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Evolutionary Gradient Search Revisited
Dirk V. Arnold

Abstract— Evolutionary gradient search is an approach to op-
timization that combines features of gradient strategies with ideas
from evolutionary computation. Recently, several modifications
to the algorithm have been proposed with the goal of improving
its robustness in the presence of noise and its suitability for
implementation on parallel computers. In this paper the value of
the proposed modifications is studied analytically. A scaling law
is derived that describes the performance of the algorithm on
the noisy sphere model and allows comparing it with competing
strategies. The comparisons yield insights into the interplay of
mutation, multirecombination, and selection. Then, the covari-
ance matrix adaptation mechanism originally formulated for
evolution strategies is adapted for use with evolutionary gradient
search in order to make the algorithm competitive on objective
functions with a large condition numbers of their Hessians. The
resulting strategy is evaluated experimentally on a number of
convex quadratic test functions.

Index Terms— Evolutionary gradient search, evolution strate-
gies, quality gain analysis, noise, covariance matrix adaptation.

I. INTRODUCTION

Evolution strategies [1], [2], [3], [4] and gradient search
algorithms [5] are approaches to numerical optimization that
differ fundamentally in several important aspects. Salomon’s
evolutionary gradient search (EGS) [6] attempts to blend fea-
tures of the two in order to combine the efficiency of gradient
search strategies with the relative robustness of evolutionary
approaches. The contributions of the present paper are twofold.
First, the basic iterative steps of EGS are studied in order to
learn about the influence of the strategy’s parameters on opti-
mization performance and to be able to draw comparisons with
related evolution strategies. Recommendations with regard to
the setting of strategy parameters are also given. And second,
in an effort to achieve competitive performance on functions
with different eigenvalue spectra of their Hessians, the co-
variance matrix adaptation mechanism devised by Hansen
and Ostermeier [7] is adapted for use in EGS. The resulting
strategy could be called CMA-EGS. Numerical experiments
on several objective functions show that the insights gained in
the analysis of the basic iterative steps are indeed useful under
much more general conditions than those that they have been
obtained under.

A. Basic Iterative Steps

The most basic gradient-based optimization strategy for the
minimization of functions f : IRN → IR is the method
of steepest descent. It iteratively updates a search point by
stepping in the direction of the negative of the gradient of
the objective function at the current location in search space.

D. V. Arnold is with the Faculty of Computer Science, Dalhousie Univer-
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If gradient information cannot be obtained directly, gradient
strategies compute a finite-difference approximation to the
gradient [8]. That approximation is obtained by evaluating
the objective function at a number of trial points close to the
current search point, typically by stepping in direction of the
coordinate axes. Depending on whether forward differences or
central differences are employed, evaluation of the objective
function at either N + 1 or 2N points is required to obtain a
gradient estimate, where N is the search space dimensionality.
Provided that the objective function is locally smooth, the
gradient estimate can be made to match the gradient with any
degree of accuracy by making the trial steps sufficiently small.

Evolution strategies differ from gradient search algorithms
both in their use of a population of search points and in the fact
that rather than employing a regular pattern of trial steps, trial
points (often referred to as offspring) are generated randomly.
A search direction is inferred implicitly by the selection of
favorable trial points. Those trial points that are selected
form the population of search points in the next time step.
Typically, selection is based on rank within the set of offspring,
and objective function values are used only to establish a
ranking. Another fact that distinguishes evolution strategies
from gradient search algorithms is that for the former, the
number of trial points generated per time step is flexible.
There is no requirement that the number of offspring be
N + 1 or 2N . Indeed, in the context of local optimization,
evolution strategies often rely on far fewer than N trial points
per time step. As a consequence, the direction in which the
population of search points moves may differ substantially
from the (negative of the) gradient direction. However, many
“cheap” steps computed on the basis of a relatively small
number of objective function evaluations may well be more
effective in their sum than a few expensive ones. While
Rechenberg [1] characterizes the resulting search process as
a form of “stochastic gradient descent”, Beyer [9] points
out that the search behavior of evolution strategies can be
qualitatively different from gradient descent in that it is much
more exploratory in nature.

The EGS procedure introduced by Salomon [6] is a hybrid
strategy that combines features of gradient-based algorithms
and evolution strategies. As evolution strategies, EGS gener-
ates trial points by random mutations, and the number of trial
points generated per time step is flexible. As gradient strate-
gies, it operates with a single search point rather than with
a population, and it uses objective function values rather than
merely ordinal information for inferring search directions. Pro-
vided that the variance of the probability distribution used to
generate trial points is sufficiently small, the gradient direction
is approached with increasing accuracy as the number of trial
points generated per time step increases. In an experimental
evaluation presented in [6], EGS performed superior to several
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variants of evolution strategies on a number of test functions.
In [10], a close connection between EGS and the (µ/µ, λ)-

ES, an evolution strategy that is popular both for its amenabil-
ity to theoretical analysis and for its good performance, was
pointed out. See [4] for a taxonomy of evolution strategies.
The form of recombination used by the (µ/µ, λ)-ES leads to
the population effectively being contracted to a single search
point that new trial points are generated from in every time
step. The basic iterative steps that EGS and the (µ/µ, λ)-ES
perform differ only in the way that the information gained
from evaluating the trial points is used. The (µ/µ, λ)-ES uses
objective function values only in order to obtain a ranking of
the λ trial points generated. It then discards all but the µ best
of them, and it applies global intermediate recombination — a
simple, unweighted averaging — to the remaining ones. EGS
on the other hand uses a weighted average of all λ trial points
in order to derive a new search point. The weight of a trial
point is determined by the difference between its objective
function value and the objective function value of the search
point it was generated from, and it can be negative if the trial
point is inferior to the search point.

The similarity between EGS and the (µ/µ, λ)-ES makes it
possible to use the tools developed for the analysis of evolu-
tion strategies when studying properties of EGS. In [10] the
performance of the basic EGS steps with isotropic mutations
was analyzed on the infinite-dimensional sphere model and
compared with that of the (µ/µ, λ)-ES. It was seen that while
EGS can offer a significant performance advantage compared
to the (µ/µ, λ)-ES, it does have deficiencies when imple-
mented on parallel computers as well as in the presence of
noise. In particular, while the serial efficiency of the (µ/µ, λ)-
ES increases with increasing population size (see [3]), that of
EGS peaks at λ = 5 and decreases for larger numbers of
trial points generated per time step. The potential speed-up
resulting from evaluating trial solutions in parallel is sublinear
for EGS while it is (slightly) superlinear for the (µ/µ, λ)-ES.
For finite N it can be seen in experiments that the parallel
performance advantage of the (µ/µ, λ)-ES for large numbers
of trial points generated per time step is not as pronounced as
for N →∞, but it is nonetheless present.

Moreover, it was seen in [10] that the performance of EGS
degrades with increasing amounts of noise present. The reason
for the better search capabilities in the presence of noise of
the (µ/µ, λ)-ES was found not to be that strategy’s reliance on
ordinal information rather than function values, but instead its
better use of the genetic repair effect. As seen in [1], [3],
[11], the (µ/µ, λ)-ES benefits from multirecombination on
the sphere model in that the averaging of candidate solutions
implicit in the recombination procedure reduces the “harmful”
components of mutation vectors. As a consequence, the search
steps made by the strategy are shorter than its trial steps,
and the strategy is able to operate with mutation strengths
larger than those of a comparable strategy that does not use
multirecombination. In [12] it was seen that in the presence of
noise, increased mutation strengths have the additional benefit
of reducing the noise-to-signal ratio that the strategy operates
under. EGS as introduced in [6] explicitly ensures that trial
steps and search steps are of the same length. As a result, it

is not capable of operating with mutation strengths as large as
those of a comparable (µ/µ, λ)-ES, and it thus suffers from a
higher noise-to-signal ratio.

