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Abstract: We propose new evolutionary stochastic models for the web graph and other
massive networks, where edges are deleted over time and an edge is chosen to be deleted
with probability inversely proportional to the in-degree of the destination. The degree
distributions of graphs generated by our models follow a power law. A rigorous proof
of power law degree distributions is given using martingales and concentration results.
Depending on the parameters, the exponent of the power law can be any number in
(1,∞). For this reason, our models apply not only to the web graph, but to certain
biological networks, where the power law exponent is in the interval (1, 2).
Keywords. web graph, power law graphs, degree distributions, scale free networks,
stochastic graph models

1 Introduction

In the past few years, there has been much interest in understanding the properties of
real-world large-scale networks such as the structure of the Internet and the World Wide
Web. It has been observed that many such networks have a so-called power law degree
distribution: the proportion of nodes of degree k is approximately 1

kγ , where γ > 1 is a
fixed real number. Such graphs are sometimes called scale-free in the literature. A graph
is called a power law graph if the fraction of nodes with degree k is proportional to 1

kγ for
some constant γ > 0. The standard models of random graphs introduced by Erdős and
Rényi [11] and Gilbert [12] are not appropriate for studying these networks, since they
generate graphs which, with high probability, have binomial degree distributions.

1This research was partially supported by MITACS as part of the MoMiNIS project.
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A large number of power law random graph models [1, 3, 5, 10, 13] have been proposed.
For two recent surveys on models of the web graph, see [4, 6]. In all of these models, at
each time step nodes and edges are added, but never deleted. An evolving graph model
incorporating in its design both the addition and deletion of nodes and edges may more
accurately model the evolution of the web graph. Recently, the models of [7, 9] incorporate
the addition and deletion of nodes during the generation of nodes. We refer to such models
as growth-deletion models.

In [7], Chung, Lu introduced a growth-deletion model G(p1, p2, p3, p4, m), for undi-
rected graphs with parameters m a positive integer, and probabilities p1, p2, p3, p4 satis-
fying p1 + p2 + p3 + p4 = 1, p3 < p1, and p4 < p2. The graph H is a fixed nonempty graph.
To form Gt+1, they proceed as follows. With probability p1, add a new node vt+1 and m

edges from vt+1 to existing nodes chosen with probability proportional to their degrees.
We refer to this as preferential attachment. With probability p2, add m new edges with
endpoints to be chosen among existing nodes by preferential attachment. With probabil-
ity p3, delete a node chosen uniformly at random (u.a.r). With probability p4, delete m

edges chosen u.a.r.
In [9], Cooper et al. introduced an undirected model with three parameters α, α0

and α1 which generates a sequence of simple graphs Gt, t = 1, 2, ..., where the graph
Gt = (Vt, Et) has vt nodes and et edges. They start with G1 consisting of an isolated
node x1. At time t, with probability 1 − α − α0, they delete a randomly chosen node x

from Vt−1. If Vt−1 = ∅, they do nothing; with probability α0, they delete min {m, |Et−1|}
randomly chosen edges from Et−1; with probability α1, they add a node xt with m random
edges incident with xt to Gt−1, the endpoints are chosen by preferential attachment; with
probability α − α1, they add m random edges to existing nodes. The endpoints are
chosen by preferential attachment. The models of [7, 9] generate scale-free graphs whose
exponent γ is in the interval [2,∞).

However, we observe that in realistic networks such as the web graph, new nodes are
more likely to join existing nodes with high degree, while links pointing to a node with
high degree are less likely to be deleted. Motivated by this observation, we propose a
new directed model, called a biased edge-deletion model, where we delete a directed edge
with probability inversely proportional to the in-degree of the destination. Hence, edges
pointing to “popular” nodes (that is, nodes with high in-degree) are less likely to be
deleted.

We describe these network models precisely in Section 2, and state our main results
there. In Section 3, a rigorous proof for the power law degree distributions is given using
martingales and concentration results. We emphasize that our models generate graphs
with power law exponent in the interval (1,∞). This is significant since certain massive
networks, such as the network of protein-protein interaction networks in a living cell, have
power law exponents the interval (1, 2); see [8]. Hence, our models are used not only as
models of the web graph, but for many other massive networks.
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2 Edge-deletion models

In this section, we introduce three edge-deletion models and state our main result. As-
suming that α and β are two nonnegative real numbers satisfying α + β < 1 and β < 1

2
,

we consider a random process which generates a sequence of graphs Gt, t = 0, 1, 2, ..., .
The graph Gt = (Vt, Et) will have nt nodes and et edges.

