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Abstract 

 

 Dimension reduction techniques (DRT) are applicable to a wide range of 

information systems. Application context naturally has a significant impact on the 

appropriateness of the DRTs. In this research, a systematic study is conducted of four 

DRTs for the text clustering problem using five benchmark datasets. Of the four methods 

-- Independent Component Analysis (ICA), Latent Semantic Indexing (LSI), Document 

Frequency (DF) and Random Projection (RP) -- ICA and LSI are clearly superior when 

the k-means clustering algorithm is applied, irrespective of the datasets. Random 

projection consistently returns the worst results, where this appears to be due to the noise 

distribution characterizing the document clustering task.  

 

Keywords-dimension reduction techniques, text clustering, Independent Component 

Analysis, Latent Semantic Indexing, Random Projection, Document Frequency. 

 

1 Introduction  

 

 The wide spread availability of Internet technology and hardware capacity has led 

to an exponential increase of the amount of documents available electronically across all 

the application fields. The huge amount of text information provides a natural 
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requirement for efficient document organization, summarization, navigation and retrieval. 

Document clustering is the fundamental and enabling tool for all these applications. In 

general, document clustering can be defined as, given a document collection, S, of n 

documents in a high dimensional space, to find a partition of S such that the documents 

within each cluster are similar to each other. This is something of a "wish"; reality might 

require classification where the overhead is the need for labeled training data.  

 The more general clustering problem has long been of interest to many research 

communities, including fuzzy logic [5, 12, 33], statistical learning [8], information theory 

[13, 40], neural networks [9, 19, 31, 39] and database [20, 43] communities. In general, 

common wisdom agrees that no single clustering algorithm can properly manage all the 

complexities inherent in all datasets equally well.  These complexities include different 

density distributions and density levels, different shapes, sub-cluster structures and 

heterogeneous subspaces for different clusters.  

 One specific characteristic that makes document clustering particularly difficult 

among the general clustering problems is the high dimensionality of the problem. This 

adds an extra very difficult characteristic to the standard clustering problem. In most 

common text applications, documents are represented by a vector in an m-dimensional 

term space, where m is the number of different terms occurring in the dataset of 

documents.  It is not uncommon to find thousands or tens of thousands of different words 

for even a relatively small sized text data collection of a few thousand documents. 

Moreover, only a subset of the different terms will appear in any one document, resulting 

in documents being described by a sparse but multidimensional feature vector.  

 The high dimensionality of natural text is often referred to as the "curse of 

dimensionality".  In the context of clustering, the commonly used distance measures 
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between data points begin to lose discriminative power as the number of dimensions 

increases for the given dataset. It has been shown that, in a high dimensional space, data 

points almost always have equal distance to each other for various data distributions and 

distance functions [4].  

 To solve the high dimensionality problem, various dimension reduction 

techniques have been proposed [17, 37]. There are two major types of dimension 

reduction techniques, feature transformation and feature selection [37]. In feature 

transformation, the original high dimensional space is projected onto a lower dimensional 

space, in which each dimension in the lower dimensional space is some linear or non-

linear combination of the original high dimensional space. Widely used examples 

include, Principle Component analysis (PCA), Factor Analysis, Projection Pursuit, Latent 

Semantic Indexing (LSI), Independent Component Analysis (ICA), and Random 

Projection (RP) [17]. In the case of feature transformation, the lower dimensional space is 

often believed to represent the underlying latent structure of the dataset. Such a 

transformation either has to guarantee a good degree of distance preservation among data 

points or generate statistically more independent components of the original dataset. 

However, it has been argued that such methods are less effective when a huge number of 

irrelevant dimensions are present in the dataset compared to the number of meaningful 

dimensions [37]. Feature selection, as the name implies, only has to select a subset of 

"meaningful or useful" dimensions (specific for the application) from the original set of 

dimensions. A current trend in feature selection is therefore to select relevant subspaces 

appropriate for each cluster separately [2, 38].   

 Not all the dimension reduction techniques have been used widely in text 

applications such as text categorization, clustering and information retrieval tasks (IR). In 
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this work, we are only interested in investigating the relative effectiveness and robustness 

of a few dimension reduction techniques when used for text clustering. They are 

Document Frequency (DF), Latent Semantic Indexing (LSI), Random Projection (RP) 

and Independent Component Analysis (ICA). More detailed reviews of the four DRTs 

will be introduced in the next section. 

 Although many research projects are actively engaged in furthering DRTs as a 

whole, so far, there is no experimental work comparing them in a systematic manner. As 

data miners, we feel strongly that a systematic comparative study on these four 

techniques be conducted in the context of text clustering, using benchmark datasets of 

differing characteristics.  

 This paper is organized as follows. Section 2 provides more details for the four 

DRTs used in this research. Section 3 describes the general experimental procedure and 

evaluation methods that we use in this work. Section 4 describes the characteristics of the 

datasets used and the pre-processing procedure followed. Section 5 presents our 

experimental results and appropriate discussion notes. Finally, conclusions are drawn and 

future research directions identified in Section 6.  

 

2 Some math details of the DRTs discussed in this paper 

 

 Document Frequency (DF) 

Document Frequency (DF) may itself be used as the basis for feature selection. 

That is, only those dimensions with high DF values appear in the feature vector. In spite 

of its simplicity, it has been demonstrated to be as effective as more advanced techniques 

in text categorization [42]. We are curious to know how effective DF will be as a 
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dimension reduction technique for text clustering, and what preprocessing methodology 

is the most appropriate when using DF as a dimension reduction technique in text 

clustering. 

DF can be formally defined as follows. For a document collection in matrix 

notation, Am x n, with m terms and n documents, the DF value of term 't', DFt, is defined as 

the number of documents in which t occurs at least once among the n documents. To 

reduce the dimensionality of A from m to k (k<m), we choose to use the k dimensions 

with the top k DF values. It is obvious that the DF takes O(mn) to evaluate.  

