
External Memory Data Structures for 3 and 4-Sided Queries

Michal Lemczyk

Glenn Hickey

Michael Lawrence

Technical Report CS-2005-17

October 10, 2005

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

External Memory Data Structures for 3 and 4-Sided Queries

Michal Lemczyk Glenn Hickey Michael Lawrence
{lemczyk,hickey,michaell}@cs.dal.ca

Abstract

In this paper, we experimentally evaluate the relative perfor-
mance of 3 external memory query structures. The R and
Priority R (PR) Trees are compared using 4-sided rectangle
queries in Rd. For 3-sided point queries in R2, we compare
the two structures mentioned above to the External Priority
Search (EPS) Tree. While the PR and EPS Trees possess
optimal I/O bounds, they are largely theoretical works. The
R-tree, on the other hand, is a simpler heuristic data structure
that is commonly used in practise but is inefficient in the
worst case. After comparing wall times and I/O efficiency of
queries, updates and bulk loads of the three structures on a
variety of simulated and real data, we find the R-Tree variants
to generally outperform the EPS and PR trees in R2. In higher
dimensions, however, the PR-Tree is most efficient.

1 Introduction

4-sided rectangle query structures are particularly useful for
bounding box searches on spatial databases but can also be
applied to for 4-sided queries on arbitrary data. Likewise,
3-sided queries on 2D points are fundamental to efficiently
answering many kinds of databases searches. Structures to
perform these tasks efficiently on large datasets are well-
studied in the theoretical literature. The Priority R-Tree (PR-
Tree), for instance, is asymptotically optimal in terms of I/O
efficiency for 4-sided rectangle queries while the External
Priority Search (EPS) Tree is a dynamic optimal data structure
for 3-sided queries on 2D points. In practise, however, neither
of these structures sees much actual use. Instead, the R-
tree and its simple variants are extremely popular despite
relying on heuristics and being far from optimal in the worst
case. We implemented these three data structures and, in
the experiments that follow, investigated whether this trend
is justified. Subjects of interest include the identification
of “hidden constants” in the theoretical algorithms and the
practicality and portability of analysis in terms of I/Os rather
than running times.

The following three sections provide an overview of the the
R, PR, and EPS-Trees respectively and discuss some practical

concerns observed during implementation. The experimental
results of the R and PR-Trees on 4-sided rectangle queries on
simulated and real data are then discussed in Section 5. All
three structures are then compared, along with the B+-Tree,
with respect to 3-sided point queries in Section 6.

2 The R-Tree

The R-tree [1] is a fundamental external data structure for
spatial access. It is largely based on the B-tree yet differs in
that it can support rectangular queries and data in arbitrary
dimension whereas the B-tree is limited to 1D points. This
distinction does come at a price, however. B-trees are optimal
in part because the intervals covered by sibling nodes are
disjoint, allowing a target leaf to be found by a single walk
down the tree. Rectangular data can overlap and therefore
the area covered by two children of a given internal node
may not be disjoint. This phenomenon is exacerbated when
the region of coverage by a node is only minimally occupied
– ie, there is a large amount of empty space. A query
can, in the worst case where all nodes overlap, traverse the
entire tree without returning a single rectangle, yielding a
linear worst-case bound. In practise, the outlook is much
brighter as heuristics in the insertion, node-splitting and, if
applicable, bulk-loading algorithms allow a tree to be created
and maintained such that overhead due to traversing nodes that
contain no data in the query is minimized.

The structural properties of an R-tree are nearly identical
to those of a B-tree. It is height balanced and all data
is stored in leaves which lie at the same level. The root
node must have at least two children whereas internal nodes
and leafs must contain between B/a and B children and
data elements respectively. Each internal node contains a
bounding box associated with each of its children that is the
minimum bounding box for the subtree rooted at that child.
Each leaf contains a bounding box for each data element it
contains along with a pointer (if necessary) to the element’s
full representation in the database. Note that although an
element can be covered by the bounding rectangles of two
different leafs, it is only ever stored under one. The R-tree,
similarly to the B-tree, thus requires linear storage.

1

2.1 R*-Tree Updates

The original R-tree, when confronted with the choice of how
to split a node or choose a leaf for insertion, attempts to
minimize the area of the affected nodes in the resulting tree.
The basis for this heuristic is that having more tightly packed
nodes reduces the probability of a query visiting a child
without actually intersecting any of its contents, thus wasting
an I/O. While this idea seems intuitive, no real proof was
given to show that minimizing the area is practically more
efficient than other intuitive heuristics such as minimizing
node margins (perimeters) or minimizing overlap between
nodes. This was the impetus cited by Beckmann et al. [2]
behind their proposed R*-tree. This variant of the R-tree
retains the structural simplicity of the original, differing only
in the update algorithms, but was shown to be practically
superior by extensive experiments and quickly became the
standard. For these reasons, the R*-tree variant was selected to
represent R-tree updates in this paper. The relevant algorithms
are highlighted briefly as follows:

Choose Subtree
This routine is invoked at each level of the tree, starting
from the root, in order to search for a leaf to update during
insertion. In the R-tree, the child is chosen whose bounding
box’s area would be enlarged the least by the insertion of the
new node. The R* algorithm uses this heuristic for every
level except for parents of leaf nodes which are instead chosen
according to the minimum increase of the overlap between
their children and the new node. This enhancement performed
terribly in our tests as minimizing overlap in this way results
in scattering neighbouring rectangles into different nodes,
possibly at opposite ends of the tree. Indeed, it only makes
sense when inserting into an already mature R-tree whose leaf
nodes are sufficiently deep and already well-packed by area-
enlargement. Since insertions were used both for updates and
tree creation, this heuristic was disabled in the implementation
and Choose Subtree operates on area alone. The cost remains
one I/O for each level of the tree or O(logB N).

Node Split
A node split is triggered by reinsertion (explained later) into
a full node. For each axis, the rectangles are sorted by both
their lower and upper coordinate values. A linear number of
partitions are computed for each sorted list by splitting it in
two such that each side of the split has at least B/a elements.
The larger a is, the more possible partitions there are. The sum
of the margins of all partitions for each axis are computed and
the axis with the minimum sum is selected as the split axis.
The partition across the split axis with the minimum margin is
used to split the node. A single node split costs O(1) I/Os as
only the sibling and parent need to be modified but, as usual,
it can propagate up the O(logB N) levels of the tree.

Deletion
Unlike B-trees, R-trees do not merge underfull nodes. Instead,
the node is simply deleted and its children reinserted into the
tree. Note that internal nodes deleted in this way must be
reinserted into the same level in which they existed previously.
Despite its increased cost, this procedure helps account for the
fact that the tree is built greedily. As it changes over time,
the decisions made in the past by Choose Subtree may turn
out to be clearly suboptimal. Reinserting nodes from the top
provides a chance to better place the nodes to reflect changes
in other parts of the tree. This procedure is left unchanged
from the R-tree.

Forced Reinsertion
This is the core R* algorithm and basically extends the
principle described above to insertion. If a rectangle is inserted
into an overfull leaf, or an internal node is created from a split
and inserted into an overfull parent, then instead of calling
Node Split, room is made for the new element by removing
a selected number of children from the targeted node. These
children are selected as the nodes whose bounding rectangles’
centroids are furthest from the centroid of the parent node. The
removed nodes are reinserted back to their old level starting
from the root. If an overflow is caused by a reinsertion, Node
Split is called. The additional cost of reinsertions are justified
by the improved query performance of the resulting tree. We
have seen that each insertion and deletion can trigger up to
O(B) reinsertions. There are no guarantees given that these
amounts can be amortized over O(B) updates but the expected
behaviour is that they will be.