Model 1: To initialize the process, at t = 0 we start with an initial digraph G0 with
n0 nodes and m0 edges.

At time t, with probability 1 − α − β we add a node vt to Gt−1, with a directed
loop. With probability α we add a directed edge uv to the existing nodes, where the
origin is chosen with probability proportional to its out-degree and the destination is
chosen proportional to its in-degree. With probability β, if et−1 > 0, we delete a directed
edge, where an edge is chosen inversely proportional to the in-degree of the destination;
if et−1 = 0, we do nothing.

Model 2: This model is defined similarly to Model 1 except that edges to be deleted
u.a.r.

The next model generates undirected graphs.

Model 3: To initialize the process, at t = 0 we start with an initial graph G0 with n0

nodes and m0 edges.

At time t, with probability 1−α−β we add a node vt to Gt−1 along with an edge. An
endpoint is vt, the other endpoint is chosen by preferential attachment. With probability α

we add an edge uv to the existing nodes. The endpoints u and v are chosen by preferential
attachment. With probability β, if et−1 > 0, we delete an edge u.a.r; if et−1 = 0, we do
nothing.

Note: Model 3 is the same as those models in [7] with p3 = 0 and m = 1, and in [9]
with α + α0 = 1 and m = 1. We obtain the same result as those in [7, 9].

Denote by din
k,t the number of nodes with in-degree k at time t in Model 1 and Model

2, and denote by dk,t the number of nodes with degree k at time t in Model 3. In the
following theorem, we will show that, asymptotically, din

k,t and dk,t follow a power law. If
A is an event in a probability space, then we write Pr(A) for the probability of A in the
space.

Theorem 1 For the models 1, 2, and 3, we have the following.

1. For Model 1, the in-degree distribution follows a power law with exponent γ = 1 +
1−2β

α
∈ (1,∞). More precisely, we have

Pr
(∣

∣

∣din
k,t − b′k,1nt

∣

∣

∣ > 2ε
√

t(1 + b′k,1)
)

< 4e−ε2/2,

3



where

b′k,1 =
bk,1

1 − α − β
= (1 + O(k−1))

C1(α, β)

1 − α − β
k−γ,

and C1(α, β) is a constant.

2. For Model 2, the in-degree distribution follows a power law with exponent γ = 1 +
1−2β
α−β

∈ (1,∞). More precisely,

Pr
(
∣

∣

∣din
k,t − b′k,2nt

∣

∣

∣ > 2ε
√

t(1 + b′k,2)
)

< 4e−ε2/2,

where

b′k,2 =
bk,2

1 − α − β
= (1 + O(k−1))

C2(α, β)

1 − α − β
k−γ,

and C2(α, β) is a constant.

3. For Model 3, the degree distribution follows a power law with exponent γ = 1 +
2−4β

1+α−3β
∈ (1,∞). More precisely,

Pr
(
∣

∣

∣dk,t − b′k,3nt

∣

∣

∣ > 2ε
√

t(1 + b′k,3)
)

< 2(e−ε2/2 + e−ε2/8),

where

b′k,3 =
bk,3

1 − α − β
= (1 + O(k−1))

C3(α, β)

1 − α − β
k−γ,

and C3(α, β) is a constant.

3 Proof of Theorem 1

As t increases, Gt may be defined recursively. For each t, let τt be a random variable of
Gt. Let c be a positive integer. The random variable τt is said to satisfy the c-Lipschitz
condition if

|τt+1(Gt+1) − τt(Gt)| ≤ c

whenever Gt+1 is obtained from Gt by adding or deleting some edges or some nodes at
time t + 1. The proof of Theorem 1 will follow by the next Lemma, which is the Azuma-
Hoeffding Inequality. See for example, Theorem 7.2.1 of [2]. If X is a random variable,
then we denote E(X) for its expected value.

