
���������
	���
�����
�� ������������������� ��!#"$�&%'�'�(�)��*+�,�.-/�'��� �102�������435�����+*
6 ���+�2��!7� �&	8�9�;:

<>=@?BADC�?FE4G�C�H

I2JLKNMDODPQKLRTS8UVJXW�Y7Z\[^]V_a`\b@cdc@e@`fc@e

gihkjml/npoBq�r@sktNtNu

v�hNlxw y{z&|4}k~��'};��� w zm�xj2��lx���x� lx�
� t���t��8� �{���xj��m��z9|4�8�;�N��r��2hNy���~�hB�7r��8}F�Nh���lx}Nzm��hXr(���N��ox����rT��hN��hN��h



Abstract

We study the maximal connectivity problem (MCP), which is defined as follows: Given a set V
of n vertices and a set E of m pairwise disjoint edge pairs, we define a family G(V, E) as the set
of multigraphs that have vertex set V and contain exactly one edge from every pair in E . We
want to find a multigraph in G(V, E) that has the minimal number of connected components.
We present an O(nm)-time algorithm for this problem. Our result is obtained by avoiding the
explicit construction of the auxiliary graph of [21] and querying only the relevant parts of the
graph when needed. Our second result studies graph families G(V, E) that are derived from
a surface simplification problem described in [8]. This problem was the initial motivation for
studying MCP. The edge pairs in these families are non-disjoint; but their structure is restricted
enough to allow an effiicent solution of MCP on these families. In particular, the NP-hardness
proof for MCP on general families G(V, E) such that the edge pairs in E are non-disjoint does
not apply.



1 Introduction

Description of the problem. Given a set V of n vertices and a set E of m edge pairs, we define
a family G(V, E) as the set of multigraphs that have vertex set V and contain exactly one edge from
every pair in E . The maximal connectivity problem (MCP) is the problem of finding a multigraph
G∗ in G(V, E) that has the minimal number of connected components. We call such a multigraph G∗

maximally connected or maximal. Edelsbrunner [7] proposed MCP as a graph-theoretic formulation
of a problem arising in the repair of self-intersections of surfaces embedded in R

3 [8]. It is shown in
[21] that this problem is NP-hard even for planar simple graphs if the edge pairs are non-disjoint.
For the disjoint case on simple graphs, an O(n2m)-time algorithm for this problem is presented in
[21], which generalizes easily to multigraphs. The algorithm obtains a maximal graph in G(V, E)
by starting with an arbitrary graph in G(V, E) and making only local changes, so-called edge flips,
that do not increase the number of connected components in the graph.

Motivation and related work. Our motivation to study MCP comes from the following ap-
plication [8]: Consider a smooth map f from a closed 2-manifold M into R

3. The image f(M) of
M may be self-intersecting, that is, may contain points with more than one preimage in M. We
call the set of these singularities S. The goal is to cut f(M) along these self-intersections and glue
the connected components of f(M) \ S together to produce a minimal number of non-intersecting
(but possibly touching) surfaces. This problem translates into a graph problem as follows: If we
assume general position, no point in f(M) has more than three preimages. Every point in S has
two or three preimages. Let S2 be the set of points with two preimages. The points in S2 define
curves in R

3. Every such curve has four incident patches P1, P2, P3, P4 of f(M) \ S, possibly with
multiplicities (see Figure 1a). We define a family G(V, E) such that V contains one vertex per
connected component of f(M) \ S. For every curve C in S2, let P1, P2, P3, P4 be the four patches
incident to C, sorted clockwise around C, and let v1, v2, v3, v4 be the corresponding vertices in V .
Then we define edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v1) and add edge pairs
{e1, e2}, {e2, e3}, {e3, e4}, {e4, e1} to E (see Figure 1b). In general, there may be more than one
edge between the vertices representing two patches, namely when these patches meet at more than
one curve in S2; there may be loops because a patch can meet itself. Thus, in general, the graphs
in G(V, E) are multigraphs with loops.

