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I. INTRODUCTION

Practical optimization problems often suffer from noise.

Potential sources of noise include measurement limitations, the

use of randomized algorithms or Monte Carlo methods, and

human-computer interaction. Noise typically negatively affects

the local performance of optimization algorithms, leading to

reduced rates of convergence or even to divergent behavior.

It is thus desirable to devise optimization strategies the per-

formance of which is relatively robust with regard to the

effects of noise. Focus in the present paper is on multire-

combination evolution strategies for continuous optimization

problems. A comparison presented in [1] has shown that

multirecombination evolution strategies with cumulative step

length adaptation are more effective in the presence of noise

than several other popular direct search strategies. Reasons

for their good performance include both the rescaling implicit

in multirecombination and the relative robustness of the step

length adaptation mechanism.

When using evolutionary algorithms for noisy optimization,

noise directly affects the selection process. Noisy fitness

information can lead to good candidate solutions not being

able to reproduce or survive while relatively poor candidate

solutions are selected for reproduction or survival. In order to

ensure that it is the good candidate solutions that prevail, it

is desirable to reduce the noise-to-signal ratio that a strategy

operates under. This can be achieved in at least two different

ways:

1) The noise strength can be reduced by evaluating can-

didate solutions multiple times and averaging over the

measurements. If the noise is Gaussian, averaging over

k samples reduces its standard deviation by a factor of

√
k. Suggestions on how to choose or adapt k have been
made by Stagge [2] as well as more recently by Branke

and Schmidt [3].

2) Attempts can be made to boost the signal strength. The

signal strength is given by the standard deviation of the

(undisturbed) fitness values of the candidate solutions

subject to selection. For the case of multirecombination

evolution strategies, that standard deviation is closely re-

lated to the mutation strength employed by the strategy.

An increase in mutation strength typically results in an

increased signal strength.

Unfortunately, however, both approaches have their downsides.

Reducing the noise strength by averaging over multiple fitness

measurements comes at a high computational cost as typically,

fitness evaluations are expensive. Unless candidate solutions

can be evaluated in parallel, the computational costs are linear

in the number of samples that are averaged. On the other

hand, boosting the signal strength by increasing the mutation

strength is useful only up to a certain point. If the mutation

strength is increased too far, then almost all of the offspring

candidate solutions that are generated will be inferior to their

parents, effectively rendering the strategy useless.

A solution to this latter predicament was proposed by

Ostermeier and described by Rechenberg [4]. The basic idea

is to make large steps when generating offspring candidate

solutions, but in the end to realize only part of the step

that has been generated. More specifically, the steps used

to generate offspring are chosen large enough in order for

the strength of the signal to compare favorably with the

noise strength, and thus to allow reliable selection of the best

candidate solutions. As for large steps it is likely that all of

the candidate solutions thus generated are inferior to their

parents, the mutation vectors corresponding to the offspring

candidate solutions that have been selected are then “rescaled”

by division by a factor κ > 1. The idea is illustrated in Fig. 1
for the simple case of a (1, λ)-ES. Beyer [5] has coined the
phrase “Mutate large, but inherit small!” for the idea of using

rescaled mutations. Notice the similarity of rescaled mutations

to the idea underlying the gradient-based implicit filtering

algorithm by Gilmore and Kelley [6] that obtains gradient

estimates using finite differencing with a relatively large step



Fig. 1. A (1, λ)-ES using rescaled mutations. Five (gray) offspring candidate
solutions are generated by mutating the (black) candidate solution in the
center. All of the five are inferior to their parent. The parent of the next
time step is generated by taking a step in direction of the best of the five
(circled), but reducing the length of the step by a factor 1/κ in the process.

length in order to step over local minima.

An important question is of course how the rescaling

factor κ should be chosen. Optimal values of κ depend on
the objective function, parameters of the strategy, the strength

of the noise present, and typically vary over time. A good

setting at some point during an optimization process may be

unfavorable at a later stage and vice versa. Analyses of the

performance of evolution strategies with rescaled mutations

that have been performed on the sphere model by Beyer [5],

[7] are useful for providing a good understanding of the issues

involved, but offer little practical advice with regard to the

setting of κ.

