

1

Using Artificial Neural Networks in the
Visual Programming of Autonomous Robots

Shawn M. Best Philip T. Cox

Abstract

The use of Artificial Neural Networks (

ANN

s) to control
autonomous robots has been quite extensively studied. Also, in
recent years researchers have begun to investigate the notion of
programming such robots using visual programming languages
based on various programming and robot control models. Some
of this work has focused on developing visual programming-by-
demonstration (

PBD

) systems.
Here we extend the latter approach by proposing a visual

PBD

 environment for autonomous robots based on

ANN

s. Within
this environment, sensor-to-motor rules, called sensorimotor
maps, are programmed by employing

ANN

s to match sensor out-
puts to actuator inputs. The goal is to create a programming
environment in which the end-user is not required to have any
knowledge of the underlying control model,

ANN

 programming
in this case. In this regard, the current proposal appears more
promising than previous attempts using the subsumption model

1 Introduction

Visual language designers have at their disposal a growing
array of tools with which they can assess

a priori

the effective-
ness of a proposed language [3, 8]. One of the most fre-
quently used is a list of criteria, the “cognitive dimensions,”
proposed by Green and Petre [8]. Many of the criteria in this
catalogue relate to the notion of “concreteness” — making
explicit, directly observable or manipulable, the concepts that
the programmer or problem solver has to deal with. In partic-
ular “closeness of mapping” stands out. A language scores well
in this dimension if it provides objects and constructs that
mirror the objects and constructs of the problem domain.
One implication of this is that a problem domain which is
itself concrete is a prime candidate for a language that maps
closely to that domain. For example, a “smart home” lan-
guage for building systems to control appliances, heating, air
conditioning, telephone systems, locks and so forth might
include graphic representations of these items embedded in
networks expressing their dependencies and functions.

The concrete domain we focus on here is the control of
free-ranging autonomous robots, examples of which range
from the highly sophisticated rover vehicles currently explor-
ing Mars (http://marsrovers.jpl.nasa.gov/home/index.html)
to the simple robots that can be built with

LEGO

 Mindstorms
kits.

The behaviors of a robot can vary from simple reactive
ones that accomplish simple low level tasks such as path-fol-
lowing, to high level ones requiring deductive skill. Low-level
behaviors provide the foundation for the higher-level ones,
and can be implemented with simple, efficient control mod-
els requiring modest resources. It is this kind of robot behav-
ior that we are interested in here.

 The research reported here lies at the intersection of sev-
eral established fields: visual programming, end-user pro-
gramming, programming by demonstration, robot control
and artificial neural networks. It is a continuation of previous
work by Cox

et al.

 [5, 6], the goal of which was a visual pro-
gramming environment in which the user could implement
reactive behaviors for autonomous robots by interacting with
a simulated robot in a simulated environment, with as little
knowledge of, or interaction with, the underlying control
model as possible. The results fell somewhat short of this goal
primarily because the underlying control model, the sub-
sumption architecture due to Brooks [4], could not be com-
pletely hidden from the user.

In the following we take a similar approach to [5] but
using Artificial Neural Networks (

ANN

s) instead of subsump-
tion. As a result, in the programming environment we pro-
pose, the details of the control model are far less intrusive.

1.1 Related work

Although programming robots of various kinds has been
intensively studied for many years, applying visual program-
ming techniques to the problem is a relatively recent idea.
Most of the current research in this area has arisen from the
visual robot programming competition held at the 1997
Visual Languages Symposium [1]. A brief summary of the
most closely related ones follows a short description of sub-
sumption below.

Brooks’ subsumption model consists of parallel behaviors
implemented as finite state machines (

FSM

) in a hierarchy in
which higher level behaviors have priority over lower-level
ones. Higher level behaviors inhibit the output signals, or
suppress the input signals, of lower-level ones, if several
behaviors attempt to control the same actuator.

Altaira [12] is a rule-based visual language for program-
ming reactive robot controllers. The programmer defines
robot behaviors by building transformation rules using visual

2

representations of the robot and environment. Although its
underlying model is a version of Brooks’ subsumption model,
its rule syntax is heavily dependent on the particular robot for
which it was designed, so it is difficult to see how it could be
expanded into a general robot programming environment.

More recently, Pfeiffer

et al.

 have developed Isaac [13], a
visual language in which rules are triggered by sensors, and
affine transformations are applied to compute displacements
of objects internal and external to the robot. These displace-
ments are then mapped to the actuators to create a response.
The rules that govern behaviors may become unmanageable
as the complexity and number of the behaviors increase.