2.2 Hilbert Bulk Loading

If the input is known in advance, a static bulk loading
algorithm that operates on all the data at once should be
preferable to greedily inserting each item as described above
both in performance and the quality of the resulting tree.
Indeed, this is often the case as clustering the input data using
a space filling curve has been employed to a high degree of
success [4]. A space filling curve visits all points on a grid
(whose granularity defines the order of the curve) exactly
once and never crosses itself. Such a curve can be used to
impose a linear ordering on a set of d-dimensional data. A
Hilbert curve [5] is a space filling curve with particularly good
clustering properties in that points which are near to each other
in the Hilbert ordering are most likely to be neighbours in
space. This clustering property leads directly to a bulk loading
algorithm: Each rectangle is mapped to a point whose position
on the Hilbert curve is computed. The rectangles are then
sorted by their Hilbert numbers and a scan is performed to
assign O(B) consecutive rectangles in the sorted order into
each leaf. The remaining levels of the tree are constructed in
the same fashion leading to a O(SORT (N)) I/O algorithm

2

overall. The Hilbert number of a 2D rectangle is typically
computed as the position of its midpoint on the 2D Hilbert
curve. All other information about the rectangle is lost which
can be a detriment to packing rectangles of vastly varying
size and shape. An alternative, referred to as Hilbert H4 [14]
obtains the position of the point (xmin, ymin, xmax, ymax) on
a 4D Hilbert curve and is expected to perform better when
there is a high variance in the shapes and sizes of the input.

2.3 Curse of Dimensionality

The R-Tree structure can support rectangles of arbitrary di-
mension without any modification, the only effect being a
reduction of fanout due to the increased size of the input.
The efficiency lost with increasing dimensions extends well
beyond the reduction of fanout, however, as most of the update
and bulk loading algorithms discussed above are affected.
For the R* algorithms, the concepts of area and overlap
area are the most troubling. Since the area occupied by N
uniformly distributed points increases exponentially with d,
the resulting trees will tend to be accordingly dominated by
empty space. Experiments performed in [8] also show that the
percentage of overlapping nodes within the R* tree increases
from under 5% to over 90% when d is raised from 2 to 5.
Furthermore, there is no reason to expect that splitting nodes
across a single split axis will be particularly useful on higher
dimensional data where the optimal clustering may lie across
several dimensions.

The Hilbert bulk loaders are also affected, since with a larger
number of dimensions there comes a larger number of pairs
of points which are distant from each other on the curve but
next to each other in space [16]. Additionally, and perhaps
even more relevant to these experiments, is that the Hilbert
numbers generated by the Hilbert library [6] are limited to
64 bits. This directly limits the order of the grid chosen to
64/d. For example, only 8 bits could be used to represent
each axis of a coordinate in 8D. This is a large loss of
resolution on our 64 bit input. An attempt was made to reduce
the dimensionality of the input using principle components
analysis so that the Hilbert number could be computed at a
higher resolution but the resulting trees were inferior in every
case. A possible explanation is that the uniformly generated
data simply does not contain any redundant dimensions. There
are better alternatives to the R-tree for high dimensional data
in the literature. One example is the X-tree [8] which is an
efficient extension of the R-tree but beyond the scope of this
report

3 The PR-Tree

The Priority R-Tree, introduced in [14], is proved to be
capable of answering a rectangular window query on N

rectangles of dimension d, in O((N

B
)1−

1

d + T

B
) I/Os, where

B is the block size, and T is the output size. Furthermore,
it is a linear space structure, with the capability to be bulk-
loaded in O(sort(N)) I/Os. Updates to the PR-Tree may be
performed as regular R-Tree updates (requiring O(logB N)
I/Os), however the query bound may be lost due to the
degradation of the structure. In regards to the distinction
between the PR-Tree and R-tree, intuitively the PR-Tree
utilizes the extremes of a collection of rectangles along each
dimension to “describe” the collection for purposes of data
division, as opposed to traditional methods which solely
utilize the bounding box of the collection.

3.1 Structure and the Pseudo-PR-Tree

The formal definition of the PR-Tree utilizes a building block
known as a pseudo-PR-Tree. The following descriptions will
assume 2D points are being indexed for ease of understanding.

The pseudo-PR-Tree is defined recursively on the set of input
rectangles S:
If |S| < B, the pseudo-PR-Tree node is a regular leaf
containing all the rectangles in S. Else the node contains four
priority leaves, each containing B rectangles with the most
extreme edge values for each dimension (min/max pairing),
and two children, whose subtrees each roughly contain half
of the remaining rectangles in S. The split edge orientation
alternates between dimensions on each level of the pseudo-
PR-tree.

The PR-Tree is built bottom-up using pseudo-PR-Trees. The
lowest level is solely composed of leaves (both priority and
regular) of the pseudo-PR-Tree built on the input data set.
Thus all the input rectangles are at the lowest level of the
PR-Tree, and are stored in blocks. The next level takes as
input the bounding boxes of each leaf in the previous level. A
pseudo-PR-Tree is built on those rectangles, and the PR-Tree
level is built out of the leaves of the pseudo-PR-tree, with each
rectangle containing a pointer or offset to the leaf in the lower
level which it represents. Thus the fan-out of the tree is B, as
a block of rectangles is represented by just the bounding box.
This process continues until the input to a level fits within a
block.

In regards to extending the pseudo and PR-Trees to higher
dimensions, the only modification to be made is that the
pseudo-PR-Tree contains more priority leaves (two for each
dimension). Since the PR-Tree is composed of bounding
boxes of rectangles in a pseudo-PR-Tree arrangement, the

3

dimension has no effect on the structure.

3.2 Construction Implementation

All of our implementations make use of the Transparent Par-
allel I/O Environment (TPIE) [13]. TPIE allows application
programs to access unstructured collections of data, part of
which is stored on disk, in a way which abstracts the interface
to disk. The most important constructs utilized in TPIE are
streams and blocks. A stream is an ordered collection of
contiguous elements, allowing access to T sequential elements
in Θ(T/B) I/Os, and random access of an element in Θ(1)
I/Os. A block is an object of size B storing a constant amount
of administrative data, a variable number of elements of some
fixed sized type, and links to other blocks (represented as IDs),
the total size of which is no more than B.

The implementation of the PR-Tree construction algorithm
followed the more simple, however less efficient top-down
method of directly following the pseudo-PR-Tree and PR-Tree
definitions at each node. Although there exists a O(sort(N))
bulk-loader for the PR-Tree, it deviates from the structure
definition as it constructs the tree splits first and then fills in
the priority leaves. Although this detail is insignificant with
regards to the theoretical performance (as the kd-tree query
analysis bound only requires an approximate even split of the
data at each node). It was felt that it may impact the real-world
measurements as cases may be constructed where the priority
leaves position skews the tree split to a less balanced (and
intuitively less optimal) value; thus the more strict method was
utilized.

The construction of the PR-Tree is relatively simple, as
the actual tree structures may in fact be abstracted away.
For example, since only the contents of the pseudo-PR-Tree
leaves are pertinent to the PR-Tree, the actual pseudo-PR-Tree
structure does not have to exist (as no traversals of it will ever
be made).
The PR-Tree construction consists of:

• Reading in a TPIE stream of input rectangles (with each
rectangle being flagged as a leaf).

• Constructing a pseudo-PR-Tree on the input rectangles,
appending each regular and priority leaf of the tree to a
TPIE stream.

• For each block of rectangles in the output stream, con-
structing a rectangle describing the bounding box of the
block, with the offset value being the TPIE stream offset
of the start of the block. Append the rectangle to a new
stream describing the next layer.

• Constructing a pseudo-PR-Tree on the next layer stream,

appending each regular and priority leaf of the tree to a
new output TPIE stream.

