
���������
	������������	�����������	���� ��	"!��#!�$%��	��&���'�(�)	*��	��&�)	��#�������,+-!.�
�"/0/1�2���'�3�4�3�

54687:9<;�=?>
@�A
BDC�E?F >�G B�H >�I�I'7�@KJ�7 H A

L @�M H 7ONQPD>
RTS

U�V3WYX'Z'[\W3]_^a`bVdc�eKfhgjibk4lhm?non?p?lqn4r

suthv%wdxzy|{~}Y}Y�

��tY�������"v��~���.�z�������������������������
� }O��}<�a���������������*v��a�z�Y��y���tY������tT Ky�¡a�¢�Yt£�����Y���¤tdy
¥�wY�¦x�§¨�Oy_��tY��tY©�t



Experimental investigation of linear mixing in

real world datasets

Jie Ouyang, Thomas Trappenberg

Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5,Canada

{ouyang,tt}@cs.dal.ca

Andrew D. Back

Windale Technologies, Brisbane, QLD 4075, Australia

andrew@andrewback.com

May 31, 2004

Abstract

It is well acknowledged in the data mining community that feature
values, which become the input variables for modeling the system, are
often statistically dependent. In this paper we attempt to quantify the
dependencies by assuming a linear mixing model and using an indepen-
dent component analysis (ICA) to estimate the mixing matrix. The major
difficulty in quantifying the mixing strength comes thereby from the fact
that ICA algorithms give estimations of a mixing matrix only up to row
permutations and scalar factors of the mixing matrix. In this paper we
propose several measures of the mixing strength that are either appropri-
ate estimates or lower bounds of the true linear mixing strength. These
measures are tested on generic data and on 30 datasets from standard
machine learning repositories. The experimental results not only indi-
cate that statistical mixtures between input variables exist in real world
problems, but most of them are strong.

1 Introduction

Systems that we want to model for data mining purposes are often characterized
experimentally by listing feature values in datasets. For example, a patient in a
hospital might be captured on file by his identity number, gender, age, weight,
blood pressure, blood glucose levels, and various other measurements that might
be necessary to monitor his health state. It is clear that there could be depen-
dencies between those feature values. For example, overweight increases the risk
of type 2 diabetes, and resulting health problems from diabetes might increase
the likelihood of high blood pressure. Therefore, each feature values does not
add independent information, which should be taken into account in data min-
ing techniques. Indeed, it has been shown that combinations of input variable,
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which result in a more suitable representation for the data mining algorithm,
can drastically advance applications of knowledge discovery and data mining
[1, 2, 3].

A related area where mixing of feature values should be considered is input
variable selection [4]. This topic has received renewed interest due to the in-
creasing size of datasets that are available in many application areas [5]. We
have previously shown that an independent component analysis (ICA) prepro-
cessing step can be beneficial for input variable selection [6]. For example, the
number of necessary input variables can be overestimated by some variable se-
lection schemes in the case when the input signals are mixtures of source signals
of which only some determine the output signal. This papers follows up on this
idea by attempting to verify if such mixing is common in real world datasets.

While it is well acknowledged that data dependencies between features are
common in many applications, no attempt has been made to our knowledge
to quantify the dependencies in real world datasets. We believe that a better
characterization and quantification of dependencies between feature values can
help in the further improvement of data mining techniques. In this paper we
report on our attempt to quantify how strong the mixing between feature values
in real world datasets is. The reason we concentrate on the strength of mixing
is that preprocessing of data with ICA can be particularly beneficial in data
sets with considerable mixing. Quantification of the mixing is difficult without
specific knowledge of the nature of mixing itself. In this paper we assume a
linear mixing model so that we can apply standard ICA algorithms.

In order to estimate the mixing in real world datasets we apply the Fas-
tICA algorithms [7] on the feature values from randomly selected datasets and
attempt to quantify the mixing strength based on the sum of off-diagonal el-
ements of the (estimated) mixing matrix. A problem with this approach is
that ICA algorithms can not determine the order of the source signals so that
the estimated mixing matrix is only an estimate of a linear mixing matrix up
to permutations of columns. In other words, the statistical dependencies deter-
mined by ICA can be caused by different mixing models. However, as the major
aim in this study is to see if strong mixing between features can be established
in some databases, we concentrate on the conservative estimate by finding the
minimal possible mixing strength in a linear mixing model by considering all
permutations of the estimated mixing matrix.

A further complication of searching for the matrix with minimal mixing
strength in all possible column-permutations of the estimated mixing matrix
is the computational complexity as the number of permutations is n!, where
n is the number of features in the dataset. One of the main contributions of
this paper is to propose a new measure called EC

1 which we show to be a strict
lower bound on the minimal mixing strength of all column-permutations of the
estimated mixing matrix. A major advantage of this measure is that it has a
greatly reduced computational complexity of O(n2) instead of O(n!). As an
example, for a data set of only 12 variables, this amounts to an improvement in
efficiency of 3,326,400 × fewer operations. In addition, we introduce a measure
EN

1 , closely related to the quantity E1 proposed by Amari et al. [8], which
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is not a lower bound of the minimal mixing strength but can better estimate
the more likely mixing strength. Both measures, EC

1 and EN
1 , are applied to

30 datasets from which we found considerable evidence that strong mixing is
present in most of those datasets.

2 Background and Problems

2.1 Using ICA to estimate a linear mixing matrix

Independent component analysis is a technique to recover statistically indepen-
dent source signals from the measurement of their mixtures (see [9] for a review).
The basic models assumes a linear mixing of source signals,

x = Ms, (1)

where M is an generally unknown, instantaneous mixing matrix, s is a vector of
unobserved independent source signals, and x is a vector of observed dependent
signals. Several algorithms [10, 11, 8, 7, 9], have been developed to estimate the
source signals based on the minimization of statistical dependencies between
the observed signals,

ŝ = Wx, (2)

where ŝ is a vector of estimated independent signals and W is the de-mixing
matrix. For the following discussions it is important to note that the order and
overall strength of the estimated source signals can not be estimated by ICA.
Thus, the inverse of the de-mixing matrix A = W

−1 is only an estimate of the
mixing M up to a permutation of columns and some scale factor for each row.

Typical applications of ICA are mostly interested in recovering source sig-
nals, but we are here using ICA for estimating the mixing matrix. More specify,
we are interested in using this estimate to quantify the strength of the mixing
which requires a definition of the measure where the problem of column permu-
tations and scale factors have to be taken into account. In the remainder of this
section we propose several measures and outline their specific limitations.

2.2 Definition of mixing strength: EM

1

A mixing matrix which is diagonal correspond to no mixing between source
signals. With a definition of a strength measure we want to capture the off-
diagonality of the matrix. We thus define the mixing strength basically as the
sum of the absolutes of the off-diagonal elements. Note, however, that other
functions could be used that give different weights to the individual off-diagonal
elements.

In order to compare different mixing matrices it is useful to introduce some
normalization. For example, we should consider the strength of a mixing matrix

(

4 1
2 4

)

(3)
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to be equal to
(

1 0.25
0.5 1

)

(4)

as only the relative magnitude of the off-diagonal elements to the diagonal ele-
ments are important. Furthermore, because ICA algorithms can only estimate
a mixing matrix up to a factor for each source signal, we are normalizing each
column vector separately. Thus, we define the mixing strength to be

EM
1 =

1

n(n− 1)

n
∑

j=1

(

n
∑

i=1

|mij |

maxk |mkj |
−

|mjj |

maxk |mkj |
), (5)

where mij are the elements of the (typically unknown) mixing matrix M. In
addition to the normalization of each column of the matrix, we take also a
normalization with respect to the rank n of the matrix into account so that
the possible values of this strength measure range between 0 and 1 for mixing
problems with arbitrary number of signals n.