Cox

et al.

 have developed three visual language systems for
programming autonomous robots. The first, Visual Sub-
sumption Language, implemented a very simplified version
of the subsumption model in a forms-based interface incor-
porating simple data flow diagrams to program

FSM

 transi-
tions [7]. Visual Behavior Based Language provided an
accurate visual representation of the full subsumption model
[6], consisting of

FSM

 graphs and message flow graphs to cap-
ture the network of

FSM

s, suppressors and inhibitors.

In [5], a two-part system was proposed, using program-
ming-by-demonstration (

PBD

) techniques in order to achieve
a close mapping to the problem domain. The first part, the
Hardware Definition Module (

HDM

), is used for building
simulated sensors, actuators and other parts, and assembling
them into a simulated robot and simulated environment. In
the second part, the Software Definition Module (

SDM

), the
user builds subsumption-based control programs by interact-
ing with the simulated robot.

SDM

 was only superficially
described, and dealt only with the

FSM

 level of subsumption.
In [2] Banyasad fleshed out the definition of

SDM

, providing
a more suitable formulation of the subsumption model, and
details of the

FSM

-building interface. He also extended the
programming-by-demonstration process to allow hierarchies
of behaviors with inhibition and suppression to be built.

Although this system achieves its goal to some extent, its
interface does not completely hide the underlying subsump-
tion model. The user is forced to deal with details such as cre-
ating and labelling

FSM

 states, and drilling down through
hierarchies of lower level behaviors in order to suppress or
inhibit values. These seem to be inevitable consequences of
the subsumption model.

The use of

ANN

s for robot control has been studied for
some time. For instance, Mitchell and Keating [11] devel-
oped simple mobile robots that use unsupervised

ANN

s in a
reactive controller. These robots learn to avoid obstacles
through trial and error by interacting with their environment.
Low

et al,

 [5] developed a simulation environment that
employs unsupervised

ANN

s in conjunction with other mech-
anisms, to support obstacle avoidance and goal orientation

for a robot in a dynamic environment. The

ANN

 is used to
fine-tune actuator output at the lower level of the architec-
ture. Kostelnik

et al.

 [9] describe a simulation environment
for mobile

LEGO

 robots that include the use of unsupervised

ANN

s to cluster the output signals from sensors in order to
generate semantic knowledge of the environment. The con-
trol architecture also uses supervised

ANN

s, called multilay-
ered perceptrons, with Q-learning (a reinforcement learning
algorithm) for the behaviors associated with the subsump-
tion-based controller.

The goal and organization of these architectures provides a
framework for self-learning robots.

Our work has the same goal as [5] and takes a similar
architectural approach, two modules (

HDM

 and

SDM

) achieve
generality by allowing a wide range of simulated robots to be
built, and closeness-of-mapping, by allowing the control pro-
gram to be constructed by directly manipulating the simu-
lated robot. However, in order to rectify the problems with
the previous system, described above, we have explored the
use of a control model based on

ANN

s

2 Background

The class of robots we consider consists of machines with
actuators and sensors. An actuator is a device with which the
robot can affect its environment. A sensor is a device via
which the robot can gather information about its the envi-
ronment. A robot has a body to which actuators and sensors
are attached.

An

ANN

 is composed of a number of computing units
called

nodes

 that are interconnected by

synaptic weights

. The
network of nodes forms a parallel processor that adapts in
response to

input vectors

. Learning is achieved by changes in
the synaptic weights that connect each node to its neighbors.
The activation of nodes is governed by an activation func-
tion, which can be either linear or non-linear, and produces
an output signal that is propagated in parallel to neighboring
nodes. The activation function that contributes to the result-
ing signal, called an

output vector

, determines whether the
network is best suited for linear or non-linear classification
problems.

ANN

s are categorized into different taxonomies based on
their computational capabilities, which includes their compu-
tational dynamics and architectural configurations [13]. A

single-layered perceptron

 consists of an input layer of nodes
that is fully connected to an output layer of nodes. Percep-
trons are linear classifiers, so they are suited to classifying lin-
early separable patterns in a problem domain. Supervised
learning techniques are used to train perceptrons. Training is
an iterative process that involves presenting the

ANN

 with an
input vector, from which it generates an output vector, and a
desired output vector, knows as a

class

. If the actual output
and desired output do not match, an error-correction algo-

3

rithm is used to propagate weight changes from the output
layer back to the input layer. When presented with new input
vectors, a perceptron uses

generalization

 to classify unknown
patterns to their best matching class.