Every multigraph G ∈ G(V, E) now defines a way of gluing the patches of f(M) \ S together
and vice versa. In particular, if G contains an edge e = (v, w) that was generated by a curve C in
our above construction, we glue the patches corresponding to v and w along C. Conversely, once
we decide how to glue the patches along the curves in S2, this defines a graph in G(V, E): We add
an edge e = (v, w) to G for every pair of vertices v and w whose corresponding patches have been
glued along the appropriate curve C. Furthermore, it is obvious that the number of connected
components of a graph G ∈ G(V, E) equals the number of surfaces obtained by gluing the patches
of f(M) \ S in the manner defined by G.

Our method to compute a maximal graph in G(V, E) is to start with an arbitrary graph G in
G(V, E) and to reduce the number of connected components in G using so-called edge flips. Except
for our preliminary results [21] showing that, in general, MCP is NP-hard if the edge pairs in E
are non-disjoint and providing an O(n2m)-time algorithm for the disjoint case, we are not aware
of any results that study similar types of edge flips. However, edge flips have received considerable
attention in the context of geometric graphs such as triangulations and pseudo-triangulations of

1



P4

P1
P2

P3

v4

v1
v2

v3

e1

e2e4

e3

(a) (b)

Figure 1. (a) A self-intersection of a two-manifold M in R
3. Patches P1, P2, P3, P4 meet at this intersection.

(b) The edge pairs in E defined by this intersection are {e1, e2}, {e2, e3}, {e3, e4}, {e4, e1}.

planar point sets [1, 3, 9, 10, 12, 13, 14]. The reason is that they are combinatorially interesting
and potentially lead to efficient algorithms for solving certain optimization problems on graphs. In
general, one considers a family G of graphs that have the same vertex set and usually the same
number of edges. An edge flip removes an edge e from a graph G in G and replaces it with another
edge e′ so that the resulting graph is also in G. (Other types of flips that introduce or remove edges
have been studied, for instance, in [1, 3].) Often, the structure of the graphs in G guarantees that
every flip happens in a small subgraph of G; that is, flips are local transformations. For example,
the flip of an edge e in a triangulation of a planar point set replaces edge e with the other diagonal
of the quadrilateral that is the union of the two triangles on either side of e. If the structure of the
graph does not guarantee the locality of flips, we may explicitly restrict our attention to local flips.
If we have a certain quality measure of the graphs in G such as Delaunayhood (for triangulations) or
the number of faces (for pseudo-triangulations), it is interesting to ask whether a globally optimal
graph in G can be obtained by making only local changes that improve the quality of the graph.
If the answer is affirmative and the number of required flips is small, efficient algorithms result
because local transformations of the graphs can often be implemented efficiently.

A rich literature deals with edge flips in geometric and planar graphs [1, 2, 3, 9, 10, 12, 13, 14,
15, 16, 18, 19]. We only discuss a few of these results here. A by now classical result is that Θ(n2)
Delaunay flips are sufficient and necessary in the worst case to transform any triangulation of a
point set P into the Delaunay triangulation of P [10], where a Delaunay flip replaces an edge that
violates the empty-circle property of the Delaunay triangulation [6]. In [14], it is shown that the
same bound holds for transforming any two triangulations into each other using arbitrary diagonal
flips. In [12], simultaneous flipping of multiple edges is allowed and the flip distance between any
two triangulations using such parallel flips is shown to be Θ(n). Aichholzer et al. [1, 3] prove that,
by allowing so-called edge-removing flips, the number of flips required to transform any minimum
pseudo-triangulation into any other minimum pseudo-triangulation of a point set can be reduced
from Θ(n2) to O(n log2 n); any pseudo-triangulation can be made minimum using O(n) of these

2



flips. Negami [18] studies diagonal flips in triangulated planar graphs; that is, only the topology, but
not the geometry of the graph matters in this case. Aichholzer et al. [2] study local transformations
of non-crossing spanning trees of planar point sets, including a continuous version of an edge flip,
called an edge-slide, and prove upper bounds on the number of such transformations required
to obtain a minimum spanning tree from any non-crossing spanning tree. Other relevant papers
include [9, 13, 15, 16, 19], which study the expected length of flip sequences in the randomized
incremental construction of Delaunay triangulations in two and higher dimensions.