 Latent Semantic Indexing (LSI) 

LSI, as one of the standard dimension reduction techniques in information 

retrieval, has enjoyed long-lasting attention [3, 11, 14, 15, 16, 23, 24, 36]. It was initially 

designed to be an effective automatic indexing and retrieval tool. By detecting the high-

order semantic structure (term-document relationship), it addresses the ambiguity 

problem of natural language, i.e., the use of synonymous, near- synonymous, and 

polysemous words. It uses Singular Value Decomposition (SVD) to embed the original 

high dimensional space into a lower dimensional space with minimal distance distortion, 

in which the dimensions in this space are orthogonal (statistically uncorrelated). Using 

truncated SVD, not only can we capture the most important association between terms 

and documents, but also we can effectively remove noise and redundancy and word 

ambiguity within the dataset [3]. A probabilistic variant of LSI, pLSI, has been proposed 

recently [23] which defines a generative model for directly minimizing word perplexity 

based on the principle of maximum likelihood.    

There are a few drawbacks associated with LSI. The first is its high computational 

cost. For a data matrix, A m x n, the time complexity can be estimated in the order of 
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O(m
2
n)+ O(m

3
) [21]. Even for a sparse matrix of the same size, m x n, with 

computational more efficient methods, the time complexity is still at the order of O(cmn), 

where c is the average non-zero values over all the data vectors [36]. In our research, we 

use the svds function in Matlab
TM

, the SVD for sparse matrices. Another factor essential 

to the success of LSI is the choice of �k�, the dimension to reduce to, as noticed by 

Deerwester et al [11]. In practice, the value of k is often determined at hoc. Though some 

theoretical works attempt to provide formal frameworks to determine the value of "k", 

these theoretically optimal k values seem to be either too high or not always in agreement 

with the IR performance [15, 16]. In this research, besides the effectiveness of LSI, we 

are also strongly interested in finding some general rules to determine the "close to 

optimal" k value for LSI in document clustering applications. 

LSI uses the well-known Singular Value Decomposition (SVD) algorithm to 

reduce the dimensionality. The process of SVD takes the given document collection Am x n 

and decomposes it into three matrices in the form of: VSU
T

rrr
A , where U and V 

are orthogonal matrices that contain the left and right singular vectors of A respectively, S 

is the diagonal matrix that contains the singular values of A and the subscript r denotes 

the rank of A. U and V are often referred to as term vectors and document vectors 

respectively. Since the singular values are often sorted in descending order, truncated 

SVD can be used to project the original data onto a lower, k-dimensional space, which is 

the best rank-k approximation of A in the least-square sense. A is approximated as 