Lemma 2 If τt satisfies the c-Lipschitz condition, then for every δ > 0

Pr[|τt − E(τt)| > δ
√

t] < 2e−
δ2

2c2 .
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In particular, τt is almost surely very close to its expected value E(τt) with an error term

o(t
1

2
+δ) for any δ > 0, as t approaches infinity.

The next two lemmas are useful in our proof of Theorem 1, and also serve as a warm
up for the application of Lemma 2.

Lemma 3 For each of the models 1, 2, and 3, we have the following.

1. For t ≥ 0, the expected value of the number of (directed)edges et at time t is

E(et) = m0 + (1 − 2β)t.

2. For every ε > 0,

P r[|et − E(et)| > εt
2

3 ] < 2e−
ε2

2
t
1
3
.

Proof Define

Xj =

{

1 an edge is added at time j;
−1 an edge is deleted at time j.

So, et = m0 +
t
∑

j=1

Xj. Therefore, E(et) = m0 +
t
∑

j=1

E(Xj). We know that with probability

β we delete an edge and with probability 1 − α − β + α = 1 − β we add an edge. So,
E(Xj) = 1 − 2β for each j. Hence, (1) holds. Since et satisfies the 1-Lipschitz condition,
by Lemma 2 with δ = εt1/6, (2) holds.

Lemma 4 For each of the models 1, 2, and 3, we have the following.

1. For t ≥ 0, the expected number of nodes nt at time t is

E(nt) = n0 + (1 − α − β)t.

2. For every ε > 0,

P r(|nt − E(nt)| > ε
√

t) < 2e−
ε2

2 .

Proof Define

Xj =

{

1 a node is added at time j;
0 otherwise.

So, nt = n0 +
t
∑

j=1

Xj. Therefore, E(nt) = n0 +
t
∑

j=1

E(Xj). We know that with probability

1− α− β we add a new node. So, E(Xj) = 1− α− β for each j. Hence, (1) holds. Since
nt satisfies the 1-Lipschitz condition, by Lemma 2 with δ = ε,(2) holds.
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Proof of Theorem 1. We prove (1) first. For the sequence of random variables {din
k,t},

we will compute the corresponding expected value E(din
k,t) here. At time 0, there is an

initial graph G0 with n0 nodes and m0 edges. Let din
k,0 = d0

k be the number of nodes with
in-degree k, k ≥ 0 at time 0. At time 1, a node with a loop is added. We abbreviate “with
probability” by “w.p.”. Assume that there are et edges at time t, for t ≥ 0. It is not hard
to see that

din
0,t+1 =







din
0,t + 1 w.p. β

din
1,t

et
;

din
0,t otherwise.

and

din
1,t+1 =



















din
1,t + 1 w.p. 1 − α − β + β

din
2,t

et
;

din
1,t − 1 w.p. (α + β)

din
1,t

et
;

din
1,t otherwise.

In general, for k > 1, din
k,t+1 can increase by 1 because a node of in-degree k − 1 receives

an edge or a node of in-degree k+1 loses an edge; din
k,t+1 can decrease by 1 because a node

of in-degree k receives an edge or loses an edge. Thus we have that

din
k,t+1 =



















din
k,t + 1 w.p. α

(k−1)din
k−1,t

et
+ β

din
k+1,t

et
;

din
k,t − 1 w.p. α

kdin
k,t

et
+ β

din
k,t

et
;

din
k,t otherwise.

Hence,

E(din
k,t+1|Gt) = din

k,t

(

1 − kα + β

et

)

+ α
(k − 1)din

k−1,t

et
+ β

din
k+1,t

et
. (3.1)

Define et = m0 + (1 − 2β)t and let At = {|et − et| ≤ εt
2

3 } be an event. Define

at =

{

1 At occurs;
0 otherwise.

By Lemma 3, we know that

Pr(at = 1) ≥ 1 − 2e−
ε2t

1
3

2 . (3.2)

By (3.1), we obtain

din
k,t

(

1 − kα + β

et − εt
2

3

)

+
α(k − 1)din

k−1,t + βdin
k+1,t

et + εt
2

3

≤ E(din
k,t+1|Gt, at = 1)