Multilayered perceptrons have at least a depth of two since
they have at least one layer of nodes between the input and
output layers. Multilayered perceptrons are particularly useful
for classifying patterns that are not linearly separable in a
problem domain, and are considered universal classifiers. For
multilayered perceptrons, a back-propagation algorithm is
used to propagate weight changes through to the hidden lay-
ers in response to training.

In the following, we use perceptrons that are automatically
transformed from single-layered perceptrons to multilayered
perceptrons as the classification problem reaches non-linear-
ity, which is likely to occur as the number of desired outputs
increases.

3 Robot programming environment

The robot programming environment we propose here
includes the

HDM

 described in [5] together with a similar

SDM

, but in our case, based on

ANN

s. We will describe the
proposed programming environment by leading the reader
through a worked example of its use, demonstrating how the

SDM

 would be used to build a control program for a robot car
to follow a centre-line on a track, to change direction after
detecting an obstacle, and to wander randomly in search of
the track markings if for some reason the robot has “lost
sight” of them. This environment provides a simulation of
the robot interacting with a simulated environment. For sim-
plicity, we restrict our attention to two-dimensions, but the
simulation environment and other concepts we describe
could clearly be generalized to 3

D

.

Our example is similar to that used in [5], namely, a world
consisting of sections of track traversed by a small, wheeled
robot similar to ones that could be built using

LEGO

 Mind-
storms robotics kits (http://mindstorms.lego.com/). The
robot has two wheels each with its own motor, one on either
side at the back; two odometer sensors, one at each wheel;
one unpowered wheel at the front that swivels like a furniture
castor, an array of three infrared sensors across the underside
for watching the track, and two bump sensors at the front.
Each odometer has variable resolution, which means that we
can set it so that its value changes in the specified increments.

3.1 Line following

In our first example we show how Line Following behav-
ior is built in this system. We want to program the robot to
drive continuously along the track using the black centre line
as a guide.

To begin, we create a new workspace in the

SDM

 by select-
ing an appropriate menu item, and name it

LEGO Car

. The

workspace has a frame, initially empty, called

Virtual Envi-
ronment

(Figure 2) in which the simulation will take place.
Next, via an appropriate menu selection, we open a floating
palette called

HDM Palette

 (see Figure 1) which contains
objects such as track pieces previously defined in the

HDM

,
and drag ones we need into the

Virtual Environment

 panel.
In our example, we arrange track pieces to create the environ-
ment shown in Figure 2, a cyclic track with no intersections
and two obstacles which we will use in later examples. Cre-
ated environments can, of course, be saved and loaded.

Now we drag the car icon from the

HDM Palette

 into the

Virtual Environment

 panel. This initiates the programming
process, causing a new frame called

Behavior Builder

to
appear at the left end of the workspace window as shown in
Figure 2. We close

HDM Palette

 since it is no longer
required.

The

Behavior Builder

 provides an interface to create new
behaviors and to manipulate existing ones by specifying how
they interact with one another, as we shall see later. By select-
ing a menu item, we open another window called

Control
Panel

, which contains various playback controls that we will
use later to control the robot’s interactions with its environ-
ment. At this point, since no behaviors have been defined on
the

Behavior Builder

 frame, the

Control Panel

 buttons are
disabled.

To begin training the robot, we click in the empty

Behav-
ior Builder

 panel. This creates a new behavior, represented as
an empty text box into which we enter the name “Line Fol-
lowing” and terminate typing by pressing the return key. As
soon as the new behavior is named, a floating window enti-
tled

Robot Abstraction

 opens, displaying the robot configu-
ration as an enlarged overhead view of the robot with all the
significant components, that is sensors and actuators, greyed
out. At this point, the environment appears exactly as
depicted in Figure 2. By clicking on them, we select the sen-
sors and actuators we will need in order to follow the centre
line of the track; namely, the three infrared sensors and the
two motors. Components that are not selected remain grey.
We also need to choose values to be output to the motors.

Figure 1: HDM Palette with track pieces

4

Since the robot is currently centred on a straight section of
track, we choose 5 for both motors so the car will move
straight ahead. Note that, because the

Robot Abstraction

window is open, the controls in the

Control Panel

 are dis-
abled, since the simulation cannot run while we are adjusting
the settings of the robot.

The act of creating a new behavior, described above, also
creates a corresponding

ANN

, which will compute a function
for all possible combinations of sensor values. However, since
it initially has no user-specified training data, all its sensorim-
otor maps are

generalizations

; that is to say, the function it
computes is arbitrary. By setting the motor values to 5 given
the sensor values , we have begun the training process,
and the

ANN

 will modify its weights as described in Section 2
to ensure that the output function includes this particular

trained

sensorimotor map.

Next we close the

Robot Abstraction

 window and start
the simulation by clicking the button on the

Control
Panel

. The robot moves forward at a speed of 5. When it
encounters the right curve, the sensor inputs will change to

, the

ANN

 will compute corresponding motor outputs
and the robot will behave accordingly: however, because this
computation does not correspond to an input-output combi-
nation specified by the user, an alarm will sound and the

and buttons in the

Control Panel

, which have been
inactive to this point, will flash. If we approve of the robot’s
behavior, we click , which reclassifies the current sen-
sorimotor map from

generalized

 to

trained

, and the simula-

tion continues. If we click , the simulation stops, resets
to the point where the sensor values changed, and the

Robot
Abstraction

 window appears again with the current values for
sensors displayed. We provide appropriate values for the
motors, dismiss the

Robot Abstraction

 window, and resume
the simulation.

At any point in the training process, we can view existing
sensorimotor maps by selecting a menu item on the

Behavior
Builder

 frame, opening a new window called

Sensorimotor
Maps

 which is separated into two panels as shown in Figure
3. This window contains two panels labelled

Trained

 and

Generalized

which respectively contain the sets of trained
and generalized sensorimotor maps. The union of these two
sets is the input-output function computed by the current
state of the

ANN

. The generalized sensorimotor maps are
drawn in grey to emphasize the fact that they may not be cor-
rect. If we spot a generalized map that we know is correct, we
can drag it into the

Trained

 list, thereby reducing the time
required to build the list of trained maps associated with a
behavior. Note that this reclassification by dragging can be
done while the simulation is running, and that it we wish to
correct earlier training errors, we can drag maps from the

Trained

 panel to the

Generalized

 panel.

There are, therefore, three ways that a map can become
classified as trained. The user can explicitly specify it via the

Robot Abstraction

 window, accept it by clicking the
button during simulation, or drag it from

Generalized

 to

Trained

 in the

Sensorimotor Maps

 window. Only the first of

Figure 2: Software definition module with construction elements for Line Following

5

these three actions requires that the

ANN

 be updated. If the

Sensorimotor Maps

 window is open at the time, the system
updates it by recomputing generalizations; otherwise the
recomputation occurs when the window is next opened.

It is important to note that we may consider a behavior to
be completely specified, even if some sensorimotor maps are
not trained. For example, during the programming of Line
Following, we know that the robot is off-course as soon as the
middle sensor turns off and one of the outer ones turns on,
and take immediate steps to correct it. Hence when the robot
is finally following the track without intervention, there will
be many sensor patterns which will not have arisen, and
therefore many maps not trained. Hence, when we are fully
satisfied with the behavior we have programmed, we

finalize

it by choosing an appropriate menu item. This causes the
training of the

ANN

 to be finalized as follows. For each com-
bination X of input values corresponding to a generalized
map, train the

ANN

 with input X and output

⊗

for each
actuator. The value

⊗

signifies “no value”, meaning that the
behavior sending this value to an actuator is not attempting
to control the actuator.

3.2 Collision Detection

In our second example we add a collision detection behav-
ior, which determines the robot’s actions should it encounter
an obstacle on the track. In this case, the robot should per-
form a series of distinct actions; stop, back up a certain dis-
tance, about face. The components involved in these
behaviors are the bump sensors, the odometers, and the
motors.

With the Line Following behavior complete and the simu-
lation stopped, we add a new behavior named “Collision
Detection”. The

Robot Abstraction

 window appears as

before, and we select the bump sensors and motors, since
these are the only devices required for the first action, stop-
ping. Since the bump sensors are currently not activated, we
set the motor outputs to ⊗.

After closing the Robot Abstraction window, we move
one of the obstructions that we placed in the environment
earlier, on to the track where the robot will encounter it. We
start the simulation, and the robot, under control of the Line
Following behavior, starts moving along the track and
encounters the obstruction, triggering the bump sensors. As
before, we are warned that the ANN has started to use a gener-
alized map. This time, however, the behavior we observe
results from Line Following, since it is using a trained sen-
sorimotor map, and trained maps have priority over general-
ized maps which send output to the same actuators. Hence
the robot will drive through the obstruction, illustrating the
value of using a simulation rather than a real robot.