Terminology and notation. Since we deal with multigraphs throughout this paper, we denote
them simply as graphs. We denote the number of connected components of a graph G by ω(G).
We define ω̃(G(V, E)) = min{ω(G) : G ∈ G(V, E)}; in particular, a graph G∗ ∈ G(V, E) is maximal
if ω(G∗) = ω̃(G(V, E)). We say that a family G(V, E) is k-thick if every edge appears in at most k
pairs in E ; in particular, G(V, E) is 1-thick if the edge pairs in E are pairwise disjoint. We define
k-MCP to be MCP restricted to k-thick families.

For a 1-thick family G(V, E), the flip of an edge e in a graph G ∈ G(V, E) removes edge e from
G and replaces it with the other edge ē in the edge pair P ∈ E that contains e. We call ē the
complementary edge or complement of e and denote the graph (V, (E(G) \ e) ∪ {ē}) obtained by
flipping edge e in G as G〈e〉. More generally, we denote the graph obtained from G by flipping
edges e1, . . . , eq as G〈e1, . . . , eq〉. We call the flip of an edge e splitting, stable, or merging de-
pending on whether ω(G〈e〉) is greater than, equal to, or less than ω(G). A stable flip is strongly

stable if it does not only leave the number of connected components, but also their vertex sets
invariant. A flip sequence e1, . . . , eq is merging if every flip in the sequence is stable or merging
and ω(G〈e1, . . . , eq〉) < ω(G). A merging flip sequence e1, . . . , eq is maximizing if G〈e1, . . . , eq〉 is
maximal.

The graph families G(V, E) derived from the problem of removing self-intersections of surfaces
in R

3 described in the introduction are 2-thick. We call such a family a self-intersection family.
A self-intersection family G(V, E) has the property that E can be partitioned into pairwise disjoint
subsets E1, E2, . . . , Er, r = m/4, with the following properties:

(i) Every set Ei, 1 ≤ i ≤ r, contains four edge pairs,

(ii) For two edge pairs {e1, e2} ∈ Ei and {e2, e3} ∈ Ej , i 6= j, {e1, e2} ∩ {e3, e4} = ∅, and

(iii) Every set Ei, 1 ≤ i ≤ r, is of the form Ei = {{e1, e2}, {e1, e3}, {e2, e4}, {e3, e4}}, where
e1 = (v, w), e2 = (v, y), e3 = (x,w), e4 = (x, y).

For four edges e1, e2, e3, e4 as in Property (iii), we call the edges in each of the pairs {e1, e4} and
{e2, e3} twins because the edges in each of these pairs are either both present or both absent
in a graph in G(V, E). We call Q̄ = {e2, e3} the complementary twin pair or complement of
Q = {e1, e4}. A twin flip in a graph G ∈ G(V, E) is the process of removing a twin pair Q from
G and inserting its complement Q̄. In analogy to edge flips in 1-thick families, we define the
graph G〈Q1, . . . , Qt〉 as the graph obtained from G by flipping the twin pairs Q1, . . . , Qt; that is,
G〈Q1, . . . , Qt〉 = (V (G), (E(G) \

⋃t
i=1 Qi) ∪

⋃t
i=1 Q̄i). We define decreasing, (strongly) stable, and

merging twin flips in analogy to the terminology used for edge flips.

3



Our results. We prove the following results:

• For any non-maximal graph G in a 1-thick family G(V, E), a merging sequence of at most n−1
flips can be found in O(n + m) time. This implies that we can find a maximizing sequence
of at most n − 1 flips in O(nm) time. Both our algorithms represent an improvement by a
factor of n over the algorithms presented in [21]. (Section 2)

• The algorithm for solving 1-MCP generalizes to self-intersection families. In particular, a
merging or maximizing sequence for a non-maximal graph can be found in O(n + m) or
O(nm) time, respectively. (Section 3)

2 An Improved Algorithm for 1-MCP

The general framework of our algorithm for solving 1-MCP is the same as for the O(n2m)-time
algorithm of [21]. The important difference is that we do not need to construct the auxiliary graph
H of G to perform multi-source BFS in H. The structure that defines H can be preprocessed to
obtain a more compact representation of H, which has the added benefit that an adjacency list
query on the structure returns only those out-neighbours of the query node e that have not been
discovered before; in other words, the BFS-step explores only the edges in the BFS-forest and never
touches any other edge. For the sake of completeness, we recall the crucial facts from [21].