In light of these deficiencies, in a recent paper Salomon [13]
has proposed two important modifications to the evolutionary
gradient search procedure. Recognizing that the inferior par-
allel performance of EGS is due to a negative bias resulting
from the fact that typically, the majority of trial points is
inferior to the search point they originate from, Salomon
suggests the use of “inverse mutations”. That is, for every trial
step, a symmetric trial step is made in the opposite direction.
In the subsequent averaging, the weight associated with the
step is chosen proportional to the difference between the
function values of the two trial points and is thus independent
of the function value of the search point. This procedure
is reminiscent of the use of central differencing instead of
forward differencing in gradient strategies and has proven
to be valuable in experiments reported in [13]. The second
modification consists in the introduction of a second step size
parameter. One parameter is used to control the length of the
trial steps, the other one that of the search steps. It becomes
thus possible to imitate the result of the genetic repair effect
observed in evolution strategies, and to reap the resulting
benefits in the presence of noise. Interestingly, it will be seen
below that the use of a second step length is closely akin to
the idea of using rescaled mutations in evolution strategies as
proposed by Ostermeier in [1] and analyzed by Beyer [14],
[15].

B. Step Length Control and Non-Isotropic Mutations

Of course, the basic iterative steps discussed thus far are
but one part of a numerical optimization strategy. A further
important issue to be addressed is that of step length control.
Gradient algorithms, EGS, and evolution strategies each have
their own mechanisms for that purpose. When using the
method of steepest descent, a locally optimal step length
is usually determined by conducting a one-dimensional line
search along the direction of the (negative of the) gradient.
In the presence of noise, experiments reported in [16] have
shown that rapidly decreasing step lengths and convergence
to a non-optimal point may result on functions as simple as
the sphere model. The original EGS strategy described in [6]
tries out two steps, one slightly longer than the previous search
step, the other one slightly shorter, and settles for the better
of the two. The situation is complicated by the introduction
of a second step length as proposed in [13] and discussed
above. One possibility inspired by the effects of genetic repair
in evolution strategies as well as by the idea of using rescaled
mutations is to choose the length of the search steps to be a
constant fraction of the length of the trial steps, thus leaving
only the former to be controlled. In the realm of evolution
strategies, step length adaptation mechanisms including the
1/5th success rule [17], mutative self-adaptation [17], [18], and
cumulative step length adaptation [19] are commonly used.
In the experiments described in [16], cumulative step length
adaptation has proven relatively robust with respect to the
effects of noise. Analytical results regarding the properties of
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cumulative step length adaptation on the sphere model can be
found in [20], [21].

Finally, it is well known that while using isotropic mutations
(i.e., using a mutation covariance matrix that is a scalar multi-
ple of the unity matrix) is appropriate for the sphere model, the
performance of isotropic evolution strategies rapidly declines
with increasing condition number of the Hessian matrix of
the objective function. As discussed by Whitley et al. [22], in
order to achieve good performance on functions that contain
long valleys or ridges that need to be followed, it is necessary
to adapt the shape of the mutation distribution to the local char-
acteristics of the problem at hand. Interestingly, even though
EGS uses a weighted sum of all its trial steps to determine a
search step where the weights can vary widely, the same can be
observed to hold true for EGS. Salomon [23] proposes to use
individual step sizes for the N dimensions, and thus to operate
with a mutation covariance matrix in which all off-diagonal
entries are zero. Much improved performance on ellipsoidal
objective functions the axes of which are aligned with the
axes of the coordinate system can be achieved. However,
the resulting algorithm’s performance is not invariant with
respect to the orientation of the coordinate system. Progress
along valleys or ridges that are not parallel to one of the
main axes is still very slow. Salomon [6] also suggests using
a momentum term in order to improve the ridge following
capabilities of EGS. However, as pointed out by Poland and
Zell [24], while the use of a momentum term is useful for
ridge functions, it is of limited use if the eigenvalues of the
Hessian of the objective function are widely spread and not
dominated by a single value that is much smaller than all of the
others. For multirecombination evolution strategies, Hansen
and Ostermeier [7] have introduced a covariance adaptation
mechanism that has been found in experiments to reliably
transform any convex quadratic function into the simple sphere
function. In the present paper, that algorithm is adapted for use
in EGS.

C. Outlook

The remainder of this paper is organized as follows. In
Section II, the EGS procedure with the modifications described
in [13] is outlined and the sphere model is introduced as
an important model for studying local search properties of
optimization algorithms. In Section III, the performance of the
modified EGS strategy with isotropic mutations is investigated
on the sphere model. A number of simplifications are made
in the calculations that hold in the limit N → ∞, but that
are seen to provide good approximations for moderately large
values of N . Section IV generalizes the results from Section III
by considering the effects of noise present in the observed
objective function values. In Section V the performance of the
modified EGS strategy is compared with that of the original
EGS procedure as studied in [10] as well as with several
variants of evolution strategies. Both the cases of fitness-
proportionate and uniform noise strength are considered. In
Section VI, the covariance matrix adaptation mechanism is
formulated for EGS and tested on a number of objective
functions. It is seen that while covariance matrix adaptation

largely works for EGS as well as it does for evolution
strategies, there are some problems with step length adaptation
in low-dimensional search spaces. It is then seen that in the
presence of noise, CMA-EGS is preferable to the (µ/µ, λ)-
CMA-ES due to the additional flexibility afforded by its use
of a rescaling parameter. Section VII concludes with a brief
summary and suggestions for future research.

II. PRELIMINARIES

This section outlines the modified EGS procedure for the
minimization of functions f : IRN → IR as described in [13]
and motivates the changes that have been made to the original
algorithm proposed in [6]. It then briefly summarizes some
notational conventions and basic results for the sphere model.

A. Modified Evolutionary Gradient Search

An iteration of the modified EGS procedure with isotropic
mutations updates the search point x ∈ IRN of the strategy in
three steps:

1) Generate 2λ trial points y
(i)
± = x± σz(i), i = 1, . . . , λ,

where mutation strength σ > 0 determines the step
length and the z(i) are vectors consisting of N inde-
pendent, standard normally distributed components.

2) Determine the objective function values f(y
(i)
± ) of the

trial points and compute the weighted sum

z(avg) =
λ∑

i=1

(

f(y
(i)
− )− f(y

(i)
+ )
)

z(i) (1)

of the z(i) vectors.
3) Replace the search point x by x + σz(prog), where

z(prog) =

√
N

κ

z(avg)

‖z(avg)‖ (2)

is referred to as the EGS progress vector.
The use of non-isotropic mutations as well as the discussion
of step length adaptation is deferred until Section VI. Notice
that an iteration of the strategy thus described differs from
one of the original EGS procedure in two important aspects.
First, the modified EGS strategy generates two trial solutions
for every mutation vector: one in direction of that vector,
and a second one by taking a step of the same length in
the opposite direction. The difference of the function values
of the two points generated is used to weight the respective
mutation vector in Eq. (1). The difference between this proce-
dure and that of the original EGS algorithm is reminiscent
of the difference between central differencing and forward
differencing when using gradient strategies. It will be seen
in Section III that for EGS, the use of central differencing has
the desirable effect of eliminating a performance hampering
bias term in the computation of z(avg). Second, the introduction
of the factor 1/κ in Eq. (2) allows for making search steps
that differ in length from the trial steps. While the length
of the trial steps is roughly σ

√
N for large N , that of the

search steps is σ
√

N/κ. The modification is akin to the use
of rescaled mutations in evolution strategies as suggested by
Ostermeier and Rechenberg [1]. According to Beyer [14], [15],
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Fig. 1. Decomposition of a vector z into central component zA and lateral
component zB . Vector zA is parallel to x̂ − x, vector zB is in the hyperplane
perpendicular to that. The starting and end points, x and y = x + σz, of
vector σz are at distances R and r from the optimizer x̂, respectively.

for evolution strategies the use of rescaled mutations can lead
to greatly improved performance in the presence of noise. The
investigations below confirm that the same holds true for EGS.