We click the button. The simulation resets to the
point where the bump sensors were activated, and the Robot
Abstraction window opens displaying the robot with bump
sensors turned on. We set the motors to 0, and via a menu
selection, add the icon to the window, then type
Backup in its text box (see Figure 4). This icon is the system
actuator GOTO, the value of which is the name of a behavior
to which to transfer control.

On closing the Robot Abstraction window, we see that
the Behavior Builder appears as in Figure 5, where the icon

 is a subsumption which will transmit the value from its left

input to its output whenever the top input is ⊗, and other-
wise will output the value of its top input.

When we resume simulation, the Collision Detection
behavior outputs 0 to the motors, which subsumes the out-
put from Line Following, thereby causing the robot to stop. It
also outputs Backup to GOTO. Since no Backup behavior
exists, the simulation stops, a new behavior named Backup is

Figure 3: Sensorimotor maps window

Figure 4: Collision Detection

6

automatically created in the Behavior Builder frame, and the
Robot Abstraction window opens. We select the odometers,
which initially read 0, and set their resolution to 2. We select
the motors, set them to –2 (see Figure 6) and close the win-
dow. When the simulation is started, the robot backs up till
the odometers change (a distance of 2), at which point we set
the motors to 0, and add a GOTO actuator and give it the
value “Turn”, to initiate the third and last action in the
sequence. Note that this adds the GOTO to the previously
trained map, with the value ⊗.

Once the Turn behavior has been created and pro-
grammed in a similar manner, we finalize it, which finalizes
all three behaviors in the sequence. At this point, the Behav-
ior Builder frame contains the three behaviors that achieve
obstacle avoidance, chained together and subsuming Line
Following, as shown in Figure 7.

Our robot will now follow the track, and if it meets an
obstacle, it will stop, back up, turn around and resume Line
Following. However, the process of backing-up and turning
may well leave the robot off the track, especially if the obsta-
cle is on a corner. In the next section we introduce a final
behavior to remedy this problem.

3.3 Wandering
The wandering behavior consists of an action, chosen ran-

domly from “turn clockwise”, “turn counter-clockwise” and
“move forward”.

We place the robot off the track, define a new behavior
called “Wander”, and in the Robot Abstraction window
select the odometers and motors. Via an appropriate menu
selection, we add a random generator, a system actuator rep-
resented by . A configuration dialog opens, in which we
specify that the random generator should produce a number
in the range [0,2] every 5 seconds. (Figure 8). The box to the

right of the random icon displays its value. When the config-
uration dialog is closed, one random number is generated and
displayed. We suppose that in this case, it generates 0, and
arbitrarily decide that this value indicates a clockwise turn.
Accordingly, we set the right motor to -2, the left to 2, and
the resolution of the odometers to 3. When the simulation is
started, the robot turns clockwise until the odometers register
3.

Simulation and programming continues in the usual way,
defining the sensorimotor maps for the other two values of
the random sensor.

Note that, at any time during this process, the robot may
run into an obstacle or across the track markings, which will
cause either the Collision Detection or Line Following behav-
iors to start producing motor values not equal to ⊗. If this
happens, the current sensorimotor map of the Wander behav-
ior must be trained, since otherwise we would have been
asked to accept or reject the current action before the obstacle
or markings were encountered. Hence we have two trained

Figure 5: Subsumption generation

Figure 6: Backing up

Figure 7: Behavior sequence

R

Figure 8: Random generator and configuration dialog

7

maps competing for control of the same actuators. In this sit-
uation, the simulation stops, and the dialog shown in Figure
9 opens. The panels labelled Action A and Action B corre-
spond to the two conflicting sets of actuator inputs. Let us
assume that A corresponds to the outputs from the existing
Collision Detection and Line Following behaviors. If we click
the button for A, the configuration of behaviors is first
temporarily altered by inserting a subsumption so that Colli-
sion Detection and Line Following will override Wander,
then the simulation continues. We can stop it by clicking the

 button for A, which resets the simulation. Similarly we
can “test drive” the other behavior by clicking the for B.
Once we have decided which is the correct choice, we click
the corresponding button. In this example we would
choose A, so that Collision Detection and Line Following
subsume Wander.

If we were to attempt to finalize Wander before it had
encountered the situation outlined in the previous paragraph,
the system would refuse, and tell us that we must continue to
test the behavior until such conflicts arise. It would, of
course, be more helpful than that, and tell us what situations
we should explore: for example, “position the robot so that
the IR sensors are activated.”

The final configuration of the three behaviors is shown in
Figure 10.

4 Concluding remarks
We have described a visual programming environment for

building control programs for autonomous robots, using PBD

techniques. Our goal is a system in which the user can pro-
gram by directly interacting with a simulated robot, with lit-
tle or no knowledge of the underlying control model.

Our proposed programming environment constructs con-
trol programs consisting of collections of ANNs, each imple-
menting a behavior, and subsumption nodes that resolve
conflicts when two ANNs attempt to control the same actua-
tor.

A careful inspection of the steps involved in building a
program shows that at no point is the user required to know
the details of the control model. The ANNs are completely
hidden, and the only view the user has of the control struc-
ture is a window displaying the behavior and subsumption
icons and connections between them. However, except for

clicking in this window to create a new behavior, the user
does not have to interact with it. Subsumptions, connections
and behavior sequences are all created automatically, as a con-
sequence of the user’s direct manipulations of the robot and
environment.

5 Acknowledgements
This work was partially supported by Natural Sciences

and Engineering Research Council of Canada Discovery
Grant OGP0000124.

6 References
[1] A. L. Ambler, T. Green, T. D. Kimura, A. Repenning,

T. Smedley, 1997 Visual Programming Challenge
Summary, Proceedings of the 1997 IEEE Symposium on
Visual Languages, Capri, 1997, pp. 11-18.

[2] O. Banyasad, A Visual Programming Environment for
Autonomous Robots, MCS Thesis, Dalhousie University,
2000. (http://www.cs.dal.ca/~pcox/theses/OBanyasad.pdf)

[3] A.F. Blackwell, First steps in programming: A rationale
for Attention Investment models, Proceedings of the
IEEE Symposia on Human-Centric Computing Lan-
guages and Environments, Washington DC, 2002, pp.
2-10.

[4] R.A. Brooks, A Robust Layered Control System for a
Mobile Robot, IEEE Journal of Robotics and Automa-
tion, RA-2(1), 1986, pp. 14-23.

[5] P.T. Cox, and T. Smedley, Building Environments for
Visual Programming of Robots by Demonstration,
Journal of Visual Languages and Computing, 11(5), Aca-
demic Press, 2000, pp. 549-571.

[6] P.T. Cox, C. Risley, T. Smedley, Toward Concrete
Representation in Visual Languages for Robot Control,
Journal of Visual Languages and Computing, 9(2), 1998,
pp. 211-239.

[7] P.T. Cox, J. Garden, M. McManus, T. Smedley, Expe-
riences with Visual Programming in a Specific Domain
—Visual Language Challenge ’96, Proc. of Symposium
on Visual Languages, Capri, Italy (Sept 1997), 254-259.

Figure 9: Resolving conflicts

Figure 10:Three-layered control

8

[8] T.R.G. Green, and M. Petre, Usability Analysis of
Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework, Journal of Visual Languages
and Computing, 7(2), 1996, pp. 131-174.

[9] P. Kostelnik, M. Hudec, and M. Samulka, Distributed
Learning in behavior Based Mobile Robot Control,
Intelligent Technologies - Theory and Applications, Eds.
P. Sincak et al., IOS Press, 2002.

[10] K. H. Low, K. Leow, and M. Ang Jr. A Hybrid Mobile
Robot Architecture with Integrated Planning and Con-
trol, in Proceedings of 1st International Joint Conference
on Autonomous Agents & MultiAgent Systems
(AAMAS'02), vol. 1, 2002, pp. 219-226.

[11] R.J. Mitchell, and D. A. Keating, Neural Network
Control of a Simple Mobile Robot, in Concepts for Neu-
ral Networks, a survey, Eds. Landau, L.J. and Taylor,
J.G., Springer Verlag, 1997, pp. 95-108.

[12] J.J. Pfeiffer, Jr., Altaira: A Rule-based Visual Language
for Small Mobile Robots, Journal of Visual Languages
and Computing, 9(2), 1998, pp. 127-150.

[13] Pfeiffer J., Vinyard R., and Margolis B. A Common
Framework for Input, Processing, and Output in a
Rule-Based Visual Language, IEEE Symposium on
Visual Languages, 2000, pp. 217-224.

[14] J. Sima, and P. Orponen, “A Computational Taxon-
omy and Survey of Neural Network Models”, Neural
Computation, 12(12), 2001, pp. 2965-2989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