Lemma 1 (Zeh [21]) Every non-maximal graph G in a 1-thick family G(V, E) has a merging or

strongly stable flip.

Given a graph G, we call a flip of an edge e ∈ G greedy if the endpoints of edge ē are in different
connected components of G. A sequence e1, . . . , eq of edge flips is greedy if, for every 1 ≤ i ≤ q,
the flip of edge ei is greedy for G〈e1, . . . , ei−1〉. The following two observations establish two key
properties of greedy flips.

Observation 1 The flip of an edge e is merging if and only if it is greedy and e is not a cut edge

of G. A greedy flip is stable if and only if e is a cut edge of G.

In other words, a flip is merging if and only if the removed edge does not split an existing
connected component and the introduced edge joins two connected components. An important
consequence of Observation 1 is that a stable greedy flip does not alter the 2-edge connected
components of G. Using these two observations, the following lemma is shown in [21].1

Lemma 2 (Zeh [21]) Every non-maximal graph has a maximizing sequence of at most n−1 flips.

It is shown in [21] that finding a maximizing sequence for a graph G ∈ G(V, E) as in Lemma 2
takes O(nm) time, once a maximal graph G∗ is given. To find G∗, we start with an arbitrary graph
in G(V, E) and then compute and apply merging sequences of length at most n− 1 until a maximal
graph is obtained. Computing such a merging sequence takes O(nm) time; the procedure can be
applied at most n− 2 times before a maximal graph is obtained; hence, the whole procedure takes
O(n2m) time. Our goal is to reduce the time for finding a merging sequence of length at most n−1
to O(n + m).

1In [21], it is shown that there is a maximizing sequence of at most m flips. The conference submission, currently
under review, improves this bound to n − 1.

4



The algorithm of [21] computes a merging sequence for a graph G = (V,E) using the following
auxiliary graph H: The vertex set of H is E; there is a directed edge (e1, e2) in H if edge e2 is a
cut edge of G, but not of G ∪ {ē1}. We call a node e of H a root if its corresponding edge in G is
not a cut edge. We call e a leaf if ē has its endpoints in different connected components of G. The
following lemma is the basis for finding a merging sequence for G efficiently.

Lemma 3 (Zeh [21]) Graph H contains a root-to-leaf path if and only if G is not maximal. A

shortest such path corresponds to a merging sequence of length at most n − 1 for G.

By Lemma 3, a merging sequence for G can be found using multi-source BFS in H. More
precisely, we place all roots into the first level of the BFS-forest and then build the forest as usual
level by level. It is easy to show that H has O(nm) edges, so that this takes O(nm) time. Our
improvement of the time-bound of this step to O(n + m) is obtained by computing an implicit
representation of H, which has size O(n+m) and can also be constructed in this time bound. The
BFS-phase constructs the BFS-forest F without touching a single edge that is not in F . Extracting
every tree edge from the implicit representation takes constant amortized time, so that the BFS-
phase also takes O(n + m) time.

2.1 An Implicit Auxiliary Graph

Recall the definition of the auxiliary graph. An alternative definition, which leads to the same graph,
is the following: Let Gc be the graph obtained by contracting every 2-edge connected component
of G into a single vertex. Graph Gc is a forest with at most n vertices and at most n − 1 edges.
For an edge e = (u, v), e 6∈ Gc, such that u and v belong to the same connected component of
Gc, the addition of edge e to Gc creates a cycle; this cycle is the fundamental cycle of e. Now H
contains one vertex per edge of G. There is a directed edge (e, f) in H if f is in Gc, ē has both
its endpoints in the same connected component of Gc, and f is on the fundamental cycle of ē. In
other words, to find the out-neighbours of a node e, we have to identify the edges in Gc that belong
to the fundamental cycle of ē. Our goal is to preprocess Gc so that we can quickly identify the
subset of out-neighbours of a node e that have not been discovered during the BFS in H. More
precisely, we want to perform the following operations on Gc, assuming that all edges of Gc are
initally unmarked:

• Given an edge e, decide whether its endpoints are in the same connected component of Gc.

• For an edge e = (u, v) with u 6= v and such that u and v belong to the same connected
component, report and mark all unmarked edges on the fundamental cycle defined by e.