The goal of the present paper is to propose and test

a mechanism for the automatic adaptation of the rescaling

factor κ. Its remainder is organized as follows. Section II
gives a brief review of multirecombination evolution strategies

and of the cumulative step length adaptation mechanism. In

Section III, previous work with regard to the performance of

evolution strategies on the sphere model is discussed. Links

between the (1, λ)-ES using rescaled mutations, properties
of the (µ/µ, λ)-ES, and the choice of weights in evolution
strategies using weighted multirecombination are pointed out.

Section IV proposes a strategy for adapting the rescaling fac-

tor κ. That strategy borrows ideas both from the self-adaptation
mechanism proposed by Rechenberg [8] and Schwefel [9], and

from the cumulative step length adaptation mechanism due

to Ostermeier et al. [10]. The algorithm is evaluated exper-

imentally in Section V on several test functions. Section VI

concludes with a brief summary and directions for future work.

II. MULTIRECOMBINATION EVOLUTION STRATEGIES

Let f : IRN → IR be a function to be minimized. Multi-
recombination evolution strategies with rescaled mutations

repeatedly update a search point x ∈ IRN using the following

four steps:

1) Generate λ offspring candidate solutions

y(i) = x + κσz(i) i = 1, . . . , λ.

The steps used to generate the offspring candidate

solutions are referred to as trial steps. The z(i) are

vectors consisting of N independent, standard normally
distributed components and are referred to as mutation

vectors. The nonnegative quantity σ is referred to as
the mutation strength and, together with the rescaling

factor κ, determines the length of the trial steps.
2) Determine the objective function values f(y(i)) of the
offspring candidate solutions and order the y(i) accord-

ing to those values. After ordering, index k; λ refers to
the kth best of the λ offspring.

3) Compute the weighted sum

z(avg) =

λ
∑

k=1

wk;λz
(k;λ) (1)

of the mutation vectors. The wk;λ are weights that

depend on the rank of the corresponding candidate

solution in the set of all offspring. The vector z(avg) is

referred to as the progress vector.

4) Replace the search point x by x+σz(avg). The resulting

step is referred to as a search step.

Clearly, σz(avg) connects consecutive search points. Depending

on the choice of the weights wk;λ in Eq. (1), the definition

of the multirecombination evolution strategy with rescaled

mutations subsumes several variants of evolution strategies

that can be found in the literature.

• Choosing

wk;λ =

{

1 if k = 1

0 otherwise
,

the strategy is a (1, λ)-ES with rescaled mutations as
defined in [4] and [5]1 and illustrated in Fig. 1.

• If κ = 1 and

wk;λ =

{

1/µ if 1 ≤ k ≤ µ

0 otherwise

and for some µ < λ, then the strategy is a (µ/µ, λ)-ES
as described in [11]. The search point x is the centroid

of the population that consists of the µ best of the λ
offspring candidate solutions generated.

• The choice

wk;λ = Ek;λ k = 1, . . . , λ,

where Ek is the expected value of the (λ+1−k)th order
statistic of a sample of λ independent, standard normally
distributed random variables yields the (λ)opt-ES as intro-
duced in [12].2 The (λ)opt-ES has the best performance of

1The definition used here differs from that used in [5] in that here, κ is
used to multiply the trial steps rather than to divide the search steps. That is,
here, κσ is the multiplier for the trial steps in step 1) of the algorithm and σ
is the multiplier for the search steps in step 4). The respective multipliers used
by Beyer are σ and σ/κ, respectively. The two strategies really are identical
as the difference amounts to no more than a different parameterization of
the mutation strength. The change is made as it is advantageous for the
presentation of the mechanism for adapting κ that is outlined below.
2The same change in the parameterization of the mutation strength that has
been described for the (1, λ)-ES in the previous footnote has been made for
the (λ)opt-ES.



any multirecombination evolution strategy on the infinite-

dimensional sphere model in the absence of noise.

It is crucial for the performance of evolution strategies in

real-valued search spaces that the mutation strength σ be
adapted continually. Two mechanisms for updating the mu-

tation strength are mutative self-adaptation due to Rechen-

berg [8] and Schwefel [9], and cumulative step length adapta-

tion due to Ostermeier, Gawelczyk, and Hansen [10], [13]. In

this paper, cumulative step length adaptation is employed, and

the resulting strategies are referred to as CSA-ES. The goal of

cumulative step length adaptation is to minimize correlations

between successive steps. For that purpose, an exponentially

fading record of the most recently taken steps is kept by

accumulating progress vectors. Specifically, N -dimensional
vector s is defined by s(0) = 0 and

s(t+1) = (1− c)s(t) +

√

c(2 − c)

χ
z(avg)

(t)
, (2)

where t indicates time, and where χ = 1 for the (1, λ)-ES,
χ = 1/µ for the (µ/µ, λ)-ES, and χ =

∑λ
k=1 E2

k;λ for the

(λ)opt-ES. The mutation strength is then updated according to

σ(t+1) = σ(t) exp

(‖s(t+1)‖2 −N

2DN

)

. (3)

The cumulation parameter c and damping constant D are set
to 4/N and N/4, respectively, according to recommendations
made by Hansen and Ostermeier [14].3

It is important to note that the use of isotropic mutations

as described above is ineffective for many problems with

widely differing eigenvalues of the Hessian matrix. For such

problems, mutation vectors need to be generated with general

covariance matrix C, and C needs to be adapted to be

roughly equal to the inverse of the Hessian matrix of the

objective function. The CMA-ES introduced by Hansen and

Ostermeier [13], [14] and studied experimentally by Kern et

al. [16] accomplishes that task in that it has been found to

effectively transform many objective functions into the sphere

model considered in Section III.

III. INSIGHTS FROM THE SPHERE MODEL

The performance of evolution strategies is best understood

on the sphere model, i.e. on objective function

f(y) =

N
∑

i=1

y2
i .

The sphere model was introduced by Rechenberg [8] as a

model for objective functions in the vicinity of local optima.

Due to its scale invariance, provided that the step length

3Both the cumulation rule in Eq. (2) and the update rule in Eq. (3) differ
somewhat from the respective rules given in [10], [13]. The cumulation rule
has been adapted for use with the three types of strategies considered here. The
update rule for the mutation strength differs in that it uses the squared length
of the accumulated progress vector rather than its length. The change results
in a more elegant formulation that makes the strategy amenable to analysis
as shown in [12], [15]. It appears to not substantially affect the performance
of the strategy in practice.
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Fig. 2. Convergence behavior of evolution strategies on the sphere model.
The dashed line shows the logarithm of the objective function value of the
search point over time. The quality gain is determined by the slope of the
solid regression line.

is adapted appropriately, evolution strategies on the sphere

model exhibit a stochastic form of linear convergence that is

illustrated in Fig. 2 after initialization effects have faded. The

speed of convergence can be quantified by the quality gain

∆ = E
[

log
(

f(x(t))
)

− log
(

f(x(t+1))
)]

, (4)

i.e. the expected improvement in the logarithmic objective

function value of the search point from one time step to the

next.4 Clearly, the quality gain determines the slope of the

regression line in Fig. 2. The greater the quality gain, the

steeper the line and the faster the approach of the optimizer.

Noise is commonly modeled by an additive Gaussian term

with mean zero. That is, it is assumed that evaluating a

candidate solution y yields a value that is normally distributed

with mean f(y) and with a standard deviation σε(y) that is
referred to as the noise strength. If the noise strength varies

with the location in search space such that it is proportional to

the objective function value f(y), then the scale invariance of
the sphere model is preserved. As a consequence, provided that

the step length adaptation mechanism can cope with it, evo-

lution strategies will exhibit stochastic linear convergence in

the presence of noise. The assumption of fitness-proportionate

noise strength models relative errors of measurement that arise

for example in connection with physical measurement devices

that are accurate up to a certain percentage of the quantity

they measure and will be adopted in all of what follows.

The performance of a variety of evolution strategies has

been studied on the noisy sphere model in the limit of infinite

4The more common definition for the quality gain is

∆ = E
h

f(x(t)) − f(x(t+1))
i

and has been employed for example by Beyer [17]. In the limit of infinite
search space dimensionality both measures agree on the sphere model if
normalized appropriately. The definition employed here has previously been
used in [1] and has the advantage of properly reflecting the slope of the
regression line in Fig. 2.



search space dimensionality. Using appropriate normalizations

σ∗ = σ
N

R
, σ∗

ε = σε
N

2R2
, and ∆∗ = ∆

N

2
,

where R = ‖x‖ denotes the distance of the search point
from the optimizer, the quality gain laws are concise and offer

insights into the workings of the strategies as outlined in what

follows. Notice that the assumption of fitness-proportionate

noise strength implies that the normalized noise strength σ∗

ε

is constant throughout the search space.

For the case of the (1, λ)-ES with rescaled mutations,
Beyer [5] has derived the performance law5

∆∗ =
c1,λσ∗

√

1 + (σ∗

ε /κσ∗)2
− σ∗2

2
. (5)

The progress coefficient c1,λ = E1;λ can be computed

numerically and is tabulated in [17]. The quotient σ∗

ε /κσ∗

that appears in the denominator of the first term on the right

hand side is the noise-to-signal ratio that the strategy operates

under. In the absence of noise, that ratio equals zero and the

setting of κ is without influence on the quality gain of the
strategy. In the presence of noise, the use of a larger rescaling

factor decreases the noise-to-signal ratio and leads to better

performance. In fact, Eq. (5) suggests that the noise-to-signal

ratio could be driven to zero by letting κ tend to infinity.
However, it is important to keep in mind that Eq. (5) has

been derived under the assumption of infinite search space

dimensionality, and that it represents merely an approximation

in finite-dimensional search spaces. Beyer [7] has also derived

a performance law for the (1, λ)-ES with rescaled mutations
that is a better approximation for finite N . It has been seen
that while operating with a rescaling factor κ > 1 is generally
beneficial in the presence of noise, it is not true that κ
can be increased indefinitely without negatively affecting the

performance of the strategy.

The performance of the (µ/µ, λ)-ES on the infinite-dimen-
sional noisy sphere has been analyzed in [18], [19], yielding

the quality gain law

∆∗ =
cµ/µ,λσ∗

√

1 + (σ∗

ε /σ∗)2
− σ∗2

2µ
. (6)

The progress coefficient cµ/µ,λ =
∑µ

k=1 Ek;λ/µ can be com-
puted numerically and is tabulated in [17]. While the noise-

to-signal ratio is σ∗

ε /σ∗ and seems at first sight unaffected by

the use of multirecombination, the appearance of the factor µ
in the denominator of the second term on the right hand side

signifies the presence of genetic repair (see Beyer [17]). As

a consequence of genetic repair, the (µ/µ, λ)-ES is capable
of operating with a mutation strength that is roughly µ-fold
larger than that of the one-parent strategy. As a consequence

of (µ/µ, λ)-type multirecombination, the squared length of the

5To be exact, Beyer derived a law for the progress rate rather than for
the quality gain. However, it is well known that in the limit N → ∞ both
performance measures agree if normalized appropriately. Also note that the
law has been modified from [5] to reflect the change in parameterization of
the mutation strength discussed in Section II.

(µ/µ, λ)-search step is reduced by a factor of µ compared to
the squared lengths of the respective trial steps. The (µ/µ, λ)-
ES thus performs an Ö©×-ØoÙ©ÖÛÚÖÛÜ rescaling of mutation vectors that
is equivalent in effect to the explicit rescaling of the (1, λ)-
ES with rescaled mutations. Unlike the strategies that rescale

explicitly, the amount of rescaling performed by the (µ/µ, λ)-
ES is determined by the population size parameters µ and λ.
As a consequence, it is not possible to reap the benefits of

strong rescaling while operating with a small population.

In [20] the potential of rescaling mutation vectors was

compared with the benefits resulting from the averaging over

multiple evaluations of the objective function in an attempt to

remove the noise as discussed in Section I. It was seen that

the implicit rescaling that the (µ/µ, λ)-ES performs is more
effective on the infinite-dimensional noisy sphere in that a k-
fold increase in µ and λ yields a greater gain in performance
than the averaging over k function evaluations does. While no
such investigations have been conducted yet for strategies that

rescale explicitly, it is expected that the advantage of rescaling

over averaging is even more pronounced in that case as explicit

rescaling comes without an increase in computational costs.

Equation (6) suggests that by increasing µ and λ indef-
initely, the (µ/µ, λ)-ES can operate with arbitrarily large
mutation strengths and thus reduce the noise-to-signal ratio to

zero, effectively eliminating any amount of noise. However, as

the recommendation to increase κ in the strategy that rescales
mutation vectors explicitly, finite-dimensional search spaces

place limits on useful population sizes. If µ and λ are increased
too far, then the efficiency of the strategy begins to suffer.

Finally, for the (λ)opt-ES the performance law
6

∆∗ = Wλ

(

σ∗

√

1 + (σ∗

ε /κσ∗)2
− σ∗2

2

)

, (7)

where Wλ =
∑λ

k=1 E2
k;λ, has been derived in [12]. For

large λ, the coefficient Wλ approaches λ. In the absence
of noise, the (λ)opt-ES is the most efficient of all multire-
combination evolution strategies on the infinite-dimensional

sphere model. As in the corresponding law for the (1, λ)-ES
in Eq. (5), the noise-to-signal ratio is σ∗

ε /κσ∗ and is thus

moderated by rescaling factors κ > 1. Also as for the strategies
considered previously, finite search space dimensionalities

place limits on useful values for the rescaling factor, and the

accuracy of the equation decreases with increasing κ.

IV. ADAPTIVELY RESCALED MUTATION VECTORS

While the analyses of the performance of the (1, λ)-ES
with rescaled mutations and of the (λ)opt-ES on the infinite-
dimensional sphere model resulting in Eqs. (5) and (7) place

no bounds on the value of κ and suggest that it should be
chosen as large as possible, this does not hold true in finite-

dimensional search spaces. Figure 3 illustrates how the quality

gain of the (λ)opt-CSA-ES depends on κ for the sphere model

6As for the (1, λ)-ES with rescaled mutations, this law was adapted to
reflect the altered parameterization of the mutation strength discussed in
Section II.
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Fig. 3. Quality gain ∆∗ on the sphere model of the (λ)opt-CSA-ES with λ =
10 plotted against the rescaling factor κ. The points indicate measurements
made in runs of evolution strategies in a search space with dimensionality
N = 40 and noise strengths σ∗

ε = 0.0, 4.0, and 8.0 as indicated.

with N = 40 and for several noise strengths. The figure shows
that the choice of κ is crucial for the performance of the
strategy in that for example, for σ∗

ε = 4.0 positive quality gain
is not achieved for rescaling factors κ < 2.0. Considerable
progress ÖÛé possible for larger values of κ. As a general rule,
it is desirable to work with small values of κ if there is no
noise, and to choose κ sufficiently large in the presence of
noise. Higher noise strengths demand larger values of κ, but
choosing κ too large is detrimental to the performance of the
strategy.

The reasons for this behavior are easily understood. In the

absence of noise, choosing κ small yields the best progress
vector just as small steps yield the best approximation of

the gradient when using finite differencing in a gradient

strategy. In the presence of noise, larger values of κ reduce
the noise-to-signal ratio that the strategy operates under as

seen in Section III. If κ is chosen too small, then the noise
outweighs the signal and search steps are essentially random

and therefore uncorrelated. Cumulative step length adaptation,

which tries to eliminate correlations in the sequence of steps

taken, thus fails to see a need to increase the step length.

The behavior of the (λ)opt-CSA-ES at the borderline between
the regimes where positive quality gain is possible and where

it is not is illustrated in Fig. 4. Phases of stochastic linear

convergence (steep decrease in f(x)) alternate with phases
where the strategy stagnates (plateaus in the f(x) curve). In
the stagnation phases, the noise-to-signal ratio is large and the

logarithm of the mutation strength performs a random walk.

If in the course of that random walk the step length grows

large enough to result in a noise-to-signal ratio that allows

progress towards the optimizer, then correlations reappear in

the sequence of steps taken and cumulative step length adapta-

tion acts to further increase the mutation strength, driving the

strategy back into a phase of stochastic linear convergence.

It is conceivable that optimal values of κ could be derived
as functions of N and σ∗

ε from quality gain laws for multire-

combination evolution strategies in finite-dimensional search

spaces. However, such results would be of little practical use
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Fig. 4. Function value f(x) and normalized mutation strength σ∗ measured
in a typical run of a (λ)opt-CSA-ES with λ = 10 and κ = 1.0 on the sphere
model with N = 40 and σ∗

ε = 1.4. Notice that the scales of both vertical
axes are logarithmic.

as the conditions under which they have been derived are very

particular. It seems unreasonable to assume that good settings

for the rescaling parameter κ that have been derived on the
sphere model with fitness-proportionate noise strength would

be generally useful for other objective functions and noise

models. Furthermore, the normalized noise strength is not a

quantity that is measurable easily as it depends on the distance

from the optimizer.

Instead, a mechanism is required that adapts κ to the
particular situation at hand. Such a mechanism is proposed

in Fig. 5. The underlying idea is to try two settings of the

rescaling factor, and to settle for the better one. Cumulation

and gradual adaptation are used to reduce harmful fluctuations

and to make the algorithm robust in the face of noise. In order

not to duplicate any work and incur a loss in efficiency if run

on a single processor, the two settings of the rescaling factor

are tried in an alternating sequence rather than in parallel. The

algorithm thus combines elements of mutative self-adaptation

(competition between different settings of a parameter) with

the idea of “derandomization” propagated by Ostermeier et

al. [10].

More specifically, the algorithm uses rescaling factors κ/α
and κ ·α, where κ is stored in a variable and where α > 1 is a
constant. Two further variables δ− and δ+ hold exponentially

fading records of the gains achieved with the smaller and the

larger settings of the rescaling factor, respectively. The ò.óCô©õÛö
loop in Fig. 5 is the main loop of the evolutionary algorithm.

In every iteration, the algorithm performs the two search steps

and updates the records δ− and δ+. Function step(·) makes
the search steps including mutation and multirecombination

as well as cumulative step length adaptation as discussed in

Section II. It returns the normalized difference

N

2

[

log
(

f(x(t))
)

− log
(

f(x(t+1))
)]

=
N

2
log

(

f(x(t))

f(x(t+1))

)

(compare Eq. (4) and the normalization in Section III), where



initialize κ
δ− ← 0
δ+ ← 0
òbóCô©õÛö not done÷<ø

δ− ← (1 − cκ)δ− + cκ step(κ/α)
δ+ ← (1 − cκ)δ+ + cκ step(κ · α)
ôÛù δ− < 0ú ó<öû κ← κ · β

σ ← σ · β
ö�õ©üPöô©ù δ− > δ+ú ó<öû κ← κ/γ
ö�õ©üPö κ← κ · γ

Fig. 5. An evolution strategy with adaptive rescaling of mutation vectors.
The function step(·) performs a single search step as described in Section II
and returns the resulting difference in logarithmic objective function values
of the search point. Cumulative step length adaptation is also performed in
step(·). See the text for a more detailed description of the entire algorithm
and a discussion of the parameters.

the quotient f(x(t))/f(x(t+1)) is clamped to the interval
[1−λ/N, 1+λ/N ] before taking the logarithm. The clamping
is without consequences in the absence of noise, and it helps

to remove outliers resulting from noisy objective function

evaluations. The choice of the interval is inspired by theoretical

considerations on the infinite-dimensional sphere, and it will

be seen to be useful more generally in Section V.

After updating the two records of gains made with the

respective settings of the rescaling parameter, variable κ is
updated for use in the next iteration of the algorithm. It

is first tested whether the accumulated gain made with the

smaller setting of the rescaling parameter is negative. This

situation is indicative of a stagnation phase as illustrated in

Fig. 4, and both the mutation strength and κ are increased by
multiplication with a factor β > 1 in response. Otherwise, δ−
and δ+ are compared, and κ is increased by multiplication with
γ > 1 if a greater gain was achieved with the larger setting of
the rescaling parameter, and κ is decreased by division by
γ if the smaller setting was the more successful one. Not
shown in Fig. 5, κ is clamped to the interval [0.5, N/2] after
being updated in order to avoid instabilities in the presence

of excessive amounts of noise. Notice that no significant

additional computational costs are incurred as a result of the

mechanism for the adaptation of κ other than the need to
evaluate the objective function value of the search point in

every time step.

The algorithm in Fig. 5 introduces several new parameters

into the optimization procedure:

• Cumulation parameter cκ > 0 determines how quickly
the information in the exponentially fading records δ−
and δ+ is replaced with new information. The smaller

cκ, the more persistent is the memory and the more

dampened are any fluctuations due to noise. Choosing

cκ too small prevents fast adaptation. A setting of cκ =
0.4/N results in κ being adapted on a time scale ten
times longer than the scale that the mutation strength is

adapted on and has been used in all of what follows.

• Parameter α > 1 determines how much the two settings
of the rescaling parameter differ from each other. It

needs to be large enough in order to be able to reli-

ably discriminate between the respective quality gains

achieved with the two settings. If α is chosen too large,
performance suffers as at least one of the two settings of

the rescaling parameter must differ substantially from the

optimal setting. In all of what follows, α = 1.5 has been
used.

• Parameters β > 1 and γ > 1 determine the rate at which
the rescaling parameter is adapted. They need to be large

enough in order to allow for fast adaptation of κ, but
not so large as to introduce strong fluctuations in the

adaptation process. In all of what follows, settings β =
exp(0.15/N) and γ = exp(0.015/N) have been used.

The settings of all parameters are usually uncritical in that

similar results are obtained with similar settings. Moreover,

the settings suggested here have proven to be useful across

a range of objective functions. Finally, it should be noted

that initializing κ to a relatively large value is useful as it
affords relatively reliable information on the basis of which

the rescaling factor can be reduced quickly if necessary. In all

of what follows, κ has been set to 10.0 initially.

V. EXPERIMENTAL EVALUATION

In this section, the adaptation mechanism for the rescaling

factor κ introduced in the previous section is evaluated exper-
imentally in a number of fitness environments. In particular,

its performance is measured in runs of the (λ)opt-CSA-ES on
the sphere model discussed in Section III as well as on the

three objective functions

ellipsoid I: f(y) =
N
∑

i=1

iy2
i

ellipsoid II: f(y) =

N
∑

i=1

i2y2
i

ellipsoid III: f(y) = N

N/2
∑

i=1

y2
i +

N
∑

i=N/2+1

y2
i .

The contours of these objective functions are ellipsoids with

widely varying ratios of the lengths of their principal axes.

As the behavior of the CSA-ES does not depend on the

orientation of the coordinate system, the coordinates could

be subjected to an arbitrary orthogonal transformation (thus

removing separability) without any impact on the results.

Ellipsoids I and II have previously been used as test functions

for example in [21], ellipsoid III is a special case of the class

of functions studied by Jägersküpper [22].

As on the sphere model, the CSA-ES exhibits linear con-

vergence on the ellipsoids after some initialization period in

which the mutation strength and the rescaling parameter are

adapted and the search point takes some default position on
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Fig. 6. Normalized quality gain ∆∗ of several CSA-ES on the noisy sphere
model plotted against normalized noise strength σ∗

ε .

Ý�Þ Ý

â�Þ Ý

ã�Þ Ý

àÕá�Þ Ý

Ý�Þ Ý ß�Þ Ý àÕÝ�Þ Ý àÕß�Þ Ý á�Ý�Þ Ý
ý�è à�Þ Ý

ý�è ß�Þ Ý

ý�è à¸Ý�Þ Ý

þ¤ÿ�þ���� � � ê ï à¸Ý ñ��	�	
 ë ��ï àÕÝ ñ �	�	
 ë ����� ý î � � ê ÿï������ � à¸Ý ñ ë ��

noise strength σ∗

ε

q
u
al
it
y
g
ai
n

∆
∗

Fig. 7. Normalized quality gain ∆∗ of several CSA-ES on ellipsoid I plotted
against normalized noise strength σ∗

ε .

the ellipsoid. Measurement of the quality gain starts after

the initialization period is over and is measured until either

200,000 search steps have been made or the limit of numerical

accuracy has been reached, whichever occurs first. Noise

strength and quality gain are normalized as

σ∗

ε = σε(y)
Tr(f)

2f(y)
and ∆∗ = ∆

Tr(f)

2
,

where Tr(f) denotes the trace of the Hessian matrix of the
objective function. Keeping with the assumption of fitness-

proportionate noise strength, the normalized noise strength σ∗

ε

is thus constant. Notice that for the case of the sphere model,

the normalizations agree with those used in Section III. The

choice of the number of offspring λ generated per time step
and the search space dimensionality N are uncritical for

the qualitative behavior of the algorithm, and results will be

reported only for the case that λ = 10 and N = 40.
Figures 6 to 9 contrast the normalized quality gain∆∗ of the

(λ)opt-CSA-ES with adaptation of the rescaling factor κ with
that of several instances of the (λ)opt-CSA-ES with κ fixed and
of the (µ/µ, λ)-CSA-ES on the four test functions. The most
striking observation is the qualitative similarity of the four

figures. In each case, it can be seen that the (λ)opt-CSA-ES
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Fig. 8. Normalized quality gain ∆∗ of several CSA-ES on ellipsoid II plotted
against normalized noise strength σ∗

ε .
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Fig. 9. Normalized quality gain ∆∗ of several CSA-ES on ellipsoid III
plotted against normalized noise strength σ∗

ε .

with κ = 1.0 is highly efficient in the absence of noise, but that
its quality gain declines rapidly if there is noise present. (In

fact, even better performance could be achieved in the absence

of noise with rescaling factors κ < 1, but the difference
is minor.) Choosing larger rescaling factors improves the

performance of the (λ)opt-CSA-ES in the presence of noise,
but it does so at the cost of a reduced quality gain at low

noise strengths. The adaptive strategy, the performance of

which is indicated by bold lines, achieves about the same

quality gain as the strategy that keeps κ = 1.0 fixed for
σ∗

ε = 0.0. In the noisy case, for every noise level there is
an optimal setting for κ. The adaptive strategy does not quite
achieve the optimal quality gain (in part because it uses two

different settings of the rescaling parameter, in part as a result

of fluctuations in the adaptation process), but it does achieve

nearly optimal performance over the entire range of noise

strengths considered. It is also markedly more efficient than

the (µ/µ, λ)-CSA-ES both in the absence of noise and in its
presence. The performance advantage of the adaptive (λ)opt-
ES over the (µ/µ, λ)-ES is more pronounced on the three
ellipsoids than it is on the sphere model. By considering single

runs of the (λ)opt-CSA-ES (not shown here) it can also be seen
that the adaptation mechanism effectively eliminates the long



periods of stagnation observed in Fig. 4 as well as reflected

by the steep drop in some of the curves for κ fixed in Figs. 6
to 9.

VI. CONCLUSIONS AND FUTURE WORK

Rescaled mutations are a powerful means for evolutionary

algorithms to deal with noisy information. In this paper,

an algorithm has been proposed for adapting the rescaling

factor that determines the ratio of the lengths of the trial and

search steps in response to information gathered during the

optimization process. It has been seen in experiments that that

algorithm performs well on the noisy sphere model as well

as on several other ellipsoidal fitness functions disturbed by

noise. Assuming fitness-proportionate noise strength, the qual-

ity gain achieved in the stationary regime of the optimization

process is not far below the optimal quality gain that can be

achieved with any rescaling factor.

In future work, the case of fitness-proportionate noise

strength is but one of several scenarios that should be consid-

ered. While it has been seen that the stationary behavior of the

proposed mechanism for the adaptation of the rescaling factor

drives the strategy into the vicinity of its optimal working

regime, it is unclear how fast and reliable the strategy can react

to changing normalized noise strengths. Thus, the influence

of other forms of noise, such as noise of constant strength

as studied in [21] or actuator noise as considered by Beyer,

Olhofer, and Sendhoff [23] remains to be studied.

Some preliminary experiments have been conducted with

CSA-ES on ellipsoidal objective functions with an eigenvalue

spectrum that is dominated by a single value. In those ex-

periments it was observed that while more robust than the

(µ/µ, λ)-CSA-ES in the presence of noise, the (λ)opt-CSA-ES
performed worse than the (µ/µ, λ)-CSA-ES in its absence.
Presumably, it was this observation that led Hansen and

Ostermeier [14] to advise against the use of negative weights

in the multirecombination procedure. It seems likely that

the performance of the (λ)opt-CSA-ES on the ridge function
class can be studied analytically, and that the results obtained

may yield useful clues as to the behavior of the strategy

on ellipsoidal functions dominated by a single eigenvalue.

Also of interest is the influence of the rescaling parameter on

optimization performance on such functions. In preliminary

experiments, it appears to be qualitatively different from what

is seen on the functions studied here.

Finally, it is important to keep in mind that due to its

use of isotropic mutations, the CSA-ES is not an efficient

strategy for the optimization of functions with widely differing

eigenvalues of their Hessians. On such functions, the CMA-ES

is to be preferred, and it is of great interest to investigate the

potential of the use of rescaled mutations and of the proposed

mechanism for the adaptation of the rescaling factor for those

strategies.
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Springer Verlag, Heidelberg, 2003, pp. 525–536.
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