B. The Sphere Model

Since the early work of Rechenberg [17], the local perfor-
mance of evolution strategies has commonly been studied on
the quadratic sphere

f(x) = (x̂− x)T(x̂ − x), x ∈ IRN ,

where the task is minimization and where x̂ ∈ IRN is
the optimizer. The sphere serves as a model for objective
functions in the vicinity of well behaved local optima. See [16]
for a justification of the usefulness of such considerations.
Using appropriate normalizations, most results arrived at for
the quadratic sphere can be extended to general spherically
symmetric functions f(x) = g(R), where R = ‖x̂ − x‖ and
where g(R) is strictly monotonic.

In order to quantify the local performance of point-based
search strategies, consider the effect of adding a vector σz to
the current search point x. The EGS strategy does so both
when generating trial points and when replacing the current
search point at the end of an iteration. Denoting the respective
distances of x and y = x+σz from the optimizer by R and r,
the difference δ(z) = R2 − r2 between objective function
values f(x) = R2 and f(y) = r2 can be used to determine
both the quality of trial points and the rate at which the strategy
approaches the optimum. Keeping with the terminology estab-
lished in connection with evolution strategies, δ(z) is referred
to as the fitness advantage associated with vector z.1

The commonly used approach to determining δ(z) on the
sphere model relies on a decomposition of vector z that is
illustrated in Fig. 1. A vector z originating at search space
location x can be written as the sum of two vectors zA and zB ,
where zA is parallel to x̂ − x and zB is in the (N − 1)-
dimensional hyperplane perpendicular to that. The vectors zA

1While the notation adopted here is deliberately brief and does not reflect
that explicitly, it is important to keep in mind that the fitness advantage δ(z)
depends not only on vector z, but also on the mutation strength σ and, in
case z is a progress vector, on the rescaling factor κ.

and zB are referred to as the central and lateral components
of vector z, respectively. The signed length zA of the central
component of vector z is defined to equal ‖zA‖ if zA points
towards the optimizer and to equal −‖zA‖ if it points away
from it. Using elementary geometry, it can easily be seen from
the figure that

r2 = (R− σzA)2 + σ2‖zB‖2,

and therefore, rearranging terms and realizing that ‖z‖2 =
z2

A + ‖zB‖2, that

δ(z) = R2 − r2

= 2RσzA − σ2‖z‖2. (3)

Writing this in terms of normalized quantities

σ∗ = σ
N

R
and δ∗ = δ

N

2R2
, (4)

it follows

δ∗(z) = σ∗zA −
σ∗2

2N
‖z‖2. (5)

for the normalized fitness advantage associated with vector z.
Equations (3) and (5) are used in two contexts. First, by
considering mutation vectors they allow computing the fitness
differences that occur in the definition of z(avg) in Eq. (1).
Second, by considering progress vectors they help quantify
the speed with which the strategy approaches the optimum.

In case z is a mutation vector, the signed length zA of
the central component of z is standard normally distributed
as the distribution of z is isotropic. Moreover, for large N ,
the influence of the central component on the overall squared
length of z becomes negligible, and thus zA and ‖z‖2 are
asymptotically independent. Since ‖z‖2 is the sum of squares
of N independent, standard normally distributed random vari-
ables, it has expectation N and variance 2N . For increasing
N , ‖z‖2/N is thus increasingly well approximated by unity,
and, using Eq. (5), it follows by considering both z and −z

that

δ∗(±z)
N→∞

= ±σ∗zA −
σ∗2

2
. (6)

Letting r
(i)
± denote the distances from the optimizer to y

(i)
± ,

respectively, and letting

δc(z) = f(y
(i)
− )− f(y

(i)
+ ), (7)

it follows immediately that

δc(z) = r
(i)
−

2
− r

(i)
+

2

=
(

R2 − r
(i)
+

2)

−
(

R2 − r
(i)
−

2)

= δ(z(i))− δ(−z(i))

and therefore, using Eqs. (4) and (6), that

N

2R2
δc(z)

N→∞
= 2σ∗z

(i)
A . (8)

This result will be used below to determine the weights of the
mutation vectors in the summation in Eq. (1).



5

In case z = z(prog) is a progress vector, the expected
normalized associated fitness advantage

∆∗
EGS = E

[

δ∗(z(prog))
]

(9)

quantifies the EGS quality gain, a commonly used performance
measure as motivated in [3]. In order to determine the quality
gain of EGS on the sphere model using Eqs. (5) and (9),
expected values of the signed length of the central compo-
nent and of the overall squared length of the EGS progress
vector z(prog) need to be computed. The computation of the
quality gain in the absence of noise is subject of Section III;
the noisy case is considered in Section IV.

III. PERFORMANCE OF THE MODIFIED EGS STRATEGY ON

THE SPHERE MODEL

Due to the definition of the EGS progress vector in Eq. (2)
it is clear that its squared length is N/κ2, and therefore that

∆∗
EGS = σ∗E

[

z(prog)
A

]

− σ∗2

2κ2
. (10)

In order to compute E[z
(prog)
A ], notice that z(avg) enters the

definition of z(prog) normalized to unit length, and that thus
any vector parallel to z(avg) can be substituted instead provided
that it is normalized as well. In particular, writing R for the
distance from the search point x to the optimizer and defining

z∗ =
N

2R2
z(avg) (11)

it follows from Eq. (2) that

z(prog)
A =

√
N

κ

z∗A
‖z∗‖ . (12)

According to Eqs. (1), (4), (7), and (8),

z∗ =
N

2R2

λ∑

i=1

δc(z
(i))z(i)

N→∞
= 2σ∗

λ∑

i=1

z
(i)
A z(i).

Considering the signed length of the central component yields

z∗A
N→∞

= 2σ∗

λ∑

i=1

z
(i)
A

2
. (13)

For the overall squared length of z(avg) it follows from Eq. (1)
using Eq. (7) that

‖z(avg)‖2
N

=
1

N

N∑

k=1

(
λ∑

i=1

δc(z
(i))z

(i)
k

)2

=
1

N

N∑

k=1

λ∑

i=1

(

δc(z
(i))z

(i)
k

)2

+ ζ,

where of course the components of z(i) = (z
(i)
1 , . . . , z

(i)
N )T

are independently standard normally distributed and where

ζ =
1

N

N∑

k=1

∑

i6=j

δc(z
(i))δc(z

(j))z
(i)
k z

(j)
k

is a crosstalk term. That term has mean zero and a variance that
can be shown to tend to zero as N →∞ and thus vanishes in
the limit of infinite search space dimensionality. Furthermore
making use of the fact ‖z(i)‖2/N → 1 as N →∞, it follows
from the definition of z∗ using Eq. (8) that

‖z∗‖2
N

N→∞
=

(
N

2R2

)2
1

N

N∑

k=1

λ∑

i=1

(

δc(z
(i))z

(i)
k

)2

=

(
N

2R2

)2 λ∑

i=1

(

δc(z
(i))
)2 1

N

N∑

k=1

z
(i)
k

2

︸ ︷︷ ︸

→1

N→∞
= 4σ∗2

λ∑

i=1

z
(i)
A

2
. (14)

Combining the results from Eqs. (13) and (14), it follows using
Eq. (12) that

z(prog)
A

N→∞
=

1

κ

√
√
√
√

λ∑

i=1

z
(i)
A

2
. (15)

Recall that the z
(i)
A are simply standard normally distributed

random variables, and that the radicand thus is χ2-distributed
with λ degrees of freedom. Also notice that in contrast to
the corresponding result derived in [10] for the original EGS
procedure, but similar to evolution strategies, the signed length
of the central component of the progress vector of the modified
EGS algorithm (and indeed the progress vector itself) is
independent of the length of the trial steps. The dependence
of that quantity on the mutation strength in the original EGS
procedure was a consequence of a negative bias of that strategy
that results from the fact that the fitness advantage associated
with mutation vectors is more often negative than it is positive.
This is reflected in Eq. (5) by the negative term quadratic
in ‖z‖. The modified EGS procedure eliminates that bias by
evaluating mutation −z(i) along with z(i), and computing the
difference between the corresponding objective function values
in order to weight vector z(i) in Eq. (1). It will be seen
below that removing that bias has a beneficial effect on the
performance of the strategy.

Writing Eλ for E[
√

χ2
λ] it follows from Eqs. (10) and (15)

that the quality gain of the modified evolutionary gradient
search procedure on the sphere model in the limit N →∞ is

∆∗
EGS

N→∞
=

1

κ

[

σ∗Eλ −
σ∗2

2κ

]

. (16)

Due to the properties of the χ2-distribution, Eλ is well
approximated by

√
λ (the error is below 5% for λ ≥ 5

and below 1% for λ ≥ 25). Substituting
√

λ for Eλ yields
approximation

∆∗
EGS ≈

1

κ

[

σ∗
√

λ− σ∗2

2κ

]

(17)

for the quality gain of the modified EGS procedure on the
high-dimensional sphere model. Figure 2 compares quality
gain predictions made using Eqs. (16) and (17) with measure-
ments from EGS runs on the sphere model. It can be seen that



6

-2.0

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

PSfrag replacements

mutation strength σ∗

qu
al

ity
ga

in
∆

∗ E
G

S

λ = 1

λ = 5

λ = 10

Fig. 2. EGS quality gain ∆∗

EGS plotted against the normalized mutation
strength σ∗ for λ ∈ {1, 5, 10} and κ = 1. The points represent measurements
from EGS runs on spheres with N = 40 (+) and N = 400 (×). The solid
lines represent asymptotically exact results from Eq. (16), the dashed lines
those from the approximation Eq. (17).

while the analytical results were derived under the assumption
of infinite search space dimensionality, the agreement with the
measurements is good for N as small as 40 if λ is not too
large. For λ = 10 the discrepancy between predictions and
measurements is considerable for N = 40, but tolerable for
most purposes for N = 400.

The result from Eq. (17) is to be compared with the
corresponding approximation

∆∗
EGS ≈ σ∗

√

λ

1 + σ∗2/4
− σ∗2

2
(18)

for the original EGS procedure derived in [10]. Disregarding
the parameter κ (that can without loss of performance be
set to 1 in the noise-free case), the negative term that is
quadratic in σ∗ is unaffected. However, the switch from
forward differencing to central differencing in the weighting
of mutation vectors has led to the disappearance of the term
quadratic in the mutation strength in the denominator of the
positive term that hampered progress towards the optimum and
limited the size of useful mutation strengths in the original
EGS procedure. For any nonzero mutation strength, the term
that contributes positively to the quality gain is larger for the
modified EGS procedure than it is for the original algorithm.

Computing the derivative of Eq. (16) with respect to σ∗ and
finding the positive zero yields optimal mutation strength

σ∗ = κEλ. (19)

Reinserting this result into Eq. (16) results in maximum quality
gain

∆∗
EGS =

E2
λ

2
. (20)

With increasing λ, the optimal quality gain of the modified
EGS procedure thus approaches λ/2, independent of κ. In
contrast to the original EGS procedure, but like the (µ/µ, λ)-
ES, the modified EGS strategy thus exhibits a linear speed-up
when increasing the number of trial directions generated per
time step.
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Fig. 3. Serial efficiencies η of strategies on the sphere model in the limit
N → ∞ plotted against the parameter λ that determines the number of trial
points generated per time step. The data points for the (µ/µ, λ)-ES with
optimally chosen µ and for the original EGS procedure have been computed
as described in [3] and [10], respectively. The curve for the (µ/µ, λ)-ES is
not smooth as µ can take on integer values only. The data points for the
modified EGS procedure have been obtained from Eq. (16) with κ = 1.

In order to have a fair comparison that accounts for the
differing computational costs of the various strategies, it is
common to define the serial efficiency η of a strategy as
as the quality gain per evaluation of the objective function
for optimally set mutation strength. Clearly, the number of
objective function evaluations per time step is λ for the
(µ/µ, λ)-ES, it is λ + 1 for the original EGS procedure, and
it is 2λ for the modified EGS strategy. Figure 3 contrasts
the respective serial efficiencies of the various strategies.
While the serial efficiency of the (µ/µ, λ)-ES approaches a
value of 0.202 as λ increases and that of the original EGS
procedure decreases once λ exceeds five, that of the modified
EGS strategy asymptotically approaches a value of 0.25. The
modified EGS procedure is superior to the (µ/µ, λ)-ES for
any value of λ. Notice however that for small values of λ the
original EGS procedure is somewhat more efficient than the
modified one as it requires fewer objective function evaluations
per time step.

IV. PERFORMANCE IN THE PRESENCE OF NOISE

The assumption that the objective function value of a
candidate solution can be determined exactly is usually an
idealization. Real-world optimization problems often suffer
from noise that can stem from sources as different as —
and not restricted to — measurement limitations, the use
of Monte Carlo methods, and human computer interaction.
Understanding how noise impacts the performance of op-
timization strategies is important for choosing appropriate
strategy variants, for the sizing of strategy parameters, and
for the design of new, more noise resistant algorithms.

The most commonly employed noise model assumes addi-
tive Gaussian noise. That is, it is assumed that when evaluating
the objective function at some search space location y, the
value obtained is normally distributed with mean f(y) and
with some standard deviation σε(y). In [10] it had been seen
that the original EGS procedure is generally inferior to the
(µ/µ, λ)-ES on the noisy sphere model. The (µ/µ, λ)-ES is
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able to make use of what has been termed the genetic repair
effect by Beyer [3], [11]: the averaging of mutation vectors
that is implicit in the multirecombination procedure together
with the selection mechanism of the strategy leads to the lateral
component of the (µ/µ, λ)-progress vector being shorter (by
a factor of

√
µ) than that of the mutation vectors. The length

of the central component is not affected significantly. As a
consequence, the (µ/µ, λ)-ES is able to use mutation strengths
much larger than those useful for evolution strategies that do
not employ multirecombination. As discussed in [12], in the
presence of noise larger mutation strengths have the advantage
of reducing the noise-to-signal ratio that the strategy operates
under. In the limit of infinite search space dimensionality,
increasing the population size parameters µ and λ makes it
possible to increase the mutation strength to a degree that all
but eliminates the noise. In finite-dimensional search spaces
the potential benefits of genetic repair are more limited, but
as seen in [25] still considerable.

It was seen in [10] that the original EGS procedure is
not able to benefit from genetic repair to the degree that
the (µ/µ, λ)-ES does for two reasons. First, the negative
bias that leads to the occurrence of the mutation strength in
the denominator in Eq. (18) puts a limit on useful mutation
strengths. This has been addressed in Section III where it was
seen that the use of the central differencing-like weighting
of mutation vectors in Eq. (1) leads to the elimination of
the bias and the disappearance of the performance hampering
term from the quality gain law. Second, the ability of the
original EGS procedure to use large mutation strengths is
severely limited by the fact that it uses progress vectors that
are of the same length as its mutation vectors are. It is for
this reason that the modified strategy introduced above uses
the rescaling factor κ in Eq. (2). That factor decouples the
length of the progress vector from that of the mutation vectors,
making it possible to emulate the effect that the (µ/µ, λ)-
ES benefits from due to its use of multirecombination. The
same idea has been suggested for the (1, λ)-ES by Ostermeier
and Rechenberg [1] and analyzed by Beyer [14], [15]. The
remainder of this section studies the potential benefits that
result from the use of the rescaling factor in evolutionary
gradient search.