• Prepending the latest output stream (the pseudo-PR-Tree
leaves of the new layer) to the previous layer. This will
require a traversal and update of the offset values of the
latest layer.

• Continuing processing layers until the number of rectan-
gles in a layer fits within a block. In that case, prepend
those rectangles to the final output stream and exit.

It should be noted that the latest and previous layer streams
may be cleared and re-used in the loop to minimize storage
requirements.

Pseudo-PR-Tree layer

To construct the pseudo-PR-Trees the following steps are
performed:

• For each dimension (min/max pairing) i, extract the
rectangles destined to the priority leaves:

– Sort the input rectangles by dimension i.
– Copy B rectangles from the end of the sorted

stream. If the stream size is less than B, insert pad
rectangles into the leaf to fill in the remainder, then
return.

– Write the priority leaf to the output stream.
– Truncate the input stream to delete the copied

rectangles.

• If the number of remaining rectangles is 0, exit.

• Else, if the number of remaining rectangles is less than or
equal to a block, write them out to the output stream as a
leaf, using pad rectangles if needed.

• Else:

– Sort the remaining rectangles by the current split
dimension.

– Set the split dimension for the next level.
– Create two new streams of rectangles, with each

containing approximately half of the input.
– Recurse upon each of the two children and their

appropriate input streams.

As previously noted, the pseudo-PR-Tree structure is implied.
During execution, the priority leaves are extracted and saved to
the output stream, and the process continues on the remainder
with no effort being made to store the tree structure or even
the positions of the leaves within the tree.

4

3.3 Query Implementation

The query procedure on the PR-Tree is fairly straight forward,
it follows:

• Begin at offset 0 in the PR-Tree stream (root).

• Read in a block of rectangles.

• If the block is a leaf, test each rectangle for intersection.

• Else, for each non-pad rectangle in the block test for
intersection with the query rectangle.

– If intersection occurs, store the rectangle’s offset
value in an array.

• Recurse on each offset value stored in the array (Begin at
offset in the PR-Tree stream).

This in effect traverses the PR-Tree from root to leaves,
visiting blocks whose bounding boxes intersect the query, and
recording the intersecting input rectangles.

To measure the I/O efficiency of the query procedure, counts
were taken on the number of nodes (internal and leaves)
visited, and the number of input rectangles (in the PR-Tree
leaves) that intersect the query. Since each node consists of
one block of rectangles, an I/O is equivalent to visiting a node,
therefore the total number of I/Os performed is equivalent to
the the number of nodes visited.

3.4 Update Implementation

The update procedures of the PR-Tree were performed in the
same manner as R-Tree updates. Therefore after repeated
updates, the PR-Tree structure will no longer abide by its defi-
nition, and should lose its theoretical query bounds. Numerous
update heuristics exist, but we use a simple one to minimize
the number of controllable factors affecting performance.
Since node elements may be arbitrarily moved to newly
created split nodes located towards the end of the stream,
the relative offset indexing strategy used in the construction
of the PR-Tree will not work. Therefore before any updates
are performed, the PR-Tree is parsed and each offset value
is changed into an absolute offset. For example, a bounding
box at stream position a with offset value b, is set to offset
value a + b. Upon completion of the updates, the tree is again
parsed to revert the absolute offsets to relative offsets to retain
compatibility with the query procedures.

Insertion
The insertion procedure is as follows:
Locate the desired destination leaf of the rectangle to be

inserted via depth first search. At each node, the area of each
bounding box is computed if the bounding box were extended
to enclose the rectangle to be inserted. The next node in the
traversal is the child whose bounding box increases in area the
least. This ensures that the rectangle to be inserted will cause
the least disruption to the bounding boxes of the PR-Tree. At
the desired leaf, if room exists (pad rectangles), the rectangle
is inserted. The parents of the leaf are recursively updated to
reflect the new bounding box of the leaf. At each update, a
new bounding box of the updated node is computed to update
the parent of the node. If the desired leaf is full, a new block
is created at the end of the TPIE PR-Tree stream, with the
desired leaf contents and rectangle to be inserted arbitrarily
split between the desired and new leaves. Upon completion
of the split, new bounding boxes are computed for the desired
and new leaves. The parent of the desired leaf is updated to
reflect the new bounding box, and the bounding box and offset
pointing to the newly created leaf are recursively inserted into
the parent node of the desired leaf. In the case where the root
node needs to be split, two new leaves are appended to the
TPIE stream, with the root contents split between them. The
original root node (at the start of the stream), now contains the
bounding boxes and offsets to the newly created leaves. This
allows the newly created root node to remain at the beginning
of the stream to simplify querying (can still begin at offset 0).

Deletions
The deletion process is similar to the insertion, with the
following differences: The the target leaf containing the
rectangle to be deleted is found using depth first search,
expanding upon each node whose bounding box encloses the
rectangle to be deleted. Upon locating the target leaf, the
occurrence of the rectangle to be deleted is set to a pad
rectangle. The contents of the leaf are scanned to place all
the pad rectangles at the end of the block. If the target leaf
still contains some rectangles, the bounding box is recomputed
and the parents of the leaf are recursively updated (in a
manner similar to the insert procedure). Otherwise the delete
procedure is recursively called on the PR-Tree to delete the
element in the leaf’s parent pointing to it. The updates to the
parents and possible node deletions are performed as for a leaf.

It should be noted that the deletion of nodes and leaves incurs
fragmentation of the PR-Tree. It is possible if desired to
merge two under-full nodes or leaves to avoid this issue,
however this would again severely alter the PR-Tree structure,
and introduce another parameter in the evaluation of the
updated PR-Tree. Another possible approach is to periodically
defragment the PR-Tree structure. Since no nodes would be
merged the query performance would be unaffected, however
the size of the PR-Tree would decrease as deleted blocks are
removed.

5

3.5 Notes

Overall, the implementation of the PR-Tree is fairly straight-
forward due to its similarity to R-Trees. As previously
mentioned it is possible to utilize R-Tree heuristics to attempt
to maintain the optimal query bounds of the PR-Tree after
updates, however no guarantee of performance can be made.
It is possible to retain the PR-Tree query bound performance
by utilizing the External Logarithmic method [14], at the cost
of increasing the insertion and deletion bounds.

4 External Priority Search Tree

The External Priority Search Tree (EPS-Tree) proposed by
Arge et. al [10] is a dynamic structure for answering 3-
sided queries on points in two dimensions. 3-sided queries
are fundamental sub-problems of indexing in emerging data
models [11]. The problem can easily be solved statically, by
using a persistent B-Tree on the x-coordinates of the points,
and deletion times equal to the y-coordinates of the points
[12]. A 3-sided query (x1, x2, y) can then be answered in
the optimal O(logB N + T/B) I/Os by doing a range query
(x1, x2) on the tree at time y.

Much previous work has been dedicated to indexing two-
dimensional points for 3-sided range searching. Most of the
proposed structures perform well in practise, but have sub-
optimal worst-case update times, and their query performance
degenerates after updates. The EPS-Tree however can perform
updates in the optimal O(logB N) I/Os amortized, while still
retaining its query bound of O(logB N + T/B).

The EPS-Tree consists of a weight-balanced base tree [12]
with leaf parameter B and branching parameter 1

4
B on the

x-coordinates of the points. Each node v also indexes Θ(B)
points from each of its Θ(B) children’s x-ranges in its query
data structure, Q(v), so that each point is stored in the query
data structure of exactly one node. The points indexed in a
node v’s query data structure from one of its children vi’s
x-range (called the Y -set of vi and denoted Y (vi)) are the
ones with the largest y value which are not stored in the query
data structure of an ancestor of v. A detailed explanation of
the query data structures is withheld due to space limitations.
Their important properties are summarized as follows:

• Linear space usage (O(B) blocks for O(B2) points).

• Can be built in O(B) I/Os using a sweep-line algorithm.

• Static, but by using an update buffer of size B can be
updated in O(1) I/Os amortized.

• 3-sided range queries are performed in O(1+T/B) I/Os.

• A parameter α controls the trade-off between storage
redundancy and access overhead, with the redundancy
being r ≤ 1 + 1/(α − 1) and the access overhead being
A ≤ α2 + α + 1 ([10], Theorem 4).

To perform a query q = (x1, x2, y) on a node v of the EPS-
Tree, q is first performed on that node’s query data structure
Q(v). q is recursively performed on a child vi of v if either
vi’s x-range contains one of the end points x1 or x2 of the
query, or if all of Y (vi) is returned by the query on Q(v). To
query an EPS-Tree its root is queried. Queries are performed
in the optimal O(logB N +T/B) I/Os, a proof is withheld due
to space limitations, but is detailed in [10].

In order to insert a point p into the EPS-Tree it is first inserted
into the base tree. During the traversal of the root to leaf path
where p will be stored we must identify the node v which will
store p in its query data structure. This is done by querying
Q(v) of each node v visited to identify Y (vi) for v’s child
vi along the search path, and inserting p at the appropriate
level. Inserting p into Q(v) may cause Y (vi) to contain more
than B points in which case the lowest such point must be
deleted from Q(v) and added to Q(vi), called a bubble down
operation.

If a node v splits into nodes v′ and v′′ as a result of insertion
into the base tree, then its query data structure must be split
as well, which may result in Q(v′) and Q(v′′) containing too
few points from the x-range of some of their children. In this
case multiple bubble up operations (analogous to bubble down
operations) must be performed to sufficiently fill Q(v′) and
Q(v′′). Once again a cost analysis is withheld, but it is shown
in [10] that insert operations incur a total of O(logB N) I/Os
amortized.

Deletion of a point p is straight forward, each node v along
the search path querying Q(v) to identify the points in Y (vi)
of v’s child vi along this path. If p is in this set, it is removed
from Q(v), which may require a bubble up operation from
Q(vi). The principal of lazy deletion and global rebuilding is
used in the base tree, in that p is marked as deleted, and the
whole structure is rebuilt after Θ(N) delete operations. It is
shown in [10] that deletions cost O(logB N) I/Os amortized.

The authors of [10] also give algorithms for worse case
deletions, which involves scheduling the bubble-up operations
to be performed lazily, and is beyond the scope of this project.
They also extend their structure for 4-sided range searching,
although the update time is not provably optimal.

6

4.1 Implementation

The EPS-Tree was implemented as described in Section 4
using the C++ programming language and TPIE [13]. Our
implementation of the EPS-Tree makes use of both TPIEs
blocks and streams, it is described in the following two
sections which cover its structure and algorithms separately.

4.1.1 Structure

An EPS-Tree is constructed entirely of blocks, along with
a small amount of additional administrative data (e.g. the
number of levels in the tree, and the block ID of the root).
In total, TPIE blocks are used for 7 purposes: to store nodes
and leaves, as index blocks and as storage blocks on query
data structures, as update blocks for query data structures, and
to store the size of each of the Θ(B) Y -sets stored in a node’s
query data structure (called Y -blocks). Each block has a size
of exactly BOS bytes, but since they each store a constant
amount of administrative information the exact number of
elements and links must be calculated, and differs for each
type of block. For a block with k links of size s(l) bytes each,
and storing elements of size s(e) bytes and containing an info
structure of size s(I) bytes, the number of elements stored is

⌊

BOS − s(I) − k · s(l)

s(e)

⌋

. (1)

In the case of nodes and index blocks, the number of links
stored depends on the number of elements, and we calculate
both as

⌊

BOS − s(I)

s(l) + s(e)

⌋

. (2)

Since a node stores one more element (splitter) than the
number of links it stores, we set the number of elements stored
to be one less than this, resulting in s(e) bytes of unutilized
space.

Since the query data structures store points redundantly, a
small amount of arithmetic is required in order to calculate
the maximum number of points which can be stored in a node
v’s query data structure for a particular child vi’s x-range. If
we let BI be the capacity (number of links to storage blocks)
of an index block as calculated with Equation 2, and BS be
the capacity of a storage block as computed with Equation 1
(with k = 0), then the total number of points which can be
indexed by an index block is BI ·BS . Given that the query data
structures have a maximum redundancy of r ≤ 1+1/(α−1),
we can express the total number of distinct points which can
be stored in a query data structure as

⌊

BI · BS

1 + 1/(α − 1)

⌋

=

⌊

(α − 1)(BI · BS)

α

⌋

,

which, when we choose α = 2 as recommended in [10],
evaluates to bBI · BS/2c. Letting BN be a node’s maximum
number of children as calculated with Equation 2, our upper
bound on the size of Y (vi) for a child vi becomes

⌊

bBI ·

BS/2c/BN

⌋

. As suggested in [10], the minimum number of
points in Y (vi) is half of this.

4.1.2 Algorithms

All of the algorithms were implemented in a straight forward
manner from the description in Section 4, however a few
details omitted in [10] are included here.

Since the authors of [10] do not give a bulk-loading algorithm
for the tree, one was designed which is asymptotically worse
than repeated insertion, but should result in a tree which
is more evenly balanced and has the capability to be more
densely packed. The bulk-loading procedure begins by con-
structing the base tree. It accepts a stream of points to be
loaded, and begins by sorting them by x-value. The required
number of leaves in order to approximate the desired “fill
factor” is calculated, and the leaves are created by scanning
through the points, assigning Θ(B) consecutive points to each
leaf. The block IDs of the leaves are stored consecutively in a
stream. In a similar manner, the exact number of level-1 nodes
is calculated based on the number of leaves and the desired fill
factor, and they are created by scanning through the leaf ID
stream and assigning leaves to nodes. The process continues
upward to the level where only one node is created - the root.
In general it is not possible to perfectly balance the weight
of the nodes, as they will typically have degree differences of
±1. This will result in weight differences on level i equal in
magnitude to the weight of nodes on level i− 1. The problem
of assigning children to parents in order to globally minimize
this imbalance is akin to the string matching problem, and
can be solved with dynamic programming. In lieu of this
more complicated method, we assign children to parents based
on minimizing the difference in degrees of nodes on a level.
Occasionally our technique fails, and a node’s weight may
violate the constraints imposed by the weight-balanced B-
Tree. However this is rare, and keeping the fill factor in the
range of 5%-95% results in a successful bulk load. The total
number of I/Os to build the base tree is: Θ(sort(N)+N/B +
∑log

B
N−1

i=1 N/Bi) = Θ(sort(N) + N/B).

Once the base tree has been built the query structures are
filled from the top down. At the root, the x-sorted stream
of points is partitioned into substreams for each of its child’s
x-ranges. Each of these child substreams is then sorted
by y, and a number of the highest elements corresponding
to the desired fill factor are taken from each for the root’s
query data structure. Each child substream has its remaining
elements sorted by x again, and the query structures in the

7

corresponding child’s subtree are built recursively. The total
number of I/Os at this level is O(N/B) for partitioning
the data into substreams, O(Bsort(N/B)) for sorting the
substreams by y, and O(sort(B2)+B) for sorting the Θ(B2)
query data structure points by x and building the query data
structure from them. The total cost for building the query
data structures is then given by the recurrence T (N) =
N/B +Bsort(N/B)+sort(B2)+B +Bsort(N/B−B)+
BT (N/B−B) = Bsort(N/B)+sort(B2)+BT (N/B−B),
whose solution could not be found by the authors.

Another detail which is left out of the work of [10] is during
the bubble-up of multiple points after a node split. The authors
state that the highest point in Q(v) for some node v can be
found in O(1) I/Os with a degenerate query on Q(v). However
the problem with this is that not knowing the contents of Q(v),
a degenerate query cannot be formed which only incurs O(1)
I/Os. Instead we must query the whole structure in O(B) I/Os,
and scan through the results to identify the top point in an
additional O(B) I/Os. Since O(B) bubble-ups may need to be
performed, this adds a factor of B to the cost of a node split,
causing it to incur O(Bweight(v)) I/Os. Since O(weight(v))
insertions must be performed between splits, the amortized
split cost is O(B) per insertion. With a possible O(logB N)
splits this increases our insert bound to O(B logB N) I/Os
amortized.

The authors of [10] also do not describe how to query the
query data structures when their update buffers are not empty.
We experimented with two methods. The first sorts the
contents of the query structure in x, y order, and sorts the
contents of the update buffer in x, y, sequence number (time
stamps for the updates) order. We scan through the contents
of both in parallel, calculating the final state of each point in
the query structure as well as finding each new point inserted
from the update buffer. However since bubble-ups require
the entire contents of the query structure to be reported, the
additional O(sort(B2)) I/Os turned out to be too expensive
when performing updates. The method used scans through
the entire update buffer for each point returned from the query
structure. The final state of the point is determined, and any
instances of it in the update buffer are marked as processed.
Then to check for the possibility of additional points added,
we scan through the update buffer. For each unprocessed
point, we scan forward through the update buffer and look for
further deletions and insertions of this point, marking them
as processed. The total cost of this algorithm is then the
desired O(1 + T/B) I/Os, but can incur an additional O(B3)
computation steps in the worst case.

5 4-Sided Queries:
Experimental Evaluation

The following experiments were performed to thoroughly
compare the rectangular query, construction, and update per-
formance of the PR and R-Trees in terms of both I/O effi-
ciency and running times and, except for the high-dimensional
experiments, closely resemble those from [14]. The data
structures were implemented in C++ using the TPIE [13]
template library 1. All data was stored in 64 bit floating
point format and set to lie within the unit square centred
at (0.5, 0.5). An additional 64 bit integer was added to all
rectangles for data structure- dependent information. A block
size of 4k was used for all tests and internal memory usage
was limited to 128M. Wall times were recorded on the dual-
processor compute nodes of the CGM1 cluster [15]. Query
I/O’s were measured in terms of percent overhead. This is a
percentage measure of the number of block reads and writes
performed during the queries, over the block size of the output
elements. This in effect describes the percentage of “excess”
I/Os, where 100% would mean each I/O was spent reporting
output to the results.

Throughout the rest of the paper, PR will be used to denote
the PR-tree as constructed by the bulk loader described in
Section 3.2. H and H4 will represent R-trees built using the 2D
and 4D Hilbert bulk loaders described in Section 2.2 and R*
will denote an R-Tree constructed entirely from the R* inserts
from Section 2.1. The bulk loaded trees are filled to 100%
capacity and the R* inserts are performed with all tunable
parameters, such as the minimum fanout and reinsertion factor
set to the values recommended in [2].

5.1 2D Simulated Data

The following set of experiments will utilize artificially cre-
ated data sets exhibiting unique characteristics in order to
produce measurable distinctions between the various four-
sided window query data structures. The generated data will
consist of various distributions of rectangles within the unit
square. The data sets will be based off of the Synthetic data
described in [14] in order to allow both the verification of
the original results in [14] in addition to providing a more
traditional platform for the additional tests. The data sets
include:

1TPIE includes an unofficial R-tree implementation with functionality for
Hilbert bulk loading as well as R* updates, albeit in 2D only. This codebase
was used as a baseline for the R-tree development used here but all nontrivial
algorithms, namely updates and Hilbert sorting, were reimplemented due to
issues of robustness. They were also extended to support block caching and
higher dimensions.

8

• Aspect: A collection of uniformly distributed rectangles
within the unit square, with area fixed to 10−6, and the
aspect ratio orientation being randomly selected for each
rectangle. The aspect ratios utilized are: 10, 100, 1000,
10000, 100000

• Size: A collection of uniformly distributed rectangles
within the unit square, with an upper bound on the length
of the largest side (the lengths are uniformly distributed).
The sizes utilized are: 0.002, 0.005, 0.01, 0.05, 0.1, 0.2

• Skew: A collection of uniformly distributed points within
the unit square, with each point’s y value being trans-
formed to yc. Thereby generating an uneven distribution
of the points, with a bias towards a y value of 0. The
utilized values of c include: 1, 3, 5, 7, 9

• Random: A set of uniformly distributed rectangles within
the unit square, with uniformly distributed shapes and
sizes.

Each generated data set consisted of 10 000 000 rectangles.
Queries consisted of 100 uniformly distributed squares of area
0.01, in addition to performing the same skew transform the
the query rectangles to generate corresponding skewed queries
with c values of 1,3,5,7, and 9. It should be noted that for the
higher dimensional tests, the Aspect data set was not utilized
since the fixed area limitation produced squares that exceeded
the unit-hypercube. Instead the remaining data sets were
extended to produce the appropriate hyper-rectangles abiding
by the dataset descriptions.

5.1.1 Loading Time

The loading time of an online data structure is arguably much
less important than the query time for most applications. Still,
the construction time must be reasonable for a data structure to
have any practical use, and can be used to further discriminate
between solutions that have similar query performance. Thus,
the load times for the Aspect, Size, and Skewed data sets
were measured and the results for the Aspect data, which
are entirely representative of all 3 tests, may be found in
Figure 1. Overall, the PR tree fares worst with the R* tree
second, and the Hilbert trees being most efficient. The varying
times measured in the loading of the various structures may
be easily attributed to the construction methods utilized. The
strict PR-Tree loading method utilizes many sorts at each level
to extract the extreme priority rectangles whereas the Hilbert
bulk loaders require only a single sort for the whole tree and
one scan for each level. The cost of R* update heuristics is
shown to be quite high as constructing the tree by inserts is an
order of magnitude slower than sorting and scanning.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
e
c
o
n
d
s

Aspect

Load time of 2d aspect dataset

H4
H

PR
R

Figure 1: Time in seconds to initialize and load the R, PR,
and Hilbert trees on the various 2D Aspect dataset instances.
Performance on the other datasets is comparable.

5.1.2 Query Performance

The query times for the Aspect, Size, Skewed-square queries,
and Skewed-skewed queries may be viewed in Figure 2.
Again, the PR-Tree tends to be the least efficient, with the R*
tree being second and the Hilbert trees being most efficient.
A notable exception is the case of the skewed-skewed queries
data set where the query time of the PR-Tree remains constant
and is exceeded by the R* tree as the amount of skew
increases. The performance of the PR-Tree on skewed data
may be attributed to it’s utilization of the relative order of
the rectangles in its construction, which does not change with
skew. In the general case, the PR-Tree fared worse in terms of
query time. This may be possibly attributed to the amount of
in-memory computation performed at each tree node and that
the PR-Tree was the only one utilizing a recursive strategy for
the traversal.

The I/O overhead for the data sets may be found in Figure 3.
In general, the results tend to vary with the input data set, and
again in the case of the skew-skewed queries set the PR-Tree
performance remains constant and superior. The I/O overhead
experiments illustrate the theoretical differences of the various
structures. Furthermore, the asymptotic I/O performance may
be inferred from the results as the values for the different data
structures diverges. This may serve as an indicator of wall-
time performance on even larger input data sets, as the number
of I/Os performed dominates the execution time.

The lackluster performance of the R* tree shows that the
greedy inserts cannot compete with a proper bulk loading
algorithm. Furthermore, the trees created by inserts tended
to be approximately two-thirds full which is necessarily a
tremendous disadvantage compared to the fully-packed bulk
loaded trees.

The difference between the 2D and 4D Hilbert loaders is very
apparent in the results for the aspect data. Two rectangles in

9

 0

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
e
c
o
n
d
s

Aspect

Query time of 2d aspect dataset

H4
H

PR
R

(a) Aspect

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

S
e
c
o
n
d
s

Size

Query time of 2d size dataset

H4
H

PR
R

(b) Size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9

S
e
c
o
n
d
s

Skew value

Query time of 2d skew dataset (square queries)

H4
H

PR
R

(c) Skew-Square Queries

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9

S
e
c
o
n
d
s

Skew value

Query time of 2d skew dataset (skewed queries)

H4
H

PR
R

(d) Skew-Skewed Queries

Figure 2: Time in seconds to query the generated 2D datasets over their various parameter values for the R, PR, and Hilbert
trees.

this dataset may have the same midpoints but occupy radically
different areas due to differences in aspect and orientation.
Thus, the H4 algorithm is better able to sort these rectangles
as it uses their four extremities rather than just their midpoint.
The same explanation applies to the size data, only the
difference in shapes between the various input rectangles is
less extreme in this case and the performance difference is
accordingly less pronounced. Finally, the skewed data/skewed
queries experiment again illustrates the invariance of the PR-
Tree to skew, since the relative order of the rectangles and
queries are preserved by the transformation.

5.1.3 Dimensionality

Figures 4, and 5 display the I/O overhead of queries on the
4 and 8 dimensional equivalents of the artificial data. In
all cases, the PR-Tree outperforms the other data structures,
with the R-Tree being least efficient. Unfortunately the R-
Tree results for 8 dimensions are not available as they did
not finish in time. The difference in performance between

the PR and Hilbert trees may be attributed to the theoretical
asymptotic differences between their query bounds. The PR-
Tree performs queries in O((N

B
)1−

1

d + T

B
) I/Os while the

R-Trees require O(dN

B
) I/Os. The structure and heuristics

of the R-Trees are designed for 2D and simply do not scale
gracefully to higher dimensions as discussed in Section 2.3.

5.1.4 Dynamic Updates

This experiment measures both the efficiency of insertions
and deletions as well as their effect on query performance
of the different data structures. The structures were initially
loaded with 5 million rectangles generated with a random
uniform distribution. 10 rounds of 1000 random updates com-
prising of equal numbers of random insertions and deletions
were performed and the I/O cost of each round recorded in
Figure 6(a). The query overhead of 100 square queries on
the data was measured after the in initial loading as well
as after each update round and the results are shown in
Figure 6(b). It was expected that the R*-Tree would show

10

 100

 150

 200

 250

 300

 350

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Aspect

IO overhead on 2d aspect dataset

H4
H

PR
R

(a) Aspect

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Size

IO overhead on 2d size dataset

H4

H

PR

R

(b) Size

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 2d skew dataset (square queries)

H4
H

PR
R

(c) Skew-Square Queries

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 2d skew dataset (skewed queries)

H4
H

PR
R

(d) Skew-Skewed Queries

Figure 3: I/O overhead (measured as a percentage of the number of block I/Os performed over the block size of the query
output) on the various input data set instances, for the R, PR, and Hilbert trees.

the least degradation due to updates since its leaves are not
packed to 100% capacity whereas the bulk loaded trees are
full. While the results do support this hypothesis, the H and
H4 performance was only slightly affected. The PR-Tree
is unsurprisingly impacted the most as no node splitting or
merging heuristics are used to keep the tree well packed. The
I/O cost of the updates themselves shown in Figure 6(a) is
several orders of magnitude greater for the PR-Tree which is
counterintuitive as the algorithm employed is actually simpler
due to the absence of forced reinsertions. This difference is
likely due to implementation issues, specifically, the PR-Tree
was implemented based on TPIE Streams whereas the R-Trees
are built upon block collections which are lower-level and
better at handling random I/Os.

5.2 GIS Data

A large amount of GIS data is made freely available online
by the National Atlas of the United States of America [9].
The data contains point, polyline and polygon vector data

in ESRI Shapefile format corresponding to a broad range of
geographic, demographic, and economic information. By
running random queries of different sizes on this data, we hope
to gain insight into how the different data structures would
perform in a real world spatial database system. The data
was preprocessed as follows. Features outside continental US
were removed, all data was normalized to the unit square and
duplicate geometry was removed (to help the EPS tree). In
order to enlarge the resulting 611,254 features into a massive
dataset, a bounding box was generated for each segment of
each feature. The resulting data comprised of approximately
11 million rectangles and took up 444M on disk. The query
performance of the same 100 queries used on the Size and
Aspect data above is shown in Figure 7. The results are
generally consistent with what has been seen for the simulated
data in that the Hilbert R-Trees are the most efficient, followed
by the PR and R trees. Interestingly, the PR tree’s running time
is greatly affected by the query size, despite its competitive I/O
overhead. Again, this is more likely due to implementation
issues and in-memory computation. Overall, the Hilbert and,
to a lesser extent, R* heuristics show their value for real-world

11

 100

 200

 300

 400

 500

 600

 700

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Size

IO overhead on 4d size dataset

H4

H

PR

R

(a) Size

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 4d skew dataset (square queries)

H4
H

PR
R

(b) Skew-Square Queries

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 4d skew dataset (skewed queries)

H4
H

PR
R

(c) Skew-Skewed Queries

Figure 4: I/O overhead (percentage of performed I/Os over the query output block size) on various 4D input data set instances.

applications with superior running times.

6 3-Sided Queries:
Experimental Evaluation

In evaluating the EPS-Tree vs. the other data structures, our
primary concerns were with testing scalability, and identifying
the constants hidden by asymptotic analysis. We design tests
to explore these factors on synthetic and real data.

Aside from the structures described in the earlier sections of
this paper, we also compare performance on a B+-Tree, which
was already implemented in TPIE. A B+-Tree stores its leaves
in a linked list, and so is particularly good at performing
range queries. We perform a 3-sided query (x1, x2, y) on the
B+-Tree by performing the range query (x1, x2), and then
filtering the results based on their y value. We expect that
the performance of the B+-Tree should deteriorate as y grows,
since it is forced to filter through a large number of points
which are not in the query output.

For all of our experiments, our maximum memory size M was
set to 128MB, and our block size BOS was set to 4kB. For
fair comparison with R and PR-Trees, additional storage space
was added to the representation of a two-dimensional point, so
that each point consumes the same amount of space in memory
and on disk as a two-dimensional rectangle. This is due to the
way in which the R and PR-Trees were implemented for 3-
sided queries on points, which involved representing points as
rectangles with 0 extent, and representing 3-sided queries as
rectangles with infinite extent in the positive y direction.

The theoretical groundwork of the PR-Tree still applies to
points, and so the PR-Tree performance is expected to be
consistent with the previous four sided results. The PR
and R-Trees however may perform better on points than on
rectangles since there is no overlap within the data and hence
the partitions will result in non-overlapping bounding boxes.
In the case of the PR-Tree the priority leaves will be disjoint
as well.

For the static tests, the EPS-Tree is bulk loaded using the
algorithm described in Section 4.1.2. This is because surpris-
ingly, the bulk-loading algorithm is much faster than repeated

12

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Size

IO overhead on 8d size dataset

H4

H

PR

(a) Size

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 8d skew dataset (square queries)

H4
H

PR

(b) Skew-Square Queries

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7 8 9

P
e
rc

e
n
t
o
v
e
rh

e
a
d

Skew value

IO overhead on 8d skew dataset (skewed queries)

H4
H

PR

(c) Skew-Skewed Queries

Figure 5: I/O overhead (percentage of performed I/Os over the query output block size) on various 8d input data set instances.

insertions. For example on one experimental platform, bulk
loading a tree of 100,000 uniformly generated points took 6.89
seconds and 9,989 block I/Os, while inserting 100,000 points
into an initially empty tree took 331.88 seconds and 2,575,198
block I/Os.

Our first test examines the size of each data structure on disk
as a function of the raw size of the input it indexes. All of
the data structures use linear space, but as Figure 8 shows,
the constants are much higher for the EPS-Tree. This is not
surprising because not only is each point stored in exactly two
places (in a leaf of the base tree and a query data structure),
but the query data structures have a redundancy of at most two,
and because of the large number of blocks used in addition to
those which store the raw data.

Our second test compares the average overhead for a batch
of 100 3-sided queries as a function of the size of the
data set. A total of two different data distributions and
two different query distributions were chosen. The data
distributions (pictured in Figure 12 of the Appendix) are
uniform, for uniformly distributed points, and diagonal, for
points uniformly distributed within a region bounded by 10%

the size of the space in either direction of the diagonal. The
query distributions are uniform, with each component of the
query distributed uniformly, and high-y, where the y values
of the queries are distributed uniformly in the top 20% of the
space. We expect that this is where the EPS-Tree will have the
largest advantage, since it should be able to avoid visiting a
larger number of nodes which will not contribute to the query
output. Similarly we expect the EPS-Tree to perform well on
the diagonal distribution. This is because queries with a larger
x1 and x2 will terminate near the top of the tree because this
is where most of their results will be stored, and queries with
a smaller x1 and x2 as well, since the root will not propagate
queries to children whose entire Y -set has not been reported.

The results, shown in Figure 9 tend to support these hypothe-
ses, although the EPS-Tree performs substantially poorer than
the other techniques. This is not surprising, since the access
overhead of the query data structures themselves is A ≤
α2 + α + 1 = 7 when α = 2. This could account for a
700% overhead alone, and further loading the index blocks,
Y blocks, nodes and leaves should increase the overhead
substantially. For the high-y queries the overhead is increased,

13

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 1 2 3 4 5 6 7 8 9

B
lo

c
k
 R

e
a

d
s
 +

 B
lo

c
k
 W

ri
te

s

Updates x 1000

Updates vs. Update I/Os

H4
H

PR
R*

(a) Update I/Os (blocks read + blocks written)

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 2 4 6 8 10

%
 O

v
e

rh
e

a
d

Updates x 1000

Updates vs. Query Overhead

H4
H

PR
R*

(b) Query Overhead

Figure 6: Update performance of each data structure for square 4-sided queries on uniformly distributed rectangles. Each tree
was bulk loaded with 5,000,000 rectangles, and had 10 batches of 1000 updates each applied. The number of I/Os performed
for the updates are shown in (a), while the query overhead after each batch of updates is shown in (b).

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

%
 O

v
e

rh
e

a
d

Query Size

GIS Query Overhead

H4
H

PR
R*

(a) Query Overhead

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

A
v
g

.
Q

u
e

ry
 T

im
e

 (
s
)

Query Size

GIS Query Time

H4
H

PR
R*

(b) Query Time

Figure 7: Query overhead and query time for rectangular queries on the GIS data set. The query overhead shown is for a total
of 100 uniform 4-sided queries, and 10 independent random trials were performed.

due to the smaller size of the result set. However the overhead
of the B+-Tree is increased as expected. The combination
of diagonal data with high-y queries is crippling for the B+-
Tree, due to the presence of queries with small x1 and x2

which contain no results. The PR and R-Trees perform
exceptionally well in all cases. This is because the point data
does not overlap and is hence the ideal case for both structures,
preventing them from visiting children unnecessarily during a
query. All of the data structures scale well with increasing data
set sizes, with the overhead remaining nearly constant across
the different trials.

Our next test examines the update efficiency, as well as the
query time after updates of each data structure for 3-sided
queries on points. The same experiment was performed as
in Figure 6 where each tree is bulk loaded with 5,000,000
points, and has 10 batches of 1000 updates each applied, each

batch having an equal number of insertions and deletions.
The number of I/Os performed for each batch, as well as
the query overhead after each batch are plotted in Figure 10.
Most of the data structures perform equally, except for the
EPS-Tree which performs many more I/Os for each update
operation. This expense is likely attributed to the cost for
keeping the query data structures updated, which requires
expensive bubble up and bubble down operations. The query
overhead of the EPS-Tree increases slightly after each batch
of updates. This is surprising, since the application of updates
for the EPS-Tree means a larger number of computation
steps must be performed scanning the update buffer of each
query data structure, but the number of disk operations should
remain the same. Our only explanation is that the tree has
grown in size due to the inserts, but has not decreased in size
since deletions are performed lazily. Unfortunately due to the
slowness of updates on the EPS-Tree we were not able to test

14

 3000

 2500

 2000

 1500

 1000

 500

 100

 1.5e+07 1e+07 5e+06 1e+06

%
 O

v
e
rh

e
a
d

N

EPS

B+

H4

H

R*

PR

(a) Uniform/Uniform

 3500

 3000

 2500

 2000

 1500

 1000

 500

 100

 1.5e+07 1e+07 5e+06 1e+06

%
 O

v
e
rh

e
a
d

N

EPS

B+

H4

H

R*

PR

(b) Uniform/High-Y

 2000

 1500

 1000

 500

 100

 1.5e+07 1e+07 5e+06 1e+06

%
 O

v
e
rh

e
a
d

N

EPS

B+

H4

H

R*

PR

(c) Diagonal/Uniform

 10000

 9000

 8000

 7000

 6000

 5000

 4000

 3000

 2000

 1000

 100

 1.5e+07 1e+07 5e+06 1e+06

%
 O

v
e
rh

e
a
d

N

EPS

B+

H4

H

R*

PR

(d) Diagonal/High-Y

Figure 9: The percent overhead for 100 random 3-sided queries on each data structure, with each data and query distribution as
the number of points N is varied.

with a large enough number of deletes to force the tree to
be globally rebuilt. Similarly to the 4-sided dynamic update
experiment, the PR-Tree exhibits degrading performance with
each successive round of updates as no heuristics are utilized
to perform insertions and deletions. Therefore the optimal
query bound is lost as the structure deviates from the PR-Tree
definition.

Our final test is a repeat of the test shown in Figure 9, except
using the GIS data as described in Section 5.2. To convert
the GIS data to points, the median of each rectangle was
used. The resulting point distribution is shown in Figure 12
(c) of the appendix. The results, shown in Figure 11 (a)
are consistent with those of Figure 9, demonstrating that our
tests on simulated data are accurate for some real world data
as well. We also measured the number of I/Os necessary
to construct the indexes, shown in Figure 11 (b), where
we find the EPS and B-Trees to be most efficient, with the
Hilbert Trees following shortly thereafter. The R∗-Tree is least
efficient because it was not bulk loaded, but rather created
with repeated insertions. The results for the PR-Tree are not

shown since it is much less efficient than the others and has a
tendency to make the other bars in the plot indistinguishable.

7 Conclusions and Future Work

We have evaluated 6 data structures for 3-sided queries on
points in two dimensions, 4 of which were additionally eval-
uated on rectangle queries in 2, 4, and 8 dimensions. One
of the structures, the R∗-Tree, relies on heuristics and does
not have provably optimal query bounds, while the External
Priority Search (EPS) Tree and the Priority R (PR) Tree do.
The EPS-Tree also is dynamic and has optimal update time
amortized. Our experiments compare the data structures on
different types and dimensionality of simulated data, as well
as real GIS data.

We find that the EPS-Tree’s size, a result of redundantly stored
points and a large number of administrative blocks, inhibits
its performance. Our data set sizes may still be too small

15

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9

B
lo

c
k
 R

e
a

d
s
 +

 B
lo

c
k
 W

ri
te

s

Updates x 1000

Updates vs. Update I/Os

H4
H

R*
EPS

(a) Update I/Os (blocks read + blocks written)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10

%
 O

v
e

rh
e

a
d

Updates x 1000

Updates vs. Query Overhead

H4
H

PR
R*

EPS

(b) Query Overhead

Figure 10: Update performance of each data structure for uniform 3-sided queries on uniformly distributed points. Each tree
was bulk loaded with 5,000,000 points, and had 10 batches of 1000 updates each applied. The number of I/Os performed for
the updates are shown in (a), while the query overhead after each batch of updates is shown in (b).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

%
 O

v
e

rh
e

a
d

GIS Query Overhead

H4
H

R*
EPS

B+
PR

(a) Query Overhead

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07
I/

O
s

GIS Contruction I/O

H4

H

R*

EPS

B+

(b) Construction I/Os

Figure 11: Query overhead and index construction I/Os for 3-sided queries on the GIS data set, converted to 2D points. The
query overhead shown is for a total of 100 uniform 3-sided queries, and 10 independent random trials were performed.

to rule out the possibility of asymptotic performance which
overrules the constant factors, since the trees constructed for
our tests have only a small number of levels (≤ 4). However
testing with data large enough for the trees to have a significant
number of levels would take weeks, and as such was not
feasible within our time frame.

The PR-Tree was less I/O efficient than the Hilbert loaded R-
Trees in all the 2D experiments except for 4-sided queries
on the skewed points. Even in this case, however, the
running time was still significantly greater. Unsurprisingly,
the trees created with R* inserts exhibited consistently poorer
efficiency than their bulk-loaded counterparts. In the higher
dimensional experiments, the PR-Tree consistently out per-
formed the other structures, thereby supporting its asymptotic
query bound. However, it would be interesting to benchmark
it against a more realistic solution in higher dimension such as

the X-Tree. The lack of update heuristics in this implemen-
tation of the PR-Tree was made apparent in the observable
degradation of performance after successive updates. A
possible remedy would be the utilization of the External
Logarithmic method [14], to allow for the retention of the
optimal query bound after updates; the implementation and
associated experiments will have to be deferred to future work.
Finally, the standardization of implementation techniques (re-
cursion, stream and block use), would allow for more accurate
comparisons between the PR-Tree and other structures in
terms of execution time, and the number of I/Os required
in the construction and update of the structure. Overall, the
experiments show the 4d Hilbert R-Tree (H4) to be the most
practical datastructure for 3 and 4-sided queries on 2D points
and rectangles despite relying on heuristics while the PR-Tree
is the best choice of structures tested for higher dimension

16

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

In
d
e
x
 S

iz
e
 (

M
B

)

Input Size (MB)

EPS
B+
PR
R*
H4
H

Figure 8: The size of the index created by each data structure
as a function of the size of the raw input data. The number of
points corresponding to the domain shown here is 1,000,000
to 15,000,000.

There are still many more possibilities for evaluation that time
and space will not allow, such as whether the bulk-loaded
trees give better query performance than those constructed
with repeated insertion. It would also be beneficial to evaluate
all of the data structures on the same system, so we could
determine if the relative performance as measured by wall
time is equal to the relative performance as measured by
number of I/Os. This would give an indication of the relative
cost of in-memory computation of the structures, vs. the
cost of accessing disk, and as such validates the I/O model
for analyzing these structures. Unfortunately testing on a
common platform was infeasible, as tests involving the EPS-
Tree caused hard to diagnose kernel panics on our largest
and most powerful experimental platform, and so they were
relegated to a much slower PC.

There is plenty of room for further optimizations as well,
particularly in the EPS-Tree. For example the points do not
need to be stored in the leaves at all, since they are never
accessed there. The tree would work properly with only the
splitters to guide the queries and the query data structures to
answer them. Other optimizations are possible, for example in
identifying the highest point stored in a query data structure,
we need not formulate a degenerate query at all. The index
information stored should identify which block contains the
highest point, and it can then be read in O(1) I/Os. This would
lower the insert cost to the optimal O(logB N) I/Os amortized.

We also never experimented with different block sizes and
memory sizes. The performance of the data structures them-
selves could depend on these variables to a high degree.

8 Appendix

Figures 12 and 13 display the data distributions used for two-
dimensional points and rectangles respectively.

References

[1] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. Proc ACM SIGMOD. 1984.

[2] N. Beckmann, H.P. Kriegel, R Schneider, B Seeger. The
R*-tree: an efficient and robust access method for points
and rectangles. Proc ACM SIGMOD. 1990.

[3] P. Rigaux, M. Scholl, A. Voisard. Spatial Databases with
Application to GIS. Morgan Kaufman Publishers. 2002

[4] I. Kamel, C Faloutsos. Hilbert R-tree, and improved R-
Tree using Fractals. Proc. VLDB. 1994

[5] B. Moon et al. Analysis of the Clustering Properties
of Hilbert Space-filling Curve. Submitted to IEEE
Transactions on Knowledge and Data Engineering,
March 1996.

[6] D Moore. Hilbert C Implementation. Dept. of Computa-
tional and Applied Math. Rice University. 2000.

[7] AR Butz. Alternative Algorithm for Hilbert’s Space-
Filling Curve. IEEE Trans. Comp., April. 1971

[8] S Berchtold, DA Keim and HP Kriegei. The X-Tree:
An Index Structure For High-Dimensional Data. Proc
VLDB 22. Bombay, India. 1996.

[9] The National Atlas of the United States of America.
http://www.nationalatlas.gov/. United States Dept. of the
Interior. 2005

[10] L. Arge, V. Samoladas, and J.S. Vitter. On two-
dimensional indexability and optimal range search
indexing. In Proceedings of the 18th ACM Symposium
on Principles of Database Systems, pages 346357, 1999.

[11] P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff and
J.S. Vitter. Indexing for data models with constraints
and classes. Journal of Computer and System Sciences,
52(3):589-658, 1996.

[12] L. Arge. External-memory geometric data structures.
Lecture notes of EEF Summer School on Massive Data
Sets, Aarhus, 2002.

[13] TPIE, A Transparent Parallel I/O Environment,
“http://www.cs.duke.edu/TPIE”. August 19, 2005.
L. Arge, O. Procopiuc, and J.S. Vitter. Implementing

17

(a) Uniform (b) Diagonal

(c) GIS (1 of every 10,000 features sampled)

Figure 12: Data distributions for 3-sided queries on points.

I/O-efficient data structures using TPIE. In Proc.
European Symposium on Algorithms, 88-100, 2002.

[14] L. Arge, M. de Berg, H. Haverkort, and K.
Yi. The Priority R-Tree: A practically Efficient
and Worst-Case Optimal R-Tree. Proceedings of
the 2004 ACM SIGMOD international conference
on Management of data, pages 347-358, 2004.
“http://citeseer.ist.psu.edu/arge04priority.html”

[15] CGM User’s Manual,
“http://cgm1.cs.dal.ca/UserManual.html”. August
15, 2005.

[16] Mokbel, M., Aref, W.G., Kamel, I. 2002. Performance
of Multi-Dimensional Space-Filling Curves. Proceedings
of the International Conference on Geographic Informa-
tion Systems.

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Size 0.02

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Aspect 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) Skew 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) Random Input for Updates

(e) GIS Data

Figure 13: Data distributions for 4-sided queries on rectangles. Every 10,000th rectangle is sampled except for (d) and (e)
where every 50,000th and single rectangle were sampled respectively.

19