2.3 The minimal mixing strength: Emin

1

As mentioned above, ICA algorithms can estimate a linear mixing matrix only
up to possible column permutation. However, the above definition of the mixing
strength is sensitive to the permutations in the estimated mixing matrix. For
example, consider the mixing matrix

(

1 0.1
0.2 1

)

(6)

which has a mixing strength value of EM
1 = 0.15, while the column-permutated

matrix
(

0.1 1
1 0.2

)

(7)

has a mixing strength value of EM
1 = 1. The ICA estimates of the mixing matrix

are thus not sufficient to estimate the strength of the mixing.
However, it is possible to calculate a lower bound of the possible mixing

strength from the ICA estimates by exploring all possible permutations of W.
The main purpose of the estimation of the mixing strength in this paper is to
explore the hypothesis that there is considerable mixing in real world datasets.
Thus, the appropriate conservative measure for our hypothesis testing is

Emin
1 = min{EM

1 (B)|B ∈ Pc(A)} (8)

where Pc(A) is a set of all matrices resulting from all possible column permuta-
tions of A. However, calculating Emin

1 in datasets with large number of features
(signals) is not practical due to the large number (n!) of possible permutations.
We therefore explore other possible estimates below.
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2.4 Conflict case

There is an alternative approach to the above exhaustive search for the minimal
mixing strength. The minimal mixing strength corresponds to the matrix B ∈
Pc(A) in which the sum of the diagonal elements is maximal. This matrix is
easy to find in the case that each column vector has the maximum value at
a position different from the position of the maximum values in all the other
column vectors. This matrix can then be found by placing each column vector
at the position of the index of the maximal element. This ordering can be done
in quadratic time (O(n2)).

However, initial experiments indicated that many estimated mixing matri-
ces from the experiments described below did not have columns with unique
positions of the maximal value. The case when two column vectors from one
mixing matrix have maximal elements at the same index is termed a conflict in
the following. for example, the matrix





2 3 1
1 1 4
1 1 1



 (9)

has a conflict number of nc = 2, as two column vectors have the maximum on
the at the first position. In this case we have still to test all permutations of
the conflicting columns to find the minimal mixing strength. This operation is
then proportional to nc!. We report below on some experiments that show that
the number of conflicts can be quite large (see Table 1). Thus, this methods is
often not practical.

3 An Approximation of Minimal Mixing Strength

3.1 Lower bound on minimal mixing: EC

1

We introduce here a new measure, called EC
1 , which is a lower bound on the

minimal mixing strength,
EC

1 ≤ Emin
1 . (10)

It is given by the sum of all elements of the matrix minus the largest element
of each column,

EC
1 =

1

n(n− 1)

n
∑

j=1

(

n
∑

i=1

|aij |

maxk |akj |
− 1). (11)

The label ‘C’ of this measure indicates that the normalization and inner summa-
tion is carried out over the columns of the matrix. This measure does not depen-
dent of either column or row permutations and can be calculated in quadratic
time (O(n2)).

It is easy to see that this measure is a lower bound of Emin
1 . The measure EC

1

is equal to Emin
1 if A has no conflicts because then the maximal element, which
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is 1 after normalization, can be placed on the diagonal with the ordering of the
columns. If A has conflicts, then the above measure corresponds to the case of
ignoring the conflicts and allowing each column vector being optimally placed
with the maximal element on the diagonal. This introduces an error for each
but one conflicting column, underestimating the true mixing strength because a
value of one instead of a true diagonal element less than one is subtracted from
the sum of all elements of the column vector in the measure EC

1 . In other words,
compared to the measure Emin

1 , where the true diagonal element is subtracted,
an error of 1− aii is made for each but one conflicting column, where aii is the
diagonal element of the permutated matrix with the smallest mixing strength.

3.2 A Better Measure: E1 and E
N

1

A large value of EC
1 indicates a large value of Emin

1 so that this measure is
sufficient for our argument if EC

1 is large. However, a small value of EC
1 can still

be caused by matrices with large Emin
1 in the case of large number of conflicts.

In this section we introduce a further measure which is a better estimate of the
more likely mixing strength, although not strictly a lower bound of Emin

1 .
We first define the quantity ER

1 ,

ER
1 =

1

n(n− 1)

n
∑

i=1

(

n
∑

j=1

|aij |

maxk |aik|
− 1), (12)

which is similar EC
1 except that the normalization is performed on the row

vectors of the matrix A. ER
1 is also independent of permutations, and in case

of no conflicts it holds that ER
1 = EC

1 = Emin
1 . In the case of conflicts, ER

1 is an
upper bound on Emin

1 ,
ER

1 ≥ Emin
1 . (13)

As EC
1 is a lower bound on Emin

1 , and ER
1 is an upper bound, it is appropriate

to take the average

E1 =
1

2
(EC

1 + ER
1 ) (14)

as approximation of Emin
1 . This quantity correspond to the measure E1 intro-

duced by Amari et al. [8] up to a normalization factor 1
n(n−1) .

Finally, an even better estimate of the mixing strength can be achieved by
replacing the term ER

1 in the above definition with an estimate that performs
the row normalization after a column normalization. Formally, we define a
column-normalized matrix

Ã = (
aij

maxk |akj |
) (15)

and use this in a new measure

ECR
1 =

1

n(n− 1)

n
∑

i=1

(

n
∑

j=1

|ãij |

maxk |ãik|
− 1). (16)
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Figure 1: Dependency of various strength measures with the number of conflicts.

This matrix is still an overestimate of EM
1 , but the new estimate of the mixing

strength

EN
1 =

1

2
(EC

1 + ECR
1 ), (17)

is a better estimate than E1 as demonstrated below. The superscript ‘N’ stands
for ‘normalized’,

3.3 Example comparison of the strength measures

To demonstrate the different measure we performed a test with random mixing
matrices. In this experiment a random mixing matrix of size 21 by 21 with
elements drawn equally between 0 and 1 was added to a unit matrix. This
matrix correspond to a mixing matrix without conflicts. To generate mixing
matrices with conflicts we randomly picked a specific number of columns equal
to the number of conflicts and exchanged the diagonal elements with the first
element in the same column. The following experiments were performed on
several such mixing matrices.

The results of the different measures relative to the mixing strength EM
1 is

shown in Figure 1 as a function of the conflicts. The values represent averages
over 30 runs with different mixing matrices. All the measures agree in case of
no conflicts. However, the quality of the approximation of EM

1 is different for
increasing number of conflicts. As analyzed above, EC

1 is always an underes-
timation of the true value in case of conflicts, and this difference is increasing
linearly as the number of conflicts increases. ER

1 on the other hand is always an
overestimate of EM

1 , and the difference to EM
1 is increasing with the number of

conflicts. E1 is slightly overestimating EM
1 but is a fairly good approximation

of EM
1 . Finally, the best estimation of EM

1 in the presence of conflicts is the
measure EN

1 .
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We compared the various measures of the mixing strength here to EM
1 , which

is possible as the mixing matrix is known in these experiments. In the context
of estimating the mixing strength of real world datasets, we are, of course,
more interested in the estimation of Emin

1 as explained above. We did not
calculate Emin

1 in these experiments as this was prohibited by the computational
complexity of this measure in the case of large numbers of conflicts. The minimal
mixing strength, Emin

1 , is always smaller or equal to EM
1 . The measure of EN

1 is
thus overestimating Emin

1 compared to EM
1 . However, as mentioned above, EC

1

is always a lower bound on Emin
1 . Thus, EC

1 might overestimate the number of
cases with small mixing strength, while EN

1 might underestimate the cases with
small mixing strength. We are using therefore both measures, EC

1 and EN
1 , in

the following study as the combination of these measures can provide a better
picture of the possible range of expected mixing strength values.

4 Mixing in real world datasets

In the following we apply the measure EC
1 and EN

1 to estimate the mixing
strength in real world datasets. Thirty-one datasets were chosen arbitrarily
from four data collections, the StatLib-Datasets Archive [12], the Delve library
[13], the UCI Machine Learning Repository [14], and the FMA collection [15].
We omitted datasets with missing data and non-numeric feature values for sim-
plicity. In the remaining datasets we eliminated features which had no obvious
problem-dependent meaning such as serial numbers, or which had obvious de-
pendencies to other features such as classification numbers. Note that the used
datasets came from a variety of subjects areas such as economics, robotics, or
health informatics. The studied datasets have a number of features ranging
from 2 to 33, and the number of samples in different datasets range from tens
to thousands (see Table 1).

To estimate the mixing matrix (or a permutation thereof) we used standard
ICA algorithms. Different ICA algorithms use different methods to estimate
the statistical dependencies between signals to be minimized, and the differ-
ent algorithms use also different minimization procedures. A ranking of those
algorithms is difficult as each of them relies on specific assumptions and approx-
imations that make them dependent on the specific signals under investigation.
A comparison of several algorithms on mixtures of sub-gaussian, super-gaussian,
and mixtures of sub- and super-gaussian signals has been done by Giannakopou-
los et al. [16] (see also [17]). The main conclusion of these authors is that all
algorithms can perform comparably well, although there are some differences in
specific circumstances. A brief comparison by Li et al. [18] of three algorithms,
the Infomax algorithm by Bell and Senjnowski [11] (augmented by Amari’s nat-
ural gradient algorithm [8]), the fastICA algorithm by Hyrakunen et al. [7], and
the JADE algorithm by Cardoso [10] found that FastICA and Jade performed
similarly well, while the Infomax algorithm showed some difficulties in one of
their experiments. Our own experiments showed a strong performance of the
FastICA algorithm, which is computationally efficient, shows fast convergence,
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Figure 2: Dependency of the value EN
1 on the number of data used for the

estimation in 31 datasets. Plotted is the value of EN
1 for different number of

data points relative to the value as estimated from the complete dataset. The
values represent averages over 20 ICA runs for each subset. A steady value for
large coverage was taken as an indication for convergence of the estimation.

and is easy to use [19]. We used the deflation version of the FastICA algorithm
with default parameters to calculate A in this study.

To verify the stability of the estimates with respect to the size of the samples
we calculated the mixing strength EN

1 for different fractions of data. This is
shown in Figure 2. Each curve represents the average of 30 trials. All but
one dataset showed a stable estimate when most of the data was included,
establishing some confidence that the number of samples is sufficient to estimate
the mixing matrix. Only one dataset showed a strong variation of EN

1 for high
percentages of the data. This dataset was not included in the following analysis.

The detailed results of the estimates of EC
1 and EN

1 are given in Table 1.
We omitted attributes that were not specific problem-related, such as ID or
entry numbers. The number of features are the remaining features used in the
analysis. The results for the number of conflicts and the various mixing strength
measures represent averages over 30 trials with different starting condition of
the ICA algorithm. Datasets 1-17 are from the StatLib library [12], specifically
(1) alr56, (2) alr57, (3) Boston house-price, (4) Body fat, (5) S&P Letters Data,
(6) ch10, (7) ch17, (8) ch1a, (9) ch3a, (10) Wages, (11) Disclosure, (12) Irish
Educational Transitions, (13) papir, (14) places, (15) pollen, (16) pollution,
and (17) Child witness example. Datasets 18-25 are from the Delve library [13],
specifically (18) KINematics-32fh, (19) KINematics-32fm, (20) KINematics-8fh,
(21) KINematics-8fm, (22) PUMA DYNamics-32fh, (23) PUMA DYNamics-
32fm, (24) PUMA DYNamics-8fh, (25) PUMA DYNamics-8fm. Datasets 26-28
are from the the UCI library [14], specifically (26) Liver-disorders Database,
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Figure 3: Distribution of EC
1 (open bars), which is a lower bound on the minimal

possible mixing strength, and EN
1 (solid bars), which is a better estimate on the

minimal possible mixing strength, in 30 real world datasets.

(27) Iris Plants Database, and (28) Wine recognition data. Datasets 29 and 30
are from the FMA library [15], specifically (29) Bank Data, and (30) Boston
Stock.

A histogram of values EC
1 , which represent a strict lower bound on the

minimal mixing strength Emin
1 , is shown in Figure 3 (open bars). 24 out of

the 30 datasets have a lower bound of the mixing strength larger than 0.025,

while half of the dataset have values of EC
1 larger than 0.075. These results

already indicate a large number of datasets have measurable mixing between the
features, and it is possible that this number is even underestimated by the use
of the measure EC

1 . We therefore compared the histogram of mixing strength
estimations derived from EC

1 to the histogram of mixing strength estimation

derived from EN
1 in Figure 3 (solid bars). With this estimate there are now 28

out of the 30 datasets with an estimated mixing strength larger than 0.025 and
23 out of 30 with an estimated mixing strength larger than 0.075. Interestingly,

all of the 7 datasets with EN
1 < 0.075 are from simulated robotrics experiments.

The features in these datasets represent well designed measurements so that it
can be expected that there is minimal redundancy (and hence mixing) in the
feature values of these datasets.

5 Conclusions

The tests conducted in this study confirm that it is not uncommon that fea-
tures in real world datasets have strong statistical dependencies. Hence, it is
recommended to consider preprocessing of data with an independent component
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Table 1: Results of the ICA analysis from 30 datasets from public machine
learning datasets specified in the text. The measured quantities EN

1 , EC
1 , and

the number of conflicts, are the average values over 30 runs with different ini-
tializations of the ICA algorithm.

SN # Features # Samples # Conflicts EN
1 EC

1

1 11 26 8.2 0.28 0.19
2 11 32 7.9 0.31 0.22
3 16 506 12.7 0.16 0.07
4 15 252 10.7 0.23 0.16
5 9 20640 7.9 0.16 0.03
6 7 60 1.1 0.44 0.44
7 13 68 11.9 0.11 0.04
8 4 704 3 0.24 0.05
9 4 50 0.9 0.5 0.49
10 11 534 7.1 0.21 0.16
11 4 662 3 0.16 0
12 6 500 4 0.28 0.21
13 13 29 4.3 0.42 0.41
14 9 329 5 0.27 0.21
15 5 481 2 0.42 0.39
16 16 60 14 0.11 0.03
17 14 42 5.4 0.44 0.43
18 33 8192 0 0.02 0.02
19 33 8192 0.3 0.02 0.02
20 9 8192 0.4 0.03 0.03
21 9 8192 1 0.1 0.09
22 33 8192 11.1 0.05 0.05
23 33 8192 13.8 0.06 0.05
24 9 8192 2 0.04 0.03
25 9 8192 1.6 0.06 0.04
26 6 345 1.4 0.2 0.17
27 4 126 2 0.52 0.42
28 13 138 11.4 0.11 0.02
29 3 60 2 0.29 0.03
30 2 35 1 0.37 0.2
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analysis (ICA) for data mining, in particular when considering input variable
selection [6].

Finding the minimal mixing strength in datasets with many features is com-
plicated by the unknown order of possible source signals as ICA algorithms typi-
cally only produce estimates of mixing matrices up to permutation of columns of
this matrix. Finding the mixing matrix with the smallest mixing strength from
all possible permutations is computationally infeasible. We have introduced sev-
eral measures that have a significantly reduced computational complexity which
scales quadratically with the number of features. We showed that one of these
measures, EC

1 , is a strict lower bound on the minimal mixing strength. We
further introduced the measure EN

1 which is a good estimate of the expected
mixing strength although not a lower bound on the minimal mixing strength.

The measure EN
1 is very similar to the measure E1 introduced by Amari et

al. [8]. However, note that the measure E1 is most commonly used in the per-
formance evaluation of ICA algorithms where the true mixing matrix is known.
Here we adopted this measure to a situation where the true mixing matrix is
unknown. Also, we augmented the original measure with a normalization factor
to enable the comparison of mixing strength values between mixing matrices
of different size. The measures E1 and EN

1 are the same when the columns
of the estimated mixing matrix are first normalized. This might be a common
procedure in ICA studies, but our discussion show the importance of this step.

The paper demonstrates the usefulness of the ICA algorithm to estimate
linear mixing matrices, and the new measures of a mixing strength estimation
can be used to rapidly monitor some aspects of the nature of datasets that are
considered for data mining purposes.
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