VSUA
T

kkkk

~~~~ . Under the new k-dimension, each original document d can be re-

represented as 
T

kk dSUd
~

, where is often referred to as the term projection 

matrix.  

kk SU

  The work of  [24] argues that the term projection matrix should be normalized 
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before being used to project the document onto the lower dimension, which improves the 

performance on information retrieval tasks. In this work, we will first test whether 

normalization of the term projection matrix is beneficial for text clustering. Then we will 

choose the proper form of the projection matrix to be used in LSI.  

 Random projection (RP) 

Recently, the method of Random Projection (RP) was developed to provide a low 

(computational) cost alternative to LSI for dimension reduction. Naturally, researchers in 

the text mining and information retrieval communities have become strongly interested in 

RP.  RP has proven to a reasonably good alternative to LSI in preserving the mutual 

distances among documents [6]. Some researchers believe that RP is a good alternative 

DRT for classifiers similar to kNN and other clustering methods [10, 28, 29]. However, 

other researchers are not that convinced of the effectiveness, computational or otherwise, 

of RP as an alternative for LSI-like techniques [18,34]. So far, the effectiveness of RP is 

still unclear.  

RP was initially proposed as a computationally cheaper alternative to LSI [22, 

29]. Similar to LSI, RP projects the original high dimensional space onto a lower 

dimensional space using a randomly generated projection matrix, nmmknk ARA
~

, 

where the columns of R follow Gaussian distribution with unit length. Unlike the newly 

generated space in LSI in which all dimensions are orthogonal, the dimensions in the 

newly generated k-dimensional space of RP are approximately orthogonal.  It can be 

proven that the distance distortion error introduced by RP under the new dimensional 

space is well-bounded [1, 29]. In this work, we follow an approximation scheme to 

generate the normalized projection matrix as used in [1]. For any column of projection 

matrix, R, the element rij is generated from the following probability distribution,  
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It is easy to see that the time complexity to generate R is O(mk).  

A theoretical concern for the appropriate usage of RP arises from the ambiguity 

and "noise level" inherent in natural language. It has long been suspected that the original 

high dimensional term space is not appropriate for random sampling due to the ambiguity 

of the meaning of the terms in natural languages [11]. Unlike other feature transformation 

methods that generate new features based on some statistical property, the new features in 

RP are generated randomly (random linear combinations of original terms). This 

randomness may add further disruption to the ambiguity found in natural language and 

diminish the effectiveness of RP as a DRT for text clustering. In general, we really want 

to understand how effective RP is for text clustering. 

 Independent component analysis (ICA) 

 A recent method of feature transformation called Independent Component 

Analysis (ICA) has gained widespread attention in signal processing [25]. It is a general-

purpose statistical technique, which tries to linearly transform the original data into 

components that are maximally independent from each other in a statistical sense. Unlike 

LSI or PCA, the independent components are not necessarily orthogonal to each other, 

but are statistically independent. This is a stronger condition than statistical 

uncorrelateness, as used in PCA or LSI [25]. ICA can be used as a dimension reduction 

technique. It can also be used to estimate the latent variables of a given dataset.  So far, it 

has enjoyed good success in many different areas, such as signal processing, 

telecommunication, and economics [27]. 

 Until very recently, there are only a few experimental works in which ICA is 
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applied to text applications. It has been used as an indexing tool instead of LSI [30]. ICA 

has been compared favorably to LSI in producing representations better aligned with the 

grouping structure of the given text [32]. An extension of standard ICA to streaming data 

has been used successfully for identifying topics in a dynamical textual environment, i.e., 

chat room conversation streams [7]. So far, the applications of ICA to text applications 

are still atypical. As a DRT with great potential, more research is needed to demonstrate 

its effectiveness for text clustering, especially when compared to other well-known 

methods. 

 ICA is defined under a generative model, i.e., it assumes each observed data (a 

document x) being generated by a mixing process of statistically independent components 

(latent variables si ). Formally, using vector-matrix notation, the noise-free mixing model 

can be written as , where A is often referred to as the mixing matrix and 

the inverse of A is often referred as the unmixing matrix, W.  The independent 

components can be expressed as 

nkkmnm SAX

nkmknk XWS . Here, the statistical independence is 

equivalent to nongaussianity. The problem of ICA is to use X to simultaneously estimate 

both the mixing matrix, A, and the independent components, S. The objective function of 

ICA (contrast function) measures the nongaussianity of components, which should be 

maximized during the ICA process.   

 Software packages have been developed for implementing the basic ICA 

algorithms, e.g., JADETD and FastICA [27, 35]. In addition, FastICA is known to be 

robust and efficient for a wide range of underlying distributions [17]. In this research, we 

used fixed-point ICA, the FastICA implementation [27]. The following introduction is 

mainly based on FastICA.  

For the one component ICA, FastICA tries to find a vector w whose projection of 
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wTx maximizes nongaussianity. Nongaussianity is measured by the approximation of 

negentropy J(wTx). J(y) is defined as J(y) c[E{G(y)}-E{G( )}]
2
, where c is an constant,  

is a Gaussian variable of zero mean and unit variance, y is also assumed to be of zero 

mean and unit variance, and G is any nonquadratic function. The following choices of G 

are often appropiate: G1(u)=(1/a1)log cosh (a1u), G2(u)=-exp(-u
2
/2), where 1 a1 2 is 

some suitable constant (in the following, the derivative of G is denoted as g. The basic 

procedure of FastICA of one unit is as follows: 

a. Randomly choose an initial weight vector w. 

b. Let w+ 
=E{xg(wTx )}-E{g

�
(wTx)}w 

c. Let w=w+/||w+|| 

d. Go back to b until converge 

To estimate multiple components, one can either use a deflation scheme, or 

estimate all components simultaneously in symmetric manner and use orthogonal 

decorrelation W=(WWT)-1/2W, where W is the matrix (w1, …wn)T
 of the weight vectors. 

Further details can be found elsewhere [26]. It is easy to see that run time of FastICA is 

determined by its convergence speed. It is argued that this algorithm converges in at least 

quadratic time [26]. 

 In practical applications of FastICA, often, there are two pre-processing steps. The 

first is centering, i.e., making x zero-mean variables. The second is whitening, which 

means that we linearly transform the observed vector x to xnew
, such that its components 

are uncorrelated and their variance equal unity. Whitening is done through eigenvalue 

decomposition as used in PCA. In practice, the most time consuming part of FastICA is 

the whitening, which can be computed with svds in Matlab
TM

. 
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3 Evaluation methods and general experimental procedure  

 Evaluation methods  

 To judge the relative effectiveness of the DRTs, we first apply them to text 

clustering tasks on different datasets. Based on the quality of their clustering results, we 

rank them accordingly. There are two perspectives to the ranking, the absolute clustering 

results and the robustness of the method. Here, good robustness implies that when using a 

certain DRT, reasonably good clustering results should be found across a relatively wide 

range of dimensions (reduced), i.e., the clustering results should degrade gracefully if 

non-optimal reduced dimensions are used. Obviously, robustness is a highly desirable 

property of a DRT for text clustering and other data mining tasks.  

There are many ways to measure the quality of text clustering. We believe that we 

should use the class labels of the data as relevant references to judge the quality of 

clustering results. Hence, we choose to use Purity, which measures the percentage of the 

data points in the cluster that belong to primarily one class [44]. It is defined as the 

weighted sum of individual cluster purities: 
i

C

i

i SP
n

n
Purity

1
. Here, P(Si) is the purity 

for a particular cluster of size ni, C is the total number of clusters and n is the total 

number of points in the dataset. Since we divide the whole dataset into training and 

testing set, we modify the calculation of Purity as follows. Each cluster i is assigned a 

class label, Ti, based on a majority vote by its members using only the training set. Then, 

P(Si) of cluster i is defined as the proportion of points assigned as members of cluster i in 

the test set whose class labels agree with Ti. Obviously, the higher the Purity value, the 

purer the cluster in terms of the class labels of its members, the better the clustering 

results. It is easy to establish that Purity is the clustering-version of the micro-average of 

 11



classification accuracy when the classification accuracy is micro-averaged over all the 

clusters instead of the classes. Hereafter, we refer to the cluster quality measure as 

classification accuracy (CA) instead of Purity. 

To judge the relative robustness of DRTs, we combine a heuristic observation and 

student t test. We first plot the CA curves of the DRTs against the dimensionalities. 

Based on the CA values, it is visually possible to clearly establish the relative 

effectiveness of the DRTs based on these curves. For situations when more than one 

curve shares very similar CA values over "an interesting range of dimensions"(defined 

later), such that we cannot visually resolve performance levels, we will perform a paired 

student t test. For each dataset, the relative ranks of the DRTs are determined by the 

combination of visual observation and paired student t test on the CA curves of the 

DRTs. 

To ensure that the results are representative and systematic, many precautions 

have to be taken in the process of comparison. First, the choice of datasets has to be made 

in such way that a broad genre of text collections are covered in our test. The second 

issue concerns the usage of the clustering algorithm. For the choice of clustering 

algorithm, we use k-means, since k-means or its variants are the most commonly used 

clustering algorithms used in text clustering [41]. It is a well-known problem that the 

clustering results of k-means are not always optimal and stable due to poor choices of 

initialization. In our implementation, a simple procedure, InitKMeans (defined later), is 

introduced to ameliorate the negative effect of poor initialization. The third issue 

concerns the proper usage of LSI and ICA. Though LSI is a standard procedure, different 

forms of the projection matrix used in LSI may have differing impacts on the quality of 

the transformation [24]. Such a concern may also be extended to the use of ICA, since so 
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little work has been done on ICA for text clustering. Therefore, in our experiments, 

proper forms of LSI and ICA are determined experimentally. 

 pseudocodes for experiment procedures 

Our experiments follow a general procedure, briefly listed in Procedure 

DRT_Text_Clustering. Our initialization procedure for k_means is briefly listed in 

Procedure InitKMeans.  

 

PROCEDURE DRT_Text_Clustering(test-dimensions, DRT, AllDatam×n, # clusters) 

BEGIN 

1. Randomly split the AllData into training sets (data1) and test sets (Data1) of ratio 3:1       

    proportionally to their category distribution if possible. 

2. Normalize data1 & Data1 such that each document has unit length. 

3. Dimension reduction and clustering  

  FOR each experimental dimension k, 

             Apply DRT(data1,k) to either select a subset of dimensions to use or to generate   

                        the transformation matrix A at dimension k; 

  Generate the dimension reduced version of data1, datak ; 

  Renormalize datak to unit length for each document; 

InitKMeans (datak , # clusters) returns seeds for k_means; 

Apply k_means using the seeds on datak to generate centers_k; 

  END FOR 

4. Calculate final results 

     FOR each experimental dimension k, 

 Reduce dimensions for data1 and Data1 to k and generate training and testing 
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data, datak and Datak; 

 Normalize both datak and Datak to unit length for each document; 

 Label clusters with class label using majority vote of the members using only       

datak ; 

 Calculate classification accuracy for Datak; 

     END FOR 

END 

 

PROCEDURE InitKMeans(data, n) // n is the number of seeds to return 

BEGIN 

1. Randomly select % of data, D, proportionally to their category distribution. 

2. Calculate the mutual distances between points in D. 

3. For each point, sort its distance to all other points in ascending order. 

4. For each point, define its neighborhood size, , as, its average distance to its first        

    closest neighbors.  is a small number, e.g., 6, 10.  

5. Return the data points whose s are ranked among the first n smallest. 

END 

 All our experiments are conducted under Matlab 6.5.1 environment. The 

k_means, svds procedures are taken directly from Matlab toolboxes. The matlab code for 

ICA is from [27]. We implement rest of the codes with matlab. 

 

4 Characteristics of the data sets  

The Datasets 

In our experiments, we used a variety of datasets, which include WWW-pages 
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(WebKB), newswire stories (Reuters-21578, 20Newsgroup), and technical reports 

(CSTR). Most of the datasets are widely used in the research of information retrieval and 

text mining. The number of classes ranges from 4 to 50 and the number of documents 

ranges between 4 and 3807 per class. Table 1 summarizes the characteristics of the 

datasets. 

20Newsgroups [45]  The 20 Newsgroups data set is a collection of 

approximately 20,000 newsgroup documents evenly partitioned across 20 different 

newsgroups. The subset we used consists of four newsgroups, i.e., soc.religion.christian, 

sci.crypt, sci.med, and sci.space, referred to as 20NG-4. This subset has been used to 

prove the distance preservation property of RP in [6]. Therefore, we choose to use it to 

test the "real effectiveness" of RP when applied to real text clustering.   

Reuters-21578 [46]  Reuters-21578 is a standard multi-class, multi-labeled 

benchmark. It contains 12,902 newswire stories that have been classified into 118 

categories. Two subsets of it are used. Reuter-2 is a collection of documents each 

document with a single topic label. The version of Reuter-2 that we used eliminates 

categories with less than 4 documents, leaving only 50 categories. The categories of 

Reuter-2 are very imbalanced. To partially remove the effect of the imbalance within 

Reuter-2, we derive a second subset from Reuters-2, referred to as Reuters-10, consisting 

only of the ten most frequent categories. 

WebKB [45]  The WebKB data set contains 8,282 WWW-pages collected from 

computer science departments of various universities in January 1997 by the CMU text 

learning group.  We only used a subset, commonly referred to as the WebKB4, which is 

limited to the four most abundant categories: student, faculty, course, and project. 

CSTR [47]  CSTR is a collection of the abstracts of technical reports published 
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in the Department of Computer Science at the University of Rochester between 1990 and 

2004. The dataset contains 505 abstracts, divided into four research areas: AI, Robotics 

and Vision, Systems, and Theory. 

Table 1 Summarization of the datasets 

Datasets Dataset size 
(|terms| × |docs| ) 

#classes Class Size 
range 

Type 

20NG-4 7694 × 4009 4 [997,1012] News  

Reuters-2 7315 × 8771 50 [4, 3807] News 

Reuters-10 6649 × 7720 10 [107, 3807] News 

WebKB4 9870 × 4199 4 [504, 1641] University web pages 

CSTR 2335 × 505 4 [76, 191] Technical Reports 

 
Preprocessing 

The pre-processing of the datasets follows the most practiced procedures, 

including, removal of the tags and non-textual data, stop word removal [48], and 

stemming [49]. Then we further remove the words with low document frequency. For 

example, for the Reuter-2 dataset we only selected words that occurred in at least 4 

documents.  

The word weighting scheme we used is the �ltc� variant of the tfidf function, 

defined as follows:  

)(#
log),()( ,

kr

r

jkjk
wT

T
dwtfdwtfidf  

otherwise

dwifdw
dwtf

jkjk

jk
0

0),(#),(log#1
),(  

rT  � Total number of documents in collection D 

)(# kr wT - Number of documents in D in which term  occurs at least once kw

),(# jk dw - Frequency of term  in document dkw j
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5 Experiments results and discussions 

5.1 Choosing proper form of LSI and ICA  

In the first set of experiments, the objective is to determine the proper form of the 

LSI and ICA projection matrix, i.e., whether it is appropriate to normalize the projection 

matrix used in both methods. To do so, each method is applied to all the available 

datasets twice, once with the projection matrix normalized and once without. To compare 

their relative effectiveness, visual inspection is used, with paired student t tests if 

necessary. The results for LSI/LSI_Norm and ICA/ICA_Norm are plotted in Figures 1 

and 2, respectively.   

From Figures 1 and 2, for datasets of Reuter-2, Reuter-10 and WebKB4, it is 

obvious that normalization of the projection matrix for LSI/ICA is not necessary, since 

the non-normalized version of LSI/ICA consistently performs better than the normalized 

version. For 20NG-4 and CSTR, we conduct paired student t tests. We are only interested 

in comparing their performance on the most "interesting" dimension range. By 

"interesting" dimension range, we refer to the dimension range within which the methods 

produced the best clustering results. Hereafter, we will use [a, b] to denote the 

"interesting" dimension range under investigation. The results of the t-tests are listed in 

Table 2. Based on the p values at =0.05 level, we observe that for most of the cases, 

there is no significant difference between using the normalized or non-normalized 

projection matrix for ICA and LSI for the CSTR and 20NG-4 datasets. The only 

exception is the ICA vs ICA_Norm case for 20NG-4, where the p values suggest that 

ICA_Norm is slightly better than ICA. Based on the majority of cases, we conclude that 

normalization of the projection matrix for both LSI and ICA is not necessary. In the 

following comparison of the four DRTs, the non-normalized version of LSI and ICA will 
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be used.  

 
Figure 1. Comparison of LSI vs LSI_normalized. In all the plots, the x-axis denotes 

dimensionality, and y-axis is the classification accuracy. '+' represents 'normalized' 

version of LSI, '.' represents 'non-normalized' version of LSI.  

 
Figure 2. Comparison of ICA vs ICA_normalized. In all the plots, the x-axis denotes 

dimensionality, and y-axis is the classification accuracy. '+' represents 'normalized' 

version of ICA, '.' represents 'non-normalized' version of ICA. 
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Table 2. LSI/LSI_Norm and ICA/ICA_Norm Comparison for CSTR and 20NG-4 
 

CSTR 20NG-4 

Dims LSI LSI_N ICA ICA_N Dims LSI LSI_N ICA ICA_N 

5 0.827 0.819 0.827 0.843 4 0.960 0.964 0.669 0.750 

9 0.811 0.835 0.843 0.874 7 0.967 0.957 0.825 0.882 

13 0.835 0.819 0.835 0.827 10 0.959 0.968 0.868 0.895 

17 0.858 0.819 0.835 0.858 20 0.953 0.955 0.935 0.949 

21 0.835 0.827 0.850 0.874 30 0.926 0.950 0.941 0.957 

23 0.843 0.835 0.835 0.811 40 0.927 0.934 0.947 0.945 

33 0.764 0.795 0.843 0.858 50 0.904 0.922 0.935 0.947 

43 0.787 0.835 0.772 0.780 60 0.914 0.918 0.930 0.937 

53 0.764 0.669 0.780 0.748 70 0.889 0.917 0.934 0.938 

63 0.740 0.701 0.803 0.732 77 0.900 0.917 0.926 0.933 

69 0.764 0.685 0.693 0.654 97 0.878 0.915 0.916 0.917 

115 0.646 0.591 0.488 0.472 117 0.874 0.901 0.897 0.907 

161 0.591 0.528 0.583 0.496 137 0.861 0.882 0.876 0.894 

207 0.457 0.417 0.520 0.528 157 0.850 0.892 0.872 0.890 

253 0.378 0.370 0.409 0.465 177 0.856 0.873 0.871 0.889 

299 0.370 0.433 0.425 0.457 197 0.851 0.880 0.855 0.893 

     217 0.840 0.880 0.851 0.873 

     231 0.835 0.879 0.849 0.874 

     385 0.859 0.874 0.821 0.839 

     539 0.836 0.821 0.801 0.818 

     693 0.810 0.819 0.785 0.788 

     847 0.788 0.792 0.767 0.765 

H0:  CA_LSI[5,23] = = CA_LSI_Norm[5,23] H0:  CA_LSI[4,40] = = CA_LSI_Norm[4,40]

p=0.16, H0 hold, LSI = LSI_Norm p=0.12, H0 hold, LSI = LSI_Norm 

H0:  CA_ICA[9,33] = = CA_ICA_Norm[9,33] H0:  CA_ICA[30,70] = = CA_ICA_Norm[30,70]

p=0.14, H0 hold, ICA = ICA_Norm p=0.04, reject H0, ICA < ICA_Norm 

  
 

5.2 Comparisons of the four DRTs 

 For each dataset, we summarize the performances of the four DRTs in one Figure. 

The DRT comparisons are conducted by the combination of visual inspection and paired 

student t tests. To detect the "good range of reduced dimensions", we also plot the LSI 

performance against its singular values. Since ICA uses PCA as a preprocessing stage to 

"whiten" the raw data and determine the number of components (dimensions) to reduce 
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to, we are also interested in the correlation between ICA performance and eigenvalues 

used in the whitening step. This correlation may suggest how to determine the "good 

range of dimensions to reduced to" by ICA. 

For each dataset, the classification accuracies of all the DRTs for the test data are 

reported in a separate table, including some detailed results of the paired student t tests.  

In Tables and Figures 3 through 7, the dimensions are ordered as follows: for DF, the 

dimensions are ordered according to the DF values, for LSI the dimensions are ordered 

based on the singular values (which indicate the importance of the dimensions), similarly, 

for ICA, the number of dimensions are determined by the PCA preprocessing step, in 

which the principle components are ordered based on their eigenvalues indicating their 

relative importance, and for RP, there is no ordering for the newly generated dimensions. 

 
Results of Reuter-2.  

From Figure 3 and Table 3, we observe the following. Within the whole range of 

dimensions being investigated, RP is inferior to DF. The performance of DF peaks 

around dimension of 657 with classification accuracy (CA) of 0.85 and then flattens and 

settles around 0.8 with increasing dimensionality.  ICA and LSI achieve their best results 

with lower dimensionalities ([30,93]) that match with the best performance of DF. To 

compare the performance of ICA and LSI within their best common dimension range 

[30,93], the null hypothesis of the paired student t test assumes the means of CAs for ICA 

and LSI for the range [30,93] are equal. The result of the t-test rejects the null hypothesis, 

indicating superior performance of ICA over that of LSI. We also notice that ICA is more 

robust than LSI in that ICA maintains very good performance over a much larger range 

of dimensions than LSI.  

The correlation between singular values and LSI performance (or eigenvalues and 
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ICA performance) is not clear. Thus, it is not possible to pinpoint the optimal 

dimensionality as a threshold as is done in many signal-processing applications [50]. We 

observe that, both the singular and eigen values decrease very rapidly within the first few 

to few tens of dimensions, after which there is general reduction. Hereafter, we refer to 

the part of singular/eigen value curve that transits from very rapid reduction to slow 

reduction as the transition zone. This transition zone seems to correspond to the best 

performance of LSI/ICA. Such an observation seems to be compatible with previous 

research results [3]. In all cases, it appears that over the transition zone, the CA curve of 

ICA reaches its peak and keeps at a constant level over a wider range of dimensions than 

that of LSI, indicating less feature sensitivity of ICA. Considering both the absolute best 

performance and robustness, for Reuter-2 dataset, we rank the DRTs in the order of ICA 

> LSI > DF> RP, where ">" denotes better. 

 

Table 3. DRT Comparison for Reuter-2 
 

Dims ICA LSI DF RP 

10 0.840 0.774 0.695 0.438 

20 0.859 0.828 0.678 0.496 

30 0.854 0.852 0.671 0.534 

40 0.859 0.852 0.697 0.551 

50 0.857 0.858 0.720 0.581 

60 0.857 0.859 0.749 0.615 

70 0.859 0.853 0.794 0.605 

73 0.859 0.855 0.794 0.626 

93 0.859 0.848 0.800 0.670 

113 0.854 0.830 0.804 0.680 

133 0.849 0.820 0.808 0.711 

153 0.854 0.823 0.805 0.729 

173 0.857 0.818 0.802 0.732 

193 0.848 0.803 0.827 0.741 

219 0.852 0.791 0.821 0.779 

365 0.826 0.777 0.831 0.798 

511 0.786 0.757 0.843 0.809 

657 0.739 0.739 0.853 0.805 

H0:  CA_ICA[30,93] = = CA_LSI[30,93], p=0.034, ICA > LSI 
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Figure 3. DRT performance summary for Reuter-2. 

a. parallel comparison of four DRTs, x-axis: dimensionality, same for the rest of the 

plots. y-axis: CAs for DRTs 

b. comparisons between DF and RP with extended dimensionality 

c. correlation of classification accuracy and normalized singular value for LSI, '+' denotes 

the CA curve and '.' denotes the normalized singular values 

d. correlation of classification accuracy of ICA and the normalized eigenvalues of its 

PCA step, '+' denotes the CA curve and '.' denotes the normalized eigenvalues. 

Results of Reuter-10 

 We have the following observations based on Figure 4 and Table 4.  RP is inferior 

to DF for the whole dimension range investigated. DF reaches its peak performance at a 

dimension of 726 with a CA of 0.90, and then settles around 0.90 as the dimensionality 

increases. ICA provides good results within the range of [8,126], with the best results at 

dimension 20 among all the DRTs. LSI also provides reasonably good results in the range 
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of [8,126], but is inferior compared to ICA in terms of the best results and robustness 

based on paired t-tests. Similar to Reuter-2, the bst results of LSI and ICA seem to 

coincide with the transition zone of singular/eigen value curves. The relative ranking of 

the DRTs for Reuter-10 is in the order of ICA >LSI >DF >RP.  

 
Figure 4. DRT performance summary for Reuter-10. 

 
a. parallel comparison of four DRTs, x-axis: dimensionality, same for the rest of the 

plots. y-axis: CAs for DRTs 

b. comparisons between DF and RP with extended dimensionality 

c. correlation of classification accuracy and normalized singular value for LSI, '+' denotes 

the CA curve and '.' denotes the normalized singular values 

d. correlation of classification accuracy of ICA and the normalized eigenvalues of its 

PCA step, '+' denotes the CA curve and '.' denotes the normalized eigenvalues. 
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Table 4. DRT Comparison for Reuter-10 
 

Dims ICA LSI DF RP 

3 0.794 0.734 0.667 0.490 

5 0.857 0.777 0.816 0.495 

8 0.908 0.814 0.784 0.523 

10 0.911 0.843 0.781 0.488 

20 0.926 0.906 0.754 0.551 

30 0.919 0.893 0.761 0.547 

40 0.890 0.906 0.782 0.606 

50 0.883 0.906 0.789 0.623 

60 0.881 0.889 0.821 0.645 

66 0.886 0.889 0.825 0.662 

86 0.881 0.876 0.845 0.706 

106 0.874 0.848 0.860 0.734 

126 0.857 0.829 0.857 0.747 

146 0.866 0.816 0.873 0.765 

166 0.868 0.829 0.877 0.793 

186 0.852 0.813 0.884 0.797 

198 0.858 0.799 0.882 0.811 

330 0.809 0.733 0.895 0.854 

462 0.769 0.715 0.896 0.878 

594 0.741 0.608 0.901 0.847 

726 0.703 0.629 0.905 0.885 

H0: CA_ICA[8,126] = = CA_LSI[8,126], p=0.046, ICA >LSI 

 

Results for WebKB4 

For WebKB4, Table 5 and Figure 5 show that RP is again inferior to DF for the 

range of dimensionality investigated. DF peaks at dimension 495 with a CA of 0.757 and 

then flattens out and settles with a CA around 0.70. LSI provides the best results at 

dimension 7 with CA of 0.81. ICA also provides reasonably good results in the range of 

[7,60]. Comparing the performance of LSI and ICA for the range [7,60], the null 

hypothesis assuming the means of ICA and LSI being equal is only weakly rejected with 

a p value of 0.051. Though only weakly inferior to LSI for the range of [7,60], ICA 

seems more stable with little variance. Again, we observe a coincidence between good 

performances of LSI/ICA and the transition zones of singular/eigen value curves. For 

 24



WebKB4, we can rank the DRTs in the order of LSI > ICA > DF > RP. 

 

 
Figure 5. DRT performance summary for WebKB4 

 
a. parallel comparison of four DRTs, x-axis: dimensionality, same for the rest of the 

plots. y-axis: CAs for DRTs 

b. comparisons between DF and RP with extended dimensionality 

c. correlation of classification accuracy and normalized singular value for LSI, '+' denotes 

the CA curve and '.' denotes the normalized singular values 

d. correlation of classification accuracy of ICA and the normalized eigenvalues of its 

PCA step, '+' denotes the CA curve and '.' denotes the normalized eigenvalues. 
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Table 5. DRT Comparison for WebKB4 

Dims ICA LSI DF RP 

4 0.687 0.748 0.468 0.333 

7 0.741 0.810 0.493 0.360 

10 0.755 0.800 0.539 0.376 

20 0.744 0.770 0.677 0.408 

30 0.749 0.766 0.643 0.415 

40 0.754 0.748 0.696 0.404 

50 0.739 0.747 0.647 0.440 

60 0.741 0.730 0.663 0.464 

70 0.721 0.728 0.674 0.480 

80 0.720 0.736 0.730 0.476 

90 0.711 0.714 0.726 0.511 

99 0.724 0.717 0.723 0.515 

297 0.643 0.668 0.720 0.623 

495 0.634 0.655 0.757 0.684 

H0:  CA_ICA[7,60] = = CA_LSI[7,60], p=0.051, ICA< LSI 

 
Table 6. DRT Comparison for CSTR 

 

Dims ICA LSI DF RP 

5 0.827 0.827 0.487 0.417 

9 0.843 0.811 0.548 0.386 

13 0.835 0.835 0.548 0.378 

17 0.835 0.858 0.654 0.409 

21 0.850 0.835 0.654 0.409 

23 0.835 0.843 0.646 0.433 

33 0.843 0.764 0.677 0.480 

43 0.772 0.787 0.606 0.465 

53 0.780 0.764 0.685 0.441 

63 0.803 0.740 0.677 0.512 

69 0.693 0.764 0.795 0.457 

115 0.488 0.646 0.764 0.575 

161 0.583 0.591 0.748 0.685 

207 0.520 0.457 0.819 0.677 

253 0.409 0.378 0.850 0.717 

299 0.425 0.370 0.819 0.764 

H0:  CA_ICA[5,33] = = CA_LSI[5,33],p=0.165, ICA = LSI

Results of CSTR 

 As shown in Table 6 and Figure 6, RP is inferior compared to DF. DF 

performance peaks at a dimension of 253 and then settles with a CA around 0.82. Both 
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ICA and LSI provide equally good results over a range of [5, 33] as indicated by the p 

value of paired t test in Table 6. The best results of LSI and ICA are better than that of 

DF, but are achieved with very low dimensionalities. Again, the good performances of 

LSI/ICA coincide with the transition zones of singular/eigen value curves in Figure 6. For 

CSTR, we rank the DRTs in the order of ICA = LSI >DF >RP.  

 
Figure 6. DRT performance summary for CSTR. 

a. parallel comparison of four DRTs, x-axis: dimensionality, same for the rest of the 

plots. y-axis: CAs for DRTs 

b. comparisons between DF and RP with extended dimensionality 

c. correlation of classification accuracy and normalized singular value for LSI, '+' denotes 

the CA curve and '.' denotes the normalized singular values 

d. correlation of classification accuracy of ICA and the normalized eigenvalues of its 

PCA step, '+' denotes the CA curve and '.' denotes the normalized eigenvalues. 

 

Results of 20NG-4 
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Based on Figure 7 and Table 7, RP is inferior to DF for the whole range of 

dimensionality investigated, only catching up with DF after dimension 1500. For this 

dataset, DF achieves the best result among all the DRTs at dimension 40, and then 

rapidly drops off and settles with CA around 0.79 with full dimension. Visually, ICA and 

LSI show indistinguishable performance in the range [20, 97] with the mean CA for both 

above 0.91. The paired t-test comparing the means of the CA for ICA and LSI clearly 

identifies the superiority of ICA over LSI in Table 7. Again, the best performances of LSI 

and ICA overlap closely with the transition zones of singular/eigen value curves. In 

summary, for 20NG-4, we can rank the four DRTs in the order of ICA > LSI >DF >RP 

considering both their best performances and robustness. 

Table 7. DRT Comparison for 20NG-4 

Dims ICA LSI DF RP 

4 0.669 0.960 0.441 0.278 

7 0.825 0.967 0.469 0.337 

10 0.868 0.959 0.444 0.358 

20 0.935 0.953 0.627 0.496 

30 0.941 0.926 0.975 0.538 

40 0.947 0.927 0.945 0.626 

50 0.935 0.904 0.924 0.664 

60 0.930 0.914 0.912 0.722 

70 0.934 0.889 0.906 0.723 

77 0.926 0.900 0.887 0.722 

97 0.916 0.878 0.886 0.771 

117 0.897 0.874 0.876 0.775 

137 0.876 0.861 0.856 0.785 

157 0.872 0.850 0.864 0.796 

177 0.871 0.856 0.861 0.804 

197 0.855 0.851 0.876 0.790 

217 0.851 0.840 0.872 0.830 

231 0.849 0.835 0.877 0.842 

385 0.821 0.859 0.869 0.827 

539 0.801 0.836 0.864 0.845 

693 0.785 0.810 0.861 0.842 

847 0.767 0.788 0.860 0.810 

H0:  CA_ICA[20,97] = = CA_LSI[20,97],p=0.008, ICA >LSI

 28



 

 

 
Figure 7. DRT performance summary for 20NG-4. 

  
a. parallel comparison of four DRTs, x-axis: dimensionality, same for the rest of the 

plots. y-axis: CAs for DRTs 

b. comparisons between DF and RP with extended dimensionality 

c. correlation of classification accuracy and normalized singular value for LSI, '+' denotes 

the CA curve and '.' denotes the normalized singular values 

d. correlation of classification accuracy of ICA and the normalized eigenvalues of its 

PCA step, '+' denotes the CA curve and '.' denotes the normalized eigenvalues. 

 

5.3. Discussion 

 Taking the performances of the four DRTs over the 5 datasets together, we begin 

to see some general behavior patterns of the DRTs. In general, we can rank the DRTs in 

the following order: ICA > LSI > DF > RP.  
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In most instances, ICA and LSI can achieve the best or sub-optimal results with 

very low dimensionality, often less than 100 and occasionally lower than 10.  ICA and 

LSI maintain their best performances over a range of 100 to 200 or even longer 

dimension ranges and then start to decrease as the dimensionality increases (this is more 

obvious from the tables than from the graphs).  Presumably, the point at which 

performance starts to decrease is the point as which ICA and LSI have derived the 

maximum necessary features from those datasets.  The stability of ICA/LSI suggests that 

during the process of dimension reduction, the discovered latent variables by both 

methods seem to have a clear structure in terms of noise content. This may explain why 

ICA/LSI show very good performance across a wide range of consecutive dimensions 

(the components/dimensions being used are "noise free") and a rapid performance drop 

after the number of dimensions increases above certain values (when we begin to include 

more "noisy/trivial components" into the clustering procedure).  

 ICA often shows additional stability when compared to LSI, which suggests that 

the ICA discovers more "non-trivial" or "noise free" latent variables than LSI does. This 

may be rooted in the fact that the latent variables derived from ICA are statistically more 

independent from each other than those derived from LSI. More "non-trivial" or "noise 

free" latent variables implies a better description of the text data. One of the well-known 

drawbacks of methods like LSI and PCA is the lack of interpretability, i.e., the latent 

variables derived from LSI /PCA are often very difficult for human users to understand. 

Therefore, ICA may provide a good alternative for the automatic generation of human-

understandable latent variables from the text data, which is a very interesting future 

research direction.  

We also observe a strong correlation between the good performance of ICA/LSI 
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and the transition zone of the corresponding eigen/singular value curve. In the future, we 

can use this as a heuristic rule to choose the dimensions that we should include for 

clustering when using ICA/LSI for dimension reduction. But, only from our experiments, 

it is still not clear how to decide how far the transition zone should extend or, in another 

words, the maximum number of dimensions to be used without degrading cluster quality.  

This is an open research question and worth pursuing.  

 The performance of DF often peaks at some middle range dimensions (much 

higher than that of ICA/LSI's best dimensions), and then settles down as the number of 

dimensions increases. It is also interesting to notice that the best performance of DF at 

relatively high dimensions often matches up with the best performances of ICA/LSI at 

much lower dimensions. Such behavior suggests that the full dimension representation is 

not needed for text clustering and that the majority of the dimensions are very noisy. It is 

not clear, yet, that we can use DF to pre-select some dimensions to be used for ICA/LSI 

instead of using the full set of dimensions, which is much more expensive for computing 

ICA/LSI. This is another research direction worth investigating. 

 Obviously, the performance of RP is a disappointment. Based on the discussion 

above, we can understand why RP fails. The goal of RP is to provide a projection for the 

data from the original high dimensional space onto a lower dimensional space while 

maintaining a good approximation of the mutual distances among data points, i.e., the 

distance distortion error is well bounded. All the problems with RP come from the fact 

that most of the dimensions in text data are very noisy, not reliable and meaningful, 

which makes the distance profile based on the full dimensional space very noisy and not 

meaningful. Therefore, it is not appropriate for RP to try to approximate and maintain 

such distance profiles without any noise reduction as in ICA/LSI. Even worse, when RP 
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projects the original high dimensional space onto a lower dimensional space, there is 

some chance that RP will create even noisier representations than the original dataset 

since RP linearly combines the original dimensions into new dimensions with a random 

procedure. This may explain why RP performs systematically worse than DF at relatively 

low dimensions, and only slowly catches up with DF when the dimensionality is 

increased to a significant level. Our experiments on RP seem to confirm the discoveries 

of other researchers [18, 34].  

 

6 Conclusion and future work 

 

 In this research, we compared four well-known dimension reduction techniques, 

DF, RP, LSI and ICA, for the document clustering task. To judge their relative 

effectiveness and robustness, we applied all four of them to five benchmark datasets of 

different characteristics. Over all the datasets, we identified some general behaviors of 

these techniques. In general, we can rank the four DRTs in the order of ICA >LSI >DF 

>RP. ICA demonstrates good performance and superior stability compared to LSI. Both 

ICA and LSI can effectively reduce the dimensionality from a few thousands to the range 

of 100 to 200 or even less. The best performances of ICA/LSI seem correspond well with 

the transition zone of the eigen/singular value curve. The experiments with DF clearly 

indicate to us that most of the raw dimensions in the text data are very noisy and 

meaningless with respect to the document clustering task, which further explains the 

relatively poor performance of RP.  

 Since we have identified ICA and LSI as good candidates for dimension reduction 

for text clustering, future research will be focused mainly on different aspects of these 
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two methods. First, we would like to investigate the semantic meanings of the latent 

variables derived from ICA and LSI, and evaluate their quality difference using human 

judgment for their interpretability. Secondly, we want to investigate the possibility of 

using DF to pre-screen the raw dimensions as a pre-processing step for LSI/ICA to 

further reduce the computational cost of LSI/ICA. Finally, to further reduce the 

computational cost of ICA/LSI, we may want to investigate proper sampling techniques 

to select the "representative" documents to which ICA/LSI will be applied.  
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