n";

}

# from the Perl FAQ

sub fisher_yates_shuffle {

my $deck = shift; # $deck is a reference to an array

my $i = @$deck;

while ($i--) {

my $j = int rand ($i+1);

@$deck[$i,$j] = @$deck[$j,$i];

}

}

# returns an array of the successors of ’vertex’

sub successors {

my $args = $_[0];

my $g = $args->{graph} || die "graph => required";

my $v = $args->{vertex} || die "vertex => required";

my @succ;

if(defined($g->{vertices}{$v})) {

foreach my $edge (keys %{ $g->{edges} }) {

if ($edge =~ /^$v$edge_delim(\w+)$/) {
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push @succ, $1;

}

}

}

return @succ;

}

# returns an array of edges having ’vertex’ as head (including multiple edges)

sub in_edges {

my $args = $_[0];

my $g = $args->{graph} || die "graph => required";

my $v = $args->{vertex} || die "vertex => required";

my @edges;

my $i;

if(defined($g->{vertices}{$v})) {

foreach my $edge (keys %{ $g->{edges} }) {

if ($edge =~ /^(\w+)$edge_delim$v$/) {

for($i = 0; $i < $g->{edges}{$edge}; $i++) {

push @edges, $edge;

}

}

}

}

return @edges;

}
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sub collect_ngrams {

my $args = $_[0];

my $filename = $args->{filename} || die "filename => required";

my $delim = $args->{delimiter} || die "delimiter => required";

my %ng;

my $temp = "";

open (FILE, $filename) or die "Can’t open $filename: $!";

while (<FILE>)

{

my ($ngram, $freq) = split " ";

if ($ngram =~ /^[A-Z]+$/) {

$ng{fragments}{$ngram} += $freq;

} elsif ($ngram =~ /^$delim[A-Z]+$/) {

$ng{prefixes}{$ngram} += $freq;

} elsif ($ngram =~ /^[A-Z]+$delim$/) {

$ng{suffixes}{$ngram} += $freq;

} elsif ($ngram =~ /^$delim([A-Z]+)$delim$/) {

$ng{words}{$1} += $freq;

} else {

# print "ERROR: $ngram\n";

}

}

close(FILE);

return %ng;

}
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sub build_graph {

my $args = $_[0];

my $ng = $args->{ngrams} || die "ngrams => required";

my $delim = $args->{delimiter} || die "delimiter => required";

my $head;

my $tail;

my %g;

$g{vertices}{$delim} = 1; # add the delimiter node

foreach (keys %{ $ng->{prefixes} }) # add the prefixes

{

$head = substr($_, 1, length($_) - 1);

if (!defined($g{vertices}{$head})) {

$g{vertices}{$head} = 1;

}

$g{edges}{$delim . $edge_delim . $head} = $ng->{prefixes}{$_};

}

foreach (keys %{ $ng->{fragments} }) # add the word fragments

{

$head = substr($_, 1, length($_) - 1);

$tail = substr($_, 0, length($_) - 1);

if (!defined($g{vertices}{$head})) {

$g{vertices}{$head} = 1;

}
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if (!defined($g{vertices}{$tail})) {

$g{vertices}{$tail} = 1;

}

$g{edges}{$tail . $edge_delim . $head} = $ng->{fragments}{$_};

}

foreach (keys %{ $ng->{suffixes} }) # add the suffixes

{

$tail = substr($_, 0, length($_) - 1);

if (!defined($g{vertices}{$tail})) {

$g{vertices}{$tail} = 1;

}

$g{edges}{$tail . $edge_delim . $delim} = $ng->{suffixes}{$_};

}

return %g;

}

# returns a hash where each key corresponds to an edge in the arborescence

# a ’1’ is stored in each entry (as an integer)

sub arborescence {

my $args = $_[0];

my $g = $args->{graph} || die "graph => required";

my $svert = $args->{starting_vertex} || die "starting_vertex => required";

my %arbor = ( root => $svert );

my %unvisited;
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my @visited;

foreach (keys %{ $g->{vertices} }) {

$unvisited{$_} = 1;

}

push @visited, $svert;

delete $unvisited{$svert};

while (%unvisited) {

my $current = shift @visited || die %unvisited;

foreach (&successors({ graph => $g, vertex => $current })) {

if($unvisited{$_}) {

$arbor{$current . $edge_delim . $_} = 1;

push @visited, $_;

delete $unvisited{$_};

}

}

}

# yay! we visited all vertices

return %arbor;

}

# Wilson’s Algorithm for generating a random spanning arborescence

sub wilson_tree {

my $args = $_[0];

my $g = $args->{graph} || die "graph => required";

my $svert = $args->{starting_vertex} || die "starting_vertex => required";
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my %arbor = ( root => $svert );

my %unvisited;

my %visited;

my $dart;

my $dummy; # placeholder

foreach (keys %{ $g->{vertices} }) {

$unvisited{$_} = 1;

}

delete $unvisited{$svert};

$visited{$svert} = 1;

while (%unvisited) {

my @unvisited = keys %unvisited;

&fisher_yates_shuffle(\@unvisited);

my $vertex = shift @unvisited;

# generate random walk

my @walk = ();

do {

my @indarts = &in_edges({ graph => $g, vertex => $vertex });

&fisher_yates_shuffle(\@indarts);

$dart = shift @indarts;

push @walk, $dart;

($vertex) = split /$edge_delim/, $dart;

} while (!defined($visited{$vertex}));

# store indices of the vertices in @walk
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my %indices = ();

my $i = 0;

foreach (@walk) {

($dummy, $vertex) = split /$edge_delim/, $_;

push @{ $indices{$vertex} }, $i++;

}

# generate loop-erasure of @walk; store it in @path

my @path = ();

$i = 0;

while($i < @walk) {

$dart = $walk[$i];

push @path, $dart;

($dummy, $vertex) = split /$edge_delim/, $dart;

my $last = pop @{$indices{$vertex}};

if($i < $last) {

$i = $last;

}

$i++;

}

foreach (@path) {

$arbor{$_} = 1;

($dummy, $vertex) = split /$edge_delim/, $_;

delete $unvisited{$vertex};

$visited{$vertex} = 1;

} # foreach

} # while

return %arbor;

}
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sub euler_path {

my $args = $_[0];

my $g = $args->{graph} || die "graph => required";

my $arbor = $args->{arborescence} || die "arborescence => required";

my @indarts;

my $dart;

my $branch;

my %queues;

my $pathcount = 0;

my @path;

foreach (keys %{ $g->{vertices} }) {

@indarts = &in_edges({ graph => $g, vertex => $_ });

$pathcount += @indarts;

while(@indarts) {

$dart = shift @indarts;

if (defined($arbor->{$dart})) {

push @{ $queues{$_} }, $dart; #add to the back of the queue

} else {

unshift @{ $queues{$_} }, $dart; #add to the front

}

}

# randomise order, ensuring the arbor branch comes last

$dart = pop @{ $queues{$_} };

my $array_ref = \@{ $queues{$_} };

&fisher_yates_shuffle( $array_ref );
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push @{ $queues{$_} }, $dart;

}

my $vertex = $arbor->{root};

while ($pathcount) {

$pathcount--;

$dart = shift @{ $queues{$vertex} };

push @path, $dart;

($vertex) = split /$edge_delim/, $dart;

# $pathcount--;

}

return @path;

}

sub collect_words {

my $args = $_[0];

my $path = $args->{path} || die "path => required";

my $ng = $args->{ngrams} || die "ngrams => required";

my %words;

my $word = "";

while (@$path) {

my $dart = pop @$path;

my ($tail, $head) = split /$edge_delim/, $dart;

if($tail eq $delimiter) {

$word .= $head;

} elsif ($head eq $delimiter) {

$words{$word}++;
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$word = "";

} else {

$word .= substr($head, length($head) - 1, 1);

}

}

foreach(keys %{$ng->{words}}) {

$words{$_} = $ng->{words}{$_};

}

return %words;

}