The first operation should take constant time. All operations of the second type should take
O(n + m) time in total.

To support these operations, we compute a vertex labelling γ of Gc such that γ(u) = γ(v) if
and only if u and v belong to the same connected component of Gc. We root every tree T of Gc at
an arbitrary node, preprocess it for LCA queries using the algorithm of [4], and use the computed
data structure to compute the LCA of the endpoints u and v of every edge (u, v) whose enpoints
are in the same connected component of Gc. Next we preprocess every tree T in Gc to answer
the following type of query in constant amortized time: Given a node v in T , report the highest
ancestor u of v such that the edges on the path from u to v are marked. We call u the representative

of v; u is the root of the subtree of T induced by all nodes that have u as a representative. A data

5



structure that supports these queries is described in [11]. In order to be able to test whether a
node u is an ancestor of another node v, we also compute preorder numberings of all the trees in
Gc and assign the interval of preorder numbers of all its descendants to every node. A node u is
an ancestor of v if and only if v’s preorder number is in u’s preorder interval. Preprocessing Gc in
this manner takes linear time. Next we argue that the above operations can be supported in the
desired time bounds:

Given the labelling γ, we only have to compare γ(u) and γ(v) to decide whether the endpoints
of an edge e = (u, v) belong to the same tree T . To report and mark all unmarked edges on the
fundamental cycle defined by e, we use the following procedure:

Report-and-mark(e, T )
1 Let x be the LCA of the endpoints u and v of e.
2 Let z be u’s representative.
3 while z is a proper descendant of x
4 do Report and mark edge (z, p(z)), where p(z) denotes z’s parent in T .
5 Let z be z’s representative.
6 Repeat the while-loop after initializing z to be v’s representative.

Lemma 4 A sequence of m invocations of procedure Report-and-mark takes O(n + m) time.

Proof. Let e1, e2, . . . , em be the sequence of edges for which we invoke procedures Report-and-mark.
Let t1, t2, . . . , tm be the numbers of edges reported by these invocations. Then we perform ti + 1
representative queries and ti mark operations in the i-th invocation. Moreover,

∑m
i=1 ti ≤ n − 1.

Since the while loop is executed exactly once per reported edge, the cost of the i-th invocation
excluding representative queries and mark operations is O(1 + ti); that is, the total cost of all
invocations, excluding representative queries and mark operations, is O(n+m). In [11], it is shown
that a sequence of m′ mark operations and representative queries takes no more than O(n + m′)
time. In our case, the total number of mark operations is at most n − 1, and the number of
representative queries is at most n + m− 1. Hence, the total cost of these operations is O(n + m).

2.2 Fast BFS in the Implicit Auxiliary Graph

Next we show how to use the above representation of H to perform BFS efficiently. More precisely,
as we are not interested in exploring H completely, but only need to find a shortest path from a
root to a leaf, we stop as soon as we find a leaf. (This does not improve the worst-case running
time of our algorithm, but may be relevant to speed up the computation in practice.) We use the
following algorithm, where R is the set of root edges (that is, non-cut edges) of G:

6



Aux-BFS(Gc, R)
1 Insert the edges in R into a queue Q.
2 while Q is non-empty
3 do Dequeue the next edge e from Q.
4 if ē’s endpoints are in different connected components of Gc

5 then e is a leaf. Follow parent pointers from e to report the path from a root to e
and stop.

6 else Retrieve the unvisited out-neighbours of node e in H by calling Report-and-
mark(ē, Gc).

7 Make each of them a child of e and enqueue it in Q.
8 Report that there is no root-to-leaf path in H.

Lemma 5 If there is a root-to-leaf path in H, procedure Aux-BFS finds a shortest such path.

Otherwise, it reports that there is no such path.

Proof. The correctness of the procedure follows immediately if we can show that Line 6 correctly
finds all out-neighbours of a node e in H that have not been discovered before. This is true because,
except for the implementation of Line 6, the algorithm is standard multi-source BFS; the algorithm
stops as soon as a leaf is reached, so that Line 8 is executed only if no root-to-leaf path in H exists.