As the weighting factors depend on objective function
measurements, the presence of noise affects the weighting of
the mutation vectors in Eq. (1). Assuming that the evaluation
of all trial points in a time step is subject to the same noise
strength σε and introducing normalized noise strength

σ∗
ε = σε

N

2R2
, (21)

Eq. (8) is to be replaced by

N

2R2
δc(z

(i))
N→∞

= 2σ∗z
(i)
A +

√
2σ∗

ε z(i)
ε (22)

in order to reflect the measured fitness difference, where z
(i)
ε is

a standard normally distributed random variable that reflects
the effects of noise. The factor

√
2 in the second term on

the right hand side is a result of the fact that the modified
EGS procedure evaluates two candidate solutions rather than

a single one when weighting a mutation vector, and that the
variance of the sum of the two noise terms equals the sum of
the two variances.

Using Eq. (22) in the definition of vector z∗ according to
Eq. (11), it follows that in the presence of noise

z∗
N→∞

=

λ∑

i=1

(

2σ∗z
(i)
A +

√
2σ∗

ε z(i)
ε

)

z(i).

Considering the signed length of the central component yields

z∗A
N→∞

= 2σ∗

λ∑

i=1

z
(i)
A

2
+
√

2σ∗
ε

λ∑

i=1

z(i)
ε z

(i)
A . (23)

As the z
(i)
A and the z

(i)
ε are independently drawn from a

standardized normal distribution, the expected values of the
terms on the right hand side are 2λσ∗ and zero, respectively.
For the overall squared length of z∗ in the presence of noise it
follows in close analogy to Eq. (13), but using Eq. (22) instead
of Eq. (8), that

‖z∗‖2
N

N→∞
=

(
N

2R2

)2 λ∑

i=1

(

δc(z
(i))
)2

N→∞
=

λ∑

i=1

(

2σ∗z
(i)
A +

√
2σ∗

ε z(i)
ε

)2

= 4σ∗2
λ∑

i=1

z
(i)
A

2
+ 4
√

2σ∗σ∗
ε

λ∑

i=1

z
(i)
A z(i)

ε

+ 2σ∗
ε
2

λ∑

i=1

z(i)
ε

2
. (24)

The expected values of the terms on the right hand side are
4λσ∗2, zero, and 2λσ∗

ε
2, respectively.

In order to compute the quality gain of the modified EGS
procedure on the noisy sphere using Eqs. (10) and (12),
E[z∗A/‖z∗‖] needs to be computed. Unfortunately, according
to Eqs. (23) and (24), the quantities involved have distributions
that make it impossible to compute the expectation in closed
form. Instead, as done in [10] for the original EGS strategy,
we make two simplifications. First, we ignore the terms in
Eqs. (23) and (24) that have zero mean. The error introduced
by this simplification is most noticeable for small values of
λ as for larger numbers of search directions, the other terms
in Eqs. (23) and (24) solidly dominate those with mean zero.
And second, we assume that

∑λ
i=1 z

(i)
A =

∑λ
i=1 z

(i)
ε . Notice

that the two terms are identically distributed but independent.
For increasing λ, due to the properties of the χ2-distribution,
the sums are dominated by their expectations, and the error
introduced by the assumption of them being equal becomes
less severe. Experiments show that for λ as small as ten,
the resulting error is insignificant for most practical purposes.
From the simplifications, it follows

E
[

z(prog)
A

]

≈ 1

κ
E




2σ∗

∑λ
i=1 z

(i)
A

2

√
(
4σ∗2 + 2σ∗

ε
2
)∑λ

i=1 z
(i)
A

2





=
1

κ

Eλ
√

1 + σ∗
ε
2/(2σ∗2)
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Fig. 4. Quality gain ∆∗

EGS plotted against normalized mutation strength σ∗

for λ = 10, κ = 1, and normalized noise strengths σ∗

ε ∈ {0.0, 4.0, 8.0}. The
points represent measurements from EGS runs on spheres with N = 40 (+)
and N = 400 (×). The solid and dashed lines represent the approximations
Eqs. (25) and (26), respectively.

as an approximation for the expected signed length of the
central component of the EGS progress vector. Using this
approximation in Eq. (10) and writing ϑ = σ∗

ε /σ∗ for the
noise-to-signal ratio that the strategy operates under yields
approximations

∆∗
EGS ≈

1

κ

[

σ∗ Eλ
√

1 + ϑ2/2
− σ∗2

2κ

]

(25)

≈ 1

κ

[

σ∗

√

λ

1 + ϑ2/2
− σ∗2

2κ

]

(26)

for the quality gain of the modified EGS strategy on the
noisy sphere model. Figure 4 compares predictions made using
Eqs. (25) and (26) with measurements from EGS runs with
κ = 1. It can be seen that the quality of the approximation
is good provided that N is not too small. The absolute error
is smaller in the presence of noise than in its absence, thus
providing a justification for the simplifications made in the
derivation of the quality gain laws. Figure 5 illustrates the
quality of approximations Eqs. (25) and (26) for varying values
of κ. It can be seen that the accuracy of the predictions is
best for small values of κ. Larger values of κ as well as of λ
generally require higher search space dimensionalities in order
for the approximations to be good. The same holds true for
the corresponding quality gain approximation for the (1, λ)-ES
with rescaled mutations derived by Beyer [14].

V. EVOLUTION STRATEGIES VS. EVOLUTIONARY

GRADIENT SEARCH

Using the results thus derived, the performance of the
modified EGS procedure can now be compared with that of
the original EGS strategy, the (µ/µ, λ)-ES, and the (1, λ)-ES
with rescaled mutations. Comparisons are presented first by
considering single time steps only, and then for the cases of
fitness-proportionate and uniform noise strengths.

Table I compares the quality gain approximation Eq. (26) for
the modified EGS procedure with those for the original EGS
strategy derived in [10], the (1, λ)-ES with rescaled mutations
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Fig. 5. Quality gain ∆∗

EGS plotted against normalized mutation strength σ∗

for λ = 10, σ∗

ε = 4.0, and κ ∈ {0.5, 1.0, 2.0}. The points represent
measurements from EGS runs on spheres with N = 40 (+) and N =
400 (×). The solid and dashed lines represent the approximations Eqs. (25)
and (26), respectively.

analyzed in [14], and the (µ/µ, λ)-ES investigated in [12].
Common to all of the quality gain laws is the appearance
of two terms: a term that contributes positively and that is
due to the central components of the progress vectors, and
a negative term that is due to the progress vectors’ lateral
components. The dependence of those terms on strategy and
problem parameters differs from strategy to strategy. However,
introducing standardized quantities

σ̄ =
σ∗

σ̂∗
, σ̄ε =

σ∗
ε

σ̂∗
ε

, and ∆̄ =
∆∗

∆̂∗
,

where the scaling parameters σ̂∗, σ̂∗
ε , and ∆̂∗ for the various

strategies are given in Table II, the quality gain laws of the
(1, λ)-ES with rescaled mutations, the (µ/µ, λ)-ES, and the
modified EGS procedure can all be written as

∆̄ =
2σ̄

√

1 + (σ̄ε/σ̄)2
− σ̄2. (27)

The original EGS strategy does not fit into this pattern due
to its negative bias discussed in Section III. For the other
strategies, the dependence of optimal standardized mutation
strength and corresponding standardized quality gain on the
standardized noise strength is illustrated in Fig. 6. Clearly,
σ̂∗ is the optimal normalized noise strength in the absence of
noise, and ∆̂∗ is the corresponding quality gain. The scaling
parameter for the noise strength determines the normalized
noise strength 2σ̂∗

ε up to which positive quality gain is possi-
ble. Altogether, the following conclusions can be drawn from
Tables I and II and Fig. 6:

• The effect of the rescaling achieved by the inclusion of
the factor κ in the definition of the strategy takes the
same functional form for the modified EGS procedure
as it does for the (1, λ)-ES with rescaled mutations. For
the (µ/µ, λ)-ES, a similar effect is achieved implicitly
by virtue of multirecombination as witnessed by the
appearance of the factor µ in the denominator of the
negative term in the respective quality gain law.

• As the strategies differ in how they combine the in-
formation obtained by evaluating their offspring, so do
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TABLE I

QUALITY GAIN LAWS ON THE NOISY, INFINITE-DIMENSIONAL SPHERE.

(1, λ)-ES with
rescaled mutations

1

κ

»

σ∗
c1,λ√
1 + ϑ2

− σ∗2

2κ

–

(µ/µ, λ)-ES σ∗
cµ/µ,λ√
1 + ϑ2

− σ∗2

2µ

original EGS σ∗

s

λ

1 + σ∗2/4 + ϑ2
− σ∗2

2

modified EGS
1

κ

"

σ∗

s

λ

1 + ϑ2/2
− σ∗2

2κ

#

TABLE II

SCALING PARAMETERS σ̂∗ , σ̂∗

ε , AND ∆̂∗ .

σ̂∗ σ̂∗

ε ∆̂∗

(1, λ)-ES with
rescaled mutations

κc1,λ κc1,λ c2
1,λ/2

(µ/µ, λ)-ES µcµ/µ,λ µcµ/µ,λ µc2µ/µ,λ/2

modified EGS κ
√

λ κ
√

2λ λ/2

the positive terms in the respective quality gain laws.
The effects of comma-selection (and, for the (µ/µ, λ)-
ES, multirecombination) are captured by the progress
coefficients c1,λ and cµ/µ,λ. The corresponding term for
evolutionary gradient search is

√
λ and results from the

weighted summation of mutation vectors, where weights
are determined by differences between objective function
values.

• The influence of the noise-to-signal ratio ϑ = σ∗
ε /σ∗ is

similar for all of the strategies considered. It appears in
the form of the

√
1 + ϑ2 term in the denominator of the

positive contribution to the quality gain for the evolution
strategies. For the original EGS procedure, additionally,
the mutation strength enters this term due to the negative
bias of mutations discussed above. The modified EGS
strategy fixes that bias by using central differences, and it
divides the square of the noise-to-signal ratio by two as it
relies on two objective function evaluations per mutation
vector rather than on a single one.

• The (1, λ)-ES with rescaled mutations as well as the mod-
ified EGS procedure can achieve the respective maximal
quality gains that they can attain in the absence of noise
even if noise is present. Increasing κ allows the strategies
to operate with larger mutation strengths and thus to
reduce the noise-to-signal ratio to zero. Notice that this
rescaling is possible for any value of λ. The (µ/µ, λ)-ES
is capable of operating with large mutation strengths by
choosing µ and λ large. The original EGS procedure is
not able to benefit from the rescaling of mutation vectors
and is thus generally inferior in the presence of noise.

• Of the strategies considered, the (µ/µ, λ)-ES and the
modified EGS procedure exhibit a linear increase in
quality gain when increasing λ (and, for the (µ/µ, λ)-
ES, µ). Both the (1, λ)-ES and the original EGS strategy
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EGS procedure and have been obtained from Eq. (27).
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scale sublinearly.

Figure 7 visualizes the serial efficiencies of several evolution
and evolutionary gradient search strategies on the noisy sphere
model. All of the strategies considered perform ten objective
function evaluations per time step. It can be seen from the
figure that the (1, λ)-ES exhibits relatively low performance
in the absence of noise, but that its robustness with regard
to the effects of noise can be increased by increasing κ.
The (µ/µ, λ)-ES is more efficient than the (1, λ)-ES in the
absence of noise, but does not offer the same flexibility in its
rescaling of mutation vectors. An increase in population size
is necessary in order for better performance in the presence
of noise to be achieved. However, as seen in [25], choosing µ
and λ large can lead to a loss in serial efficiency in low-
dimensional search spaces. The original EGS procedure is
more efficient than both types of evolution strategy in the
absence of noise, and, for the case considered, also in its
presence. However, it does not benefit from an increase in
λ to the degree that the (µ/µ, λ)-ES does, and it does not
offer the possibility of rescaling in the presence of noise. For
values of λ larger than those considered here, the (µ/µ, λ)-
ES would be the better strategy in the absence of noise, and
the (1, λ)-ES with rescaled mutations in its presence. Finally,
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Fig. 8. Serial efficiency η of the modified EGS strategy with λ = 5 and
κ ∈ {1, 4, 10} plotted against normalized noise strength σ∗

ε . The points
represent measurements from EGS runs on spheres with N = 40 (+) and
N = 400 (×). The solid lines have been obtained from Eq. (25).

the modified EGS procedure combines the advantages of the
two kinds of evolution strategy, while at the same time being
nearly as efficient as the original EGS strategy in the absence
of noise.

It is important to reemphasize that these results are ide-
alizations in that they have been derived in the limit of
infinite search space dimensionality. While they suggest that
κ should be chosen arbitrarily large and that the efficiency
of the noise-free case can be achieved for any level of noise
present, in practice, finite search space dimensionalities limit
useful values of κ. However, the results do provide a good
understanding of the behavior of the modified EGS procedure
and of the significance of its parameters if N is not too
small. Figure 8 compares predictions from Eq. (25) with
measurements of EGS runs in search spaces with N = 40 and
N = 400. It can be seen that the quality of the approximation
is very good for κ as large as ten if N = 400, and that it
provides a good qualitative understanding for N = 40.

Finally, approximations like Eq. (25) describe the behavior
of search strategies in single time steps. Different global
behaviors of the algorithms can be observed depending on
how the noise strength σε(x) varies with the location in
search space. Provided that the mutation strength is adapted
successfully, without noise present EGS (like evolution strate-
gies) exhibits stochastic linear convergence as illustrated in
Fig. 9. The decrease in logarithmic function values of the
search point is a random variable with a stationary distribution.
When plotted against time, logarithmic objective function
values fluctuate around a straight regression line the slope of
which determines the speed of convergence. The frequently
considered case of fitness-proportionate noise strength (i.e.,
σε(x) ∝ f(x) and therefore σ∗

ε (x) = const .) leads to the same
type of global behavior, but with a lower speed of convergence.
Qualitatively different behavior results if the noise strength
σε(x) is independent of x and thus uniform throughout the
search space. In that case, the strategy is not able to approach
the optimum indefinitely but instead remains at a certain
distance from it. As a consequence, objective function values
of the search point approach a non-optimal limit value as
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Fig. 9. Objective function value f(x) of the search point on the sphere model
plotted against time t. The curves represent measurements from typical EGS
runs on the sphere model for the cases of no noise, fitness-proportionate noise,
and noise of uniform strength. In all cases, the step length is controlled using
cumulative step length adaptation as described in Section VI.

indicated in Fig. 9. For the (µ/µ, λ)-ES, according to Beyer [3]
that limit value is

f =
Nσε

4µcµ/µ,λ
. (28)

For the modified EGS procedure, the corresponding result can
be derived by using Eq. (26) to determine the point at which
nonzero quality gain ceases to be possible. Assuming ∆∗

EGS =
0, letting the mutation strength tend to zero, and using Eq. (21)
yields

f =
Nσε

4κ
√

2λ
(29)

for the limit objective function value. Clearly, that value can
be minimized by increasing λ or κ, where increasing κ has the
stronger effect and the additional advantage of not increasing
computational costs.

VI. BEYOND THE SPHERE

In the realm of evolution strategies, the sphere model derives
part of its significance from the existence of powerful mutation
covariance matrix adaptation algorithms. Using a mutation
covariance matrix that is adapted to the problem at hand can
speed up the convergence of evolution strategies by several
orders of magnitude. As recognized by Rudolph [26], ideally,
the covariance matrix is the inverse of the Hessian matrix of
the objective function at the current search point. In that case,
the local performance of the evolution strategy is identical
to that of an isotropic strategy on the sphere model. The
covariance matrix adaptation algorithm of Hansen and Oster-
meier [7] in particular has been found to successfully adapt
the mutation covariance matrix for arbitrary convex quadratic
objective functions. This section first briefly outlines that
mechanism and describes the small modifications necessary
to make it useful in connection with EGS. It then evaluates
experimentally the performance of the resulting CMA-EGS
strategy on a number of convex quadratic objective functions
with greatly varying eigenvalue spectra.



11

A. Covariance Matrix Adaptation

The CMA-ES described in [7] accumulates consecutive
search steps in order to provide information on the basis
of which adaptation of the mutation covariance matrix is
performed. Realizing that it may be advantageous to adapt
the overall step length on a time scale shorter than that used
for adapting the shape of the distribution, trial points are
generated with covariance matrix σ2C, where step length
parameter σ is adapted separately from symmetric, positive
definite N × N matrix C. Adaptation of the former uses
the idea of cumulative step length adaptation introduced by
Ostermeier et al [19]. Adaptation of the latter is done with
the implicit goal of maximizing the probability of replicating
successful steps. Somewhat inaccurately, C is referred to as
the mutation covariance matrix. As the CMA-ES, CMA-EGS
utilizes two N -dimensional vectors sC and sσ referred to
as search paths that hold exponentially fading records of the
most recently taken steps. An iteration of CMA-EGS updates
the search paths along with the search point x, the mutation
strength σ, and matrix C using the following six steps (using
“←” to denote the assignment operator):

1) Compute an eigen decomposition C = BD(BD)T of
the mutation covariance matrix such that the columns of
N ×N matrix B are the normalized eigenvectors of C

and D is a diagonal N×N matrix the diagonal elements
of which are the square roots of the eigenvalues of C.

2) Generate 2λ trial points

y
(i)
± = x± σBDz(i), i = 1, . . . , λ,

where the z(i) are mutation vectors consisting of N
independent, standard normally distributed components.

3) Determine the objective function values f(y
(i)
± ) of the

trial points and compute the weighted sum

z(avg) =

λ∑

i=1

(

f(y
(i)
− )− f(y

(i)
+ )
)

z(i)

of the z(i) vectors.
4) Update the search point according to

x← x + σBD

√
N

κ

z(avg)

‖z(avg)‖ .

5) Update the search paths according to

sC ← (1− cC)sC + κ
√

cC(2− cC)BDz(avg)

and

sσ ← (1− cσ)sσ + κ
√

cσ(2− cσ)Bz(avg),

where cC = cσ = 4/(N + 4) as recommended in [7].
6) Update covariance matrix and step length according to

C← (1− ccov)C + ccovsCsT
C

and

σ ← σ exp

(‖sσ‖2 −N

2DN

)

,

where ccov = 2/(N +
√

2)2 and D = 1 + 1/cσ as
recommended in [7].

Notice that steps 2) to 4) closely parallel steps 1) to 3) in
Section II-A, except that there, mutations are isotropic. The
adaptation procedure in steps 5) and 6) differs from that of
the CMA-ES described in [7] only in two details: First, as
in [20], [21], adaptation of the step length is performed on
the basis of the squared length of the search path sσ rather
than based on its length. The change simplifies the formulas
involved without significantly impacting performance. And
second, the coefficients in the update rules for the search
paths in step 5) have been modified in order to account for
the difference between the lengths of the progress vectors of
evolution strategies and EGS. Is is important to point out
however that the settings of the cumulation and damping
parameters have not been altered from the (µ/µ, λ)-CMA-ES,
and that possibly better performance could be achieved if they
were optimized for CMA-EGS.

Finally, realizing that the eigen decomposition in step 1)
is expensive and that its cost may for large N outweigh the
cost of evaluating the trial points, Hansen and Ostermeier [7]
suggest to perform it only every N/10 steps, and to use slightly
outdated matrices B and D in between. We have followed that
suggestion for N ≥ 100 without observing a significant loss
in search performance.

B. Experimental Evaluation

In order to evaluate the performance of CMA-EGS and to
compare it with that of the (µ/µ, λ)-ES, experiments have
been run for a range of search space dimensionalities and noise
levels on the sphere model as well as on the following three
convex quadratic test functions:

cigar: f(y) = y2
1 + 106

N∑

i=2

y2
i

discus: f(y) = 106y2
1 +

N∑

i=1

y2
i

ellipsoid: f(y) =
N∑

i=1

106(i−1)/(N−1)y2
i

Note that while the functions are separable and their respective
optima are at the origin of the coordinate system, CMA-EGS
(as the (µ/µ, λ)-CMA-ES) does not make use of these facts.
Its behavior is invariant with regard to rigid transformations of
the coordinate system, and the experiments could have been
carried out using arbitrarily rigidly transformed coordinates
without changing the results. The sphere was included in the
comparison as it is the easiest of all convex quadratic test
functions. On the sphere, there is no need for adapting the
mutation covariance matrix (provided that it is initialized to the
identity matrix). The behavior of CMA-EGS on the sphere is
well described by the results derived for the isotropic strategy
in Sections III through V. The remaining three test functions
do require adaptation of the mutation covariance matrix in
order for CMA-EGS to achieve good performance. After
adaptation is complete, CMA-EGS achieves the same rate of
convergence on any of the convex quadratic test functions as it
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Fig. 10. Number of function evaluations required to reach fstop = 10−10

plotted against the search space dimensionality N . Solid lines represent results
measured for the (3/3, 10)-ES, dashed ones those for the modified EGS
strategy with λ = 5 and κ = 1.

does on the sphere. The length of the adaptation phase depends
on the eigenvalue spectrum of the objective function. All three
of the functions considered have condition number 106, but
they differ in their respective eigenvalue spectra. The cigar
has one eigenvalue much smaller than all of the others and
resembles a sphere that is stretched by a factor of 1000 in
one dimension. Similarly, the discus has one eigenvalue that
is much larger than all of the others and resembles a sphere
that is squashed by a factor of 1000 in one dimension. The
ellipsoid has an eigenvalue spectrum that is not dominated by
any one value.

For all experiments reported below, the initial search point
is x = (1, . . . , 1)T. The strategies’ initial step length and
mutation covariance matrix are σ = 1 and C = 1N×N ,
respectively. Search paths sC and sσ are zero initially. The
experimental conditions are thus the same as in [7].

Figure 10 compares the performance of the CMA-EGS
strategy with λ = 5 and κ = 1 with that of the (3/3, 10)-
CMA-ES in the absence of noise. Notice that both strategies
generate and evaluate ten trial points per time step and are
therefore immediately comparable. The experiments serve as
a test of the general ability of the covariance matrix adaptation
mechanism to generate good mutation distributions for EGS.
As a performance measure, the number of function evaluations
required to reach an objective function value of fstop = 10−10

has been used. Tests have been conducted for search space
dimensionalities N ∈ {4, 10, 20, 40, 100, 200, 400} and results
have been averaged over a number of test runs. The stan-
dard deviation of the measurements (not shown) is negligible
except for N = 4. The performance advantage of CMA-
EGS for N ≥ 10 amounts to the strategy reaching fstop

using roughly 15% to 20% fewer function evaluations than
the (µ/µ, λ)-CMA-ES. The speed-up is thus somewhat below
the theoretical predictions derived for isotropic mutations and
N → ∞ in Section V but nonetheless significant. However,
this does not hold true for N = 4 where the evolution
strategy is the more efficient algorithm. Experiments with
isotropic mutations and cumulative step length adaptation
confirm that the reason for the inferior performance of EGS
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Fig. 11. Objective function value f(x) of the search point plotted against
time t for typical runs of CMA-EGS with λ = 5 and κ = 1 on the cigar
with uniform noise strengths σε ∈ {0, 10−4, 102}.

in low-dimensional search spaces is the step length adaptation
component of the algorithm. Unfortunately, the analysis in
Section III is not helpful for understanding the source of the
imperfect step length adaptation in low-dimensional search
spaces. It appears likely that an experimental approach will
need to be used to shed light on the bad performance of
cumulative step length adaptation when used in conjunction
with EGS in low-dimensional search spaces. For the other test
functions, the deficiency of cumulative step length adaptation
when using EGS in low-dimensional search spaces is even
more pronounced. For the cigar, the performance advantage of
CMA-EGS is about the same as for the sphere for N ≥ 10, but
the strategy requires more function evaluations for N = 4 than
it does for N = 10. For the ellipsoid, it is not until N = 40
that CMA-EGS is more efficient than the (µ/µ, λ)-CMA-ES.
Finally, for the discus, while the curves suggest that this may
change for larger values of N , the (µ/µ, λ)-ES is faster than
CMA-EGS even for N = 400. For N = 4, CMA-EGS on the
discus fails to reach fstop altogether.

In order to compare the performance of CMA-EGS with
that of the (µ/µ, λ)-CMA-ES in the presence of noise, it
is important to consider a range of noise strengths. As can
be seen from Fig. 11 for the special case of the cigar, in
the absence of noise a run of CMA-EGS on functions other
than the sphere consists of three distinct phases. Initially, the
strategy converges linearly in spite of a badly adapted mutation
distribution. At some point, progress begins to stagnate and
the strategy spends a considerable amount of time “learning”
a better mutation distribution. In the third phase, the mutation
covariance matrix is proportional to the inverse of the Hessian
of the objective function and the strategy again progresses as
fast as it would on the sphere model. In the presence of noise
of uniform strength, progress comes to a halt in either the
first or the third of those phases, as illustrated in Fig. 11,
depending on the strength of the noise present. In either
case, objective function values of the search point fluctuate
around a limit value that can serve as a performance measure
for the strategies, where lower function values reflect better
performance.
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Figure 12 shows measured objective function values of the
search point for both the (3/3, 10)-CMA-ES and for the CMA-
EGS strategy with λ = 5 and κ ∈ {1, 20}. Measurements
have been conducted for uniform noise strength and have been
made after twice as many time steps as are required by the
(µ/µ, λ)-ES to reach fstop = 10−10 in the absence of noise for
the respective objective function. Except for the case of large
noise strengths on the discus, this is sufficient to reach the state
in which objective function values fluctuate around a stationary
limit value. It can be seen from the figure that for the sphere,
the limit value reached is virtually identical for the (3/3, 10)-
CMA-ES and the CMA-EGS strategy with λ = 5 and κ = 1. It
closely agrees with the values predicted by Eqs. (28) and (29).
The CMA-EGS strategy with κ = 20 approaches the optimum
closer by a factor of 20 as predicted by Eq. (29), underlining
the significance of the theoretical insights gained with regard
to the isotropic strategy. While the standard deviation of the
measurements is very small for the sphere, relatively large
standard deviations can be observed on the cigar and on the
ellipsoid. As for the sphere, the performance of the (3/3, 10)-
CMA-ES and of the CMA-EGS strategy with λ = 5 and κ =
1 are nearly identical while choosing κ = 20 substantially
improves the performance of the latter strategy. For the discus,
similar to the situation in the absence of noise, the performance
of the CMA-EGS strategy with λ = 5 and κ = 1 is inferior to
that of the (3/3, 10)-ES. However, as for the other objective
functions, choosing κ = 20 makes the CMA-EGS strategy
superior to the evolution strategy.

VII. SUMMARY AND CONCLUSIONS

To conclude, the present paper has presented an analysis
on the infinite-dimensional sphere model of the behavior of
the EGS strategy with the modifications proposed in [13].
It has been seen that the modifications are useful in that
they both allow for an efficient parallelization and for the
possibility of improved performance in the presence of noise
of the strategy. The modified EGS procedure is about 25%
more efficient than a comparable (µ/µ, λ)-ES in the absence
of noise. On the noisy sphere, the flexibility that the rescaling
parameter κ affords arguably makes EGS more powerful than
the evolution strategy. Choosing κ large makes it possible to
emulate the benefits of the genetic repair effect without the
need to operate with a large number of trial points generated
per time step. Numerical experiments have confirmed the value
of the predictions and insights in finite-dimensional search
spaces. Altogether, the modified EGS procedure combines the
favorable scaling with λ of the (µ/µ, λ)-ES with the flexibility
in the choice of κ of the (1, λ)-ES with rescaled mutations and
the superior efficiency of the original EGS procedure.

Then, the covariance matrix adaptation mechanism origi-
nally proposed by Hansen and Ostermeier [7] for the (µ/µ, λ)-
ES has been adapted for use in EGS. Numerical experiments
have shown that the adaptation of the shape of the mutation
distribution works for EGS as well as is does for evolution
strategies, and that EGS generally maintains its performance
advantage over the (µ/µ, λ)-ES. However, the experiments
have also revealed deficiencies with regard to step length adap-
tation in low-dimensional search spaces. Those deficiencies are
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Fig. 12. Limit function value f(x) of the search point plotted against noise
strength σε for the four test functions with N = 40. Both mean values and
standard deviations of the measurements are shown.
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more pronounced on some objective functions than they are on
others, and more work will be required in order to understand
their sources. However, despite those deficiencies, CMA-EGS
proved to be generally superior to the (µ/µ, λ)-CMA-ES in
case of uniform noise strength due to its ability to choose
the rescaling factor κ independently of the number of trial
solutions generated per time step.

Several questions remain to be addressed in future research.
First, work needs to be done with the goal of understanding
the reasons for the imperfect step length adaptation of EGS
in low-dimensional search spaces. Second, the experimental
evaluation of CMA-EGS and its comparison with the (µ/µ, λ)-
CMA-ES should be extended beyond the convex quadratic
test functions considered here. Hansen and Kern [27] have
experimentally investigated global search properties of the
latter strategy. It could be expected that the better local search
properties of EGS come at the cost of inferior global search
capabilities, and it remains to be seen if and to what degree the
flexibility in the choice of κ can compensate. Third, Hansen et
al. [28] have proposed a modification of the covariance matrix
adaptation mechanism that enables much faster adaptation
if the number of trial solutions generated per time step is
large and if candidate solutions can be evaluated in parallel.
It remains to be seen whether those modifications have the
same beneficial effects in EGS as they have for evolution
strategies. Fourth, recent work [30] has introduced weighted
multirecombination evolution strategies. Those strategies differ
from EGS in that they assign weights to mutation vectors
based on the rank of the respective candidate solutions in the
set of all offspring. A detailed comparison of the capabilities
of weighted multirecombination evolution strategies and EGS
remains to be done. And finally, in [29] a mechanism has
been proposed for the adaptation of the rescaling factor κ in
isotropic weighted multirecombination evolution strategies. It
is of great interest to see whether that mechanism is useful in
connection with CMA-EGS as well.
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