≤ din
k,t

(

1 − kα + β

et + εt
2

3

)

+
α(k − 1)din

k−1,t + βdin
k+1,t

et − εt
2

3

. (3.3)
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It is easy to see that

E(din
k,t+1|Gt) = P (at = 1)E(din

k,t+1|Gt, at = 1) +

P (at = 0)E(din
k,t+1|Gt, at = 0). (3.4)

Note that din
k,t − 1 ≤ E(din

k,t+1|Gt) ≤ din
k,t + 1. So,

E(din
k,t) − 1 ≤ E(din

k,t+1) ≤ E(din
k,t) + 1. (3.5)

Taking expectation on both sides of (3.4), together with (3.2), (3.3) and (3.5), we obtain

(

E(din
k,t)

(

1 − kα + β

et − εt
2

3

)

+
α(k − 1)E(din

k−1,t) + βE(din
k+1,t)

et + εt
2

3

)(

1 − 2e−
ε2t

1
3

2

)

≤ E(din
k,t+1) ≤ (E(din

k,t) + 1)

(

2e−
ε2t

1
3

2

)

+

E(din
k,t)

(

1 − kα + β

et + εt
2

3

)

+
α(k − 1)E(din

k−1,t) + βE(din
k+1,t)

et − εt
2

3

. (3.6)

Let E(din
k,t) = bk,1t+ck,t, where ck,t = o(t) is a lower order term. To choose an appropriate

value for bk,1, we substitute it into (3.6) and let t tend to infinity. We obtain, for k > 1,

βbk+1,1 − (1 − β + kα)bk,1 + (k − 1)αbk−1,1 = 0. (3.7)

In the following we will solve (3.7) by using the Laplace Method. This method was first
used in the study of web graph models by [9]. Replacing k by k + 1 in (3.7), we get

βbk+2,1 + [−α(k + 1) + β − 1]bk+1,1 + kαbk,1 = 0,
which is of the form

(A2(k + 2) + B2)bk+2,1 + (A1(k + 1) + B1)bk+1,1 + (A0k + B0)bk,1 = 0. (3.8)

where A2 = 0, B2 = β, A1 = −α, B1 = β − 1, A0 = α, B0 = 0. We make the substitution

bk,1 =
∫ b

a
tk−1v(t)dt, (3.9)

where a, b are constants, and v(t) is a function of t to be determined. Integrating by parts,
we obtain

kbk,1 = [tkv(t)]ba −
∫ b

a
tkv′(t)dt. (3.10)

Let φ1(t) = A2t
2 + A1t + A0 and φ0(t) = B2t

2 + B1t + B0. Substituting (3.9) and (3.10)
into (3.8), we can get

[tkφ1(t)v(t)]ba −
∫ b

a
tkφ1(t)v

′(t)dt +
∫ b

a
tk−1φ0(t)v(t)dt = 0. (3.11)

7



If we ensure that
v′(t)

v(t)
=

φ0(t)

tφ1(t)
, (3.12)

and
[tkv(t)φ1(t)]

b
a = 0, (3.13)

then (3.8) will be satisfied. Now (3.13) can be satisfied by choosing a = 0 and b equal
to a root of v(t)φ1(t) = 0. Moreover, since A2 = 0, B2 = β, A1 = −α, B1 = β − 1, A0 =
α, B0 = 0, we can obtain

φ1(t) = A2t
2 + A1t + A0 = (t − 1)(−α)

and

φ0(t) = B2t
2 + B1t + B0 = βt2 + (β − 1)t.

Thus, we have the following differential equation.

v′(t)

v(t)
=

φ0(t)

tφ1(t)
=

βt + β − 1

α(1 − t)
. (3.14)

Integrating (3.14), we obtain

v(t) = Ce−
β

α
t(1 − t)γ.

where γ = 1−2β
α

and C is a constant. For convenience, we choose C = 1. With this
choice of v(t), we can choose b = 1 and (3.13) is satisfied. So, we have a = 0, b = 1 and

v(t) = e−
β
α

t(1 − t)γ .

Now we go back to (3.9) and determine bk as follows.

bk,1 =
∫ 1

0
tk−1v(t)dt

=
∫ 1

0
tk−1e−

β
α

t(1 − t)γdt

=
∫ 1

0
tk−1(1 − t)γ

∞
∑

j=0

(−β
α
t)j

j!
dt

=
∞
∑

j=0

(−β
α
)j

j!

∫ 1

0
tk+j−1(1 − t)γdt

=
∞
∑

j=0

(−β
α
)j

j!

Γ(k + j)Γ(γ + 1)

Γ(k + j + γ + 1)

=
∞
∑

j=0

(−β
α
)jΓ(γ + 1)

j!

Γ(k + j)

Γ(k + j + γ + 1)
.
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Let {an} and {bn} be two sequences of real numbers, we write an ≈ bn if

lim
n→∞

an

bn

= 1.

Assuming that k is large, then we can use Stirling’s formula for Γ(k+j) and Γ(k+j+γ+1)
as follows.

Γ(k + j) ≈
√

2π(k + j − 1)k+j− 1

2 e−(k+j−1)

and
Γ(k + j + γ + 1) ≈

√
2π(k + j + γ)k+j+γ+ 1

2 e−(k+j+γ)

Hence, we obtain

bk,1 =
∞
∑

j=0

(−β
α
)jΓ(γ + 1)

j!

Γ(k + j)

Γ(k + j + γ + 1)

= (1 + O(k−1))
∞
∑

j=0

e1+γ(−β
α
)jΓ(γ + 1)

j!
(k + γ + j)−γ−1

= (1 + O(k−1))C1(α, β)k−γ−1,

where C1(α, β) is a constant.
The sequence of random variables {din

k,t} satisfies the 1-Lipschitz condition. By Lemma 2,
for every ε > 0, we obtain

Pr(|din
k,t − bk,1t| > 2ε

√
t) < 2e−ε2/2, (3.15)

By Lemma 4, for every ε > 0, we have

Pr(|nt − n0 − (1 − α − β)t| > ε
√

t) < 2e−
ε2

2 .

With t large enough so that n0 ≤ ε
√

t, thus we obtain

Pr(|nt − (1 − α − β)t| > 2ε
√

t) < 2e−
ε2

2 . (3.16)

By (3.15) and (3.16), we obtain

Pr

(∣

∣

∣

∣

∣

din
k,t −

bk,1

1 − α − β
nt

∣

∣

∣

∣

∣

> 2ε
√

t(1 +
bk,1

1 − α − β
)

)

< 4e−ε2/2,

The proof of (1) follows.
Now we prove (2). For the sequence of random variables {din

k,t}, we will compute the
corresponding expected value E(din

k,t) here. At time 0, there is an initial graph G0 with
n0 nodes and m0 edges. Let din

k,0 = d0
k be the number of nodes with in-degree k, k ≥ 0 at

time 0. At time 1, a node with a loop is added. Assume that there are et edges at time
t, for t ≥ 0. It is not hard to see that

din
0,t+1 =







din
0,t + 1 w.p. β

din
1,t

et
;

din
0,t otherwise.

9



and

din
1,t+1 =



















din
1,t + 1 w.p. 1 − α − β + β

2din
2,t

et
;

din
1,t − 1 w.p. (α + β)

din
1,t

et
;

din
1,t otherwise.

In general, for k > 1, we have that

din
k,t+1 =



















din
k,t + 1 w.p. α

(k−1)din
k−1,t

et
+ β

(k+1)din
k+1,t

et
;

din
k,t − 1 w.p. (α + β)

kdin
k,t

et
;

din
k,t otherwise.

Hence,

E(din
k,t+1|Gt) = din

k,t

(

1 − k(α + β)

et

)

+ α
(k − 1)din

k−1,t

et
+ β

(k + 1)din
k+1,t

et
. (3.17)

Let At and at be as defined in case (1). By (3.17), we obtain

din
k,t

(

1 − k(α + β)

et − εt
2

3

)

+
α(k − 1)din

k−1,t + β(k + 1)din
k+1,t

et + εt
2

3

≤ E(din
k,t+1|Gt, at = 1)

≤ din
k,t

(

1 − k(α + β)

et + εt
2

3

)

+
α(k − 1)din

k−1,t + β(k + 1)din
k+1,t

et − εt
2

3

. (3.18)

Using (3.4), together with (3.2), (3.18) and (3.5), we obtain

(

E(din
k,t)

(

1 − k(α + β)

et − εt
2

3

)

+
α(k − 1)E(din

k−1,t) + β(k + 1)E(din
k+1,t)

et + εt
2

3

)(

1 − 2e−
ε2t

1
3

2

)

≤ E(din
k,t+1) ≤ (E(din

k,t) + 1)

(

2e−
ε2t

1
3

2

)

+

E(din
k,t)

(

1 − k(α + β)

et + εt
2

3

)

+
α(k − 1)E(din

k−1,t) + β(k + 1)E(din
k+1,t)

et − εt
2

3

. (3.19)

Let E(din
k,t) = bk,2t+ck,t, where ck,t = o(t) is a lower order term. To choose an appropriate

value for bk,2, we substitute it into (3.19) and let t tend to infinity. We obtain, for k > 1,

(k + 1)βbk+1,2 − (1 − 2β + k(α + β))bk,2 + (k − 1)αbk−1,2 = 0. (3.20)

Solving (3.20) by the Laplace Method, we obtain

bk,2 = (1 + O(k−1))C2(α, β)k−γ2−1,

10



where C2(α, β) and γ2 = 1−2β
α−β

are constants.

The sequence of random variables {din
k,t} satisfies the 1-Lipschitz condition. By Lemma 2,

for every ε > 0, we obtain

Pr(|din
k,t − bk,2t| > 2ε

√
t) < 2e−ε2/2, (3.21)

By (3.21) and (3.16), we obtain

Pr

(∣

∣

∣

∣

∣

din
k,t −

bk,2

1 − α − β
nt

∣

∣

∣

∣

∣

> 2ε
√

t(1 +
bk,2

1 − α − β
)

)

< 4e−ε2/2,

The proof of (2) follows.
Finally we prove (3). For the sequence of random variables {dk,t}, we will compute

the corresponding expected value E(dk,t) here. At time 0, there is an initial graph G0

with n0 nodes and m0 edges. Let dk,0 = d0
k be the number of nodes with degree k, k ≥ 0

at time 0. At time 1, a node with an edge is added. Assume that there are et edges at
time t, for t ≥ 0. It is not hard to see that

d0,t+1 =

{

d0,t + 1 w.p. β
d1,t

et
;

d0,t otherwise.

and

d1,t+1 =



































d1,t + 2 w.p. β N2

et
;

d1,t + 1 w.p. (1 − α − β)(1 − d1,t

et
) + β

2d2,t

et
;

d1,t − 1 w.p. α(1 − d1,t

et
) + β

d1,t−2N1−N3

et
;

d1,t − 2 w.p. α(d1,t

2et
)2 + β N1

et
;

d1,t otherwise.

where N1, N2 and N3 denote the number of edges between nodes with degree 1, the
number of edges between nodes with degree 2 and the number of edges between nodes
with degree 2 and 1 at time t, respectively.

In general, for k > 1, dk,t+1 can increase by 2 if we delete an edge whose two endpoints
have degree k + 1 or we add an edge whose two endpoints have degree k − 1; dk,t+1 can
increase by 1 if we delete an edge whose exactly one endpoint has degree k + 1 or we add
an edge whose exactly one endpoint has degree k− 1; dk,t+1 can decrease by 2 if we delete
or add an edge whose two endpoints have degree k; dk,t+1 can decrease by 1 if we delete
or add an edge whose exactly one endpoint has degree k; otherwise, dk,t+1 stays at the
same. Thus we have that

dk,t+1 =































































dk,t + 2 w.p. α
((k−1)dk−1,t)

2

4(et)2
+ β K1

et
;

dk,t + 1 w.p. α
(k−1)dk−1,t

et
(1 − kdk,t+(k−1)dk−1,t

2et
) + β

(k+1)dk+1,t−2K1−K3

et

+
(1−α−β)(k−1)dk−1,t

2et
;

dk,t − 1 w.p. α
kdk,t

et
(1 − kdk,t+(k−1)dk−1,t

2et
) + β

kdk,t−2K2−K3

et

+(1 − α − β)
kdk,t

2et
;

dk,t − 2 w.p. α
(kdk,t)

2

4(et)2
+ β K2

et
;

dk,t otherwise.
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where K1, K2 and K3 denote the number of edges between nodes with degree k + 1, the
number of edges between nodes with degree k and the number of edges between nodes
with degree k + 1 and k at time t, respectively.
Hence,

E(dk,t+1|Gt) = dk,t

(

1 − k(1 + α + β)

2et

)

+
(1 + α − β)(k − 1)dk−1,t + 2β(k + 1)dk+1,t

2et
.

(3.22)

By (3.22), we obtain

dk,t

(

1 − k(1 + α + β)

2(et − εt
2

3 )

)

+
(1 + α − β)(k − 1)dk−1,t + 2β(k + 1)dk+1,t

2(et + εt
2

3 )
≤ E(dk,t+1|Gt, at = 1)

≤ dk,t

(

1 − k(1 + α + β)

2(et + εt
2

3 )

)

+
(1 + α − β)(k − 1)dk−1,t + 2β(k + 1)dk+1,t

2(et − εt
2

3 )
. (3.23)

Note that dk,t − 2 ≤ E(dk,t+1|Gt) ≤ dk,t + 2. So,

E(dk,t) − 2 ≤ E(dk,t+1) ≤ E(dk,t) + 2. (3.24)

Note that (3.4) is also true for the sequence of random variables {dk,t}. Using (3.4),
together with (3.2), (3.23) and (3.24), we obtain

(

E(dk,t)

(

1 − k(1 + α + β)

2(et − εt
2

3 )

)

+
(1 + α − β)(k − 1)E(dk−1,t) + 2β(k + 1)E(dk+1,t)

2(et + εt
2

3 )

)(

1 − 2e−
ε2t

1
3

2

)

≤ E(dk,t+1) ≤ (E(dk,t) + 2)

(

2e−
ε2t

1
3

2

)

+

E(dk,t)

(

1 − k(1 + α + β)

2(et + εt
2

3 )

)

+
(1 + α − β)(k − 1)E(dk−1,t) + 2β(k + 1)E(dk+1,t)

et − εt
2

3

.

(3.25)

Let E(dk,t) = bk,3t+ck,t, where ck,t = o(t) is a lower order term. To choose an appropriate
value for bk,3, we substitute it into (3.25) and let t tend to infinity. We obtain, for k > 1,

2β(k + 1)bk+1,3 − (2 − 4β + (1 + α + β)k)bk,3 + (k − 1)(1 + α − β)bk−1,3 = 0.

(3.26)

Solving (3.26) by the Laplace Method, we obtain

bk,3 = (1 + O(k−1))C3(α, β)k−γ3−1,

12



where C3(α, β) and γ3 = 2−4β
1+α−3β

are constants.

The sequence of random variables {dk,t} satisfies the 2-Lipschitz condition. By Lemma 2,
for every ε > 0, we obtain

Pr(|dk,t − bk,3t| > 2ε
√

t) < 2e−ε2/8, (3.27)

By (3.27) and (3.16), we obtain

Pr

(
∣

∣

∣

∣

∣

dk,t −
bk,3

1 − α − β
nt

∣

∣

∣

∣

∣

> 2ε
√

t(1 +
bk,3

1 − α − β
)

)

< 2(e−ε2/2 + e−ε2/8),

The proof of (3) follows.

4 Conclusion and discussion

In this paper, we use techniques in random graph theory to analyze power law graphs,
and we solve recurrences by the Laplace method. Our models generate graphs with power
law exponent in the interval (1,∞). This is a larger interval than the interval [2,∞) found
for the models in [7, 9]. This is significant since certain massive networks, such as the
network of protein-protein interaction networks in a living cell, have power law exponents
the interval (1, 2); see [8]. Hence, our models can be used not only as models of the web
graph, but for many other massive networks.

A problem that we cannot presently solve is how to rigorously analyze models that
incorporate the deletion of nodes over time. For instance, one might want to make the
deletion of high degree nodes less likely than low degree nodes. We expect to pursue this
problem in future work.

Acknowledgement. I am grateful to Jeannette Janssen and Anthony Bonato for their
constant guidance and encouragement.
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