To see that Line 6 correctly identifies all previously undiscovered out-neighbours of a node e,
recall that the out-neighbours of any node e in H are exactly the ones corresponding to the tree
edges on the fundamental cycle defined by ē. Thus, by retrieving all those edges on this cycle that
are unmarked, we retrieve exactly the previously undiscovered out-neighbours of e because a node
is marked if and only if it has been discovered before. After making the retrieved nodes children
of e, we mark the corresponding edges, thereby preventing them from being retrieved and being
made the children of some other node in the BFS-forest.

Lemma 6 The running time of procedure Aux-BFS is O(n + m).

Proof. Except for the calls to procedure Report-and-mark, the running time of the procedure is
easily seen to be O(n + m): Every edge of G is enqueued and dequeued at most once. Hence,
the while loop is executed at most m times. The cost of every iteration is O(1 + t), where t is
the number of edges reported by the Report-and-mark operation in this iteration. Since every
edge of Gc can be reported only once (it is marked afterwards), the total cost of all iterations is
O(n + m). We perform at most m Report-and-mark operations. Hence, by Lemma 4, their total
time complexity is also O(n + m).

Now observe that the computation of a merging sequence for a non-maximal graph described in
[21] takes O(n+m+AuxBFS(n, m)) time, where AuxBFS(n, m) is the time to perform multi-source
BFS in the auxiliary graph. Our new algorithm achieves AuxBFS(n, m) = O(n + m). Hence, we
obtain the following result.

Theorem 1 It takes O(n + m) time to compute a merging sequence of at most n − 1 flips for a

given graph G in a 1-thick family G(V, E).

As observed in [21], we can apply at most n − 2 merging flip sequences to any graph before
obtaining a maximal graph. To ensure that n ≤ 4m, we spend O(n+m) time to remove all isolated

7



vertices of the graph (V,
⋃

P∈E P ) and then find merging sequences for the resulting graph. Since
the resulting graph has at most 4m vertices, every invocation of the procedure for finding a merging
sequence now takes O(m) time. The total running time of the algorithm is hence O(nm), and we
obtain the following corollary.

Corollary 1 It takes O(nm) time to compute a maximal graph in a 1-thick family G(V, E) and to

compute a maximizing sequence of at most n − 1 flips for a given graph G in G(V, E).

3 Maximal Connectivity of Self-Intersection Families

In this section, we extend the results from [21] and from Section 2 to self-intersection families. First
we prove a number of structural results that are analogous to the results for 1-thick families shown
in Section 3 of [21]. Similar to 1-MCP, it is easy to show that not every non-maximal graph has a
merging flip; but we show that every non-maximal graph has a merging sequence of flips. Before
we do this, it is useful to characterize merging flips. We call a twin flip greedy if the two flipped
twins belong to different connected components of G, that is, each of the two complementary twins
has its endpoints in different connected components.

Lemma 7 A flip is merging if and only if it is greedy and at most one of the flipped twins is a cut

edge. A greedy flip that flips two cut edges is stable.

Proof. First we prove that a greedy flip that flips at most one cut edge is merging. Let the two
flipped edges be (u, v) and (x, y), and let u and v belong to a common cycle in G. Then u and v are
still connected after the removal of edge (u, v). The insertion of edges (u, x) and (v, y) guarantees
that vertices u, v, x, y all belong to the same connected component. The removal of edge (x, y)
does not alter this. Hence, the flip of edges (u, v) and (x, y) reduces the number of connected
components by one; the flip is merging.

Next we prove that a greedy flip that flips two cut edges is stable. Before the flip, the two
flipped twins e1 = (u, v) and e2 = (x, y) belong to different connected components Huv and Hxy.
The removal of edges e1 and e2 splits these components into components Hu, Hv, Hx, and Hy,
because e1 and e2 are cut edges. The insertion of the complementary twins (u, x) and (v, y)
produces two merged components Hux and Hvy, that is, the number of connected components does
not change as a result of the flip.

It remains to show that a merging flip is always greedy. Assume the contrary. Then there is a
graph G and two twins e1 = (u, v) and e2 = (x, y) in G that belong to the same connected compo-
nent and whose flip is merging. Since e1 and e2 belong to the same connected component, vertices
u, v, x, y do. The insertion of the complementary twins (u, x) and (v, y) does not merge connected
components because u, v, x, y already belong to the same connected component. The deletion of e1

and e2 cannot merge connected components either, and we obtain the desired contradiction.

An important observation is that a stable greedy flip replaces two cut edges with two new cut
edges, that is, the 2-edge connected components of G are invariant under stable greedy flips. By
greedily flipping the right twin pairs, we can now show that every non-maximal graph has a short
maximizing flip sequence.

Lemma 8 Every non-maximal graph G in a self-intersection family has a maximizing sequence of

at most n − 1 twin flips.

8



Proof. Let G be a non-maximal graph in G(V, E), let G∗ be a maximal graph, and let T ∗ be a
spanning forest of G∗, that is, a spanning graph of G∗ that contains a spanning tree of every
connected component of G∗. Let r be the number of edges in T ∗ that are not in G. We prove, by
induction on r that G has a maximizing sequence of length at most r. Since T ∗ has at most n − 1
edges, the lemma follows.

So assume that r = 1. Let e be the single edge in T ∗ that is not in G, let Q̄ be the twin pair
that contains e, and let Q be the complementary twin pair. Then flipping Q produces a graph
that has T ∗ as a subgraph and is, hence, maximal. If r > 1, then let e be an edge of T ∗ that
has its endpoints in different connected components of G. Such an edge must exist because G is
not maximal. Let Q̄ be the twin pair that contains e, and let Q be its complement. The flip of
Q is greedy and, hence, cannot be splitting. If the resulting graph G〈Q〉 is maximal, then the
sequence consisting only of Q is maximizing. Otherwise, T ∗ contains at most r − 1 edges that are
not in G〈Q〉. By the induction hypothesis, G〈Q〉 has a maximizing flip sequence Q1, . . . , Qt, where
t ≤ r − 1. The sequence Q,Q1, . . . , Qt has length t + 1 ≤ r and is maximizing for G.

Again, the construction of a maximizing sequence described in the proof of Lemma 8 can easily
be carried out in O(nm) time, once a maximal graph G∗ is given: First we identify the isolated
vertices of the graph (V,

⋃
P∈E P ) and remove them from both G and G∗. As a result, both graphs

have at most 4m vertices. Then a spanning forest of G∗ can be computed in O(m) time. As long
as there is an edge in T ∗ whose endpoints are in different connected components of the current
graph, we can find such an edge by computing the connected components of the current graph and
choosing an appropriate edge in T ∗. The flip of the corresponding twin then takes constant time.
Hence, every flip in the proof takes at most O(m) time. We perform at most n − 1 flips; so the
total time is O(n + m + nm) = O(nm). As in the solution to 1-MCP, our problem is finding a
maximal graph in G(V, E).

Our strategy is similar to our solution for 1-MCP: Given a graph G, we define an auxiliary
graph H that captures the dependencies between twin flips in G, and we prove that a shortest
root-to-leaf path in H corresponds to a merging sequence of at most n − 1 flips. The vertex set of
H contains all twin pairs Q of G; there is a directed edge (Q1, Q2) in H if both edges in Q2 are
cut edges of G, but at most one of them is a cut edge of G∪ Q̄1. We call a source of H a root if at
most one of its edges is a cut edge of G. We call a sink in H a leaf if its edges belong to different
connected components of G, that is, each of the two complementary twins has its endpoints in
different connected components. Finally, we call a greedy flip sequence Q1, Q2, . . . , Qk monotone

if there are no two indices i 6= j such that Q̄i = Qj ; that is, a monotone flip sequence never flips
two twins and later flips them back.

Lemma 9 In a shortest monotone merging sequence Q1, Q2, . . . , Qq for G, the edges in the twin

pairs Q1, Q2, . . . , Qq−1 are cut edges of G.

Proof. Assume the contrary and choose j minimal so that at most one edge of Qj is a cut edge of
G; that is, the edges in Q1, Q2, . . . , Qj−1 are cut edges. We claim that Q1, Q2, . . . , Qj is a monotone
merging sequence of flips. This would contradict the assumption that Q1, Q2, . . . , Qq is a shortest
such sequence for G. Sequence Q1, Q2, . . . , Qj is monotone because every subsequence of a monotone
flip sequence is monotone. To see that the sequence Q1, Q2, . . . , Qj is merging, we make the
following observations: (1) ω(G〈Q1, Q2, . . . , Qj−1〉) ≤ ω(G), because the sequence Q1, Q2, . . . , Qq

is merging. (2) The edges in Qj are in different connected components of G〈Q1, Q2, . . . , Qj−1〉

9



because the sequence Q1, Q2, . . . , Qj is greedy. (3) The 2-edge connected components of G are
invariant under deletion and insertion of cut edges. Hence, at most one edge of Qj is a cut edge of
G〈Q1, Q2, . . . , Qj−1〉 and, by Lemma 7, ω(G〈Q1, Q2, . . . , Qj〉) < ω(G〈Q1, Q2, . . . , Qj−1〉) ≤ ω(G).

Lemma 10 In a shortest monotone merging sequence Q1, Q2, . . . , Qq for G, at most one of the

edges of Qq is a cut edge of G.

Proof. Since the sequence Q1, Q2, . . . , Qq is a shortest monotone merging sequence, no subse-
quence Q1, Q2, . . . , Qj , j < q, is merging. Hence, the flip of the twin pair Qq is merging for
G〈Q1, Q2, . . . , Qq−1〉. By Lemma 7, this implies that at most one edge in Qq is a cut edge of
G〈Q1, Q2, . . . , Qq−1〉. If both edges of Qq are cut edges of G, we choose j minimal so that at
most one edge in Qq is a cut edge of G〈Q1, Q2, . . . , Qj〉. Since both edges of Qq are cut edges of
G〈Q1, Q2, . . . , Qj−1〉, the insertion of the edges in Q̄j must create a cycle in G〈Q1, Q2, . . . , Qj〉. But
observe that the flip of Qj is greedy, that is, its edges belong to different connected components
and, by Lemma 9, both edges are cut edges. This implies that both edges of Q̄j are cut edges of
G〈Q1, Q2, . . . , Qj〉, a contradiction.

Lemma 10 implies that Qq is a root in H. Since the edges of Q1 are in different connected
components of G, by the greediness of the sequence Q1, Q2, . . . , Qq, the vertex Q1 is a leaf of H.
To prove that graph H contains a root-to-leaf path of length at most n− 1 if G is not maximal, it
suffices to show that there exists a path from Qq to a leaf.

Lemma 11 If G is not maximal, then there exists a root-to-leaf path of length at most n − 1 in

H.

Proof. Consider a shortest monotone merging flip sequence Q1, Q2, . . . , Qq. Then q ≤ n−1 because
the sequence constructed in the proof of Lemma 8 is merging and monotone. We have just observed
that Q1 is a leaf and Qq is a root of H. We show that, for every pair Qi, 1 ≤ i ≤ q, there exists a
path of length at most i from Qi to a leaf in H. Hence, there is a path of length at most q ≤ n− 1
from Qq to a leaf. The proof is by induction on i. Since Q1 is itself a leaf, the claim holds for
Q1. So assume that i > 1 and that the claim holds for Q1, Q2, . . . , Qi−1. If Qi is a leaf, the
claim holds for Qi. Otherwise, the edges in Qi are in the same connected component of G. But
they are in different connected components of G〈Q1, Q2, . . . , Qi−1〉, by the greediness of sequence
Q1, Q2, . . . , Qq; so there must be a pair Qj , j < i, that contains a cut edge e that is on all paths in
G connecting the endpoints of the two edges in Qi. (Note that all edges in Q1, Q2, . . . , Qq−1 are cut
edges.) This implies that Qj is an out-neighbour of Qi in H. By the induction hypothesis, there
exists a path of length at most j from Qj to a leaf. Hence, there exists a path of length at most
j + 1 ≤ i from Qi to a leaf.

For 1-MCP, it is easy to show that both flip sequences corresponding to a root-to-leaf path in
H, the one flipping from the root to the leaf and the one flipping from the leaf to the root, are both
merging. We prefer the root-to-leaf sequence because every stable flip in the sequence is in fact
strongly stable. For MCP on self-intersection families, we can show only that the sequence flipping
from the leaf to the root is merging. We need the following two lemmas to prove this fact.

Lemma 12 For a shortest root-to-leaf path (Q1, Q2, . . . , Qq) in H and any 1 ≤ i ≤ q, the flip of

the twin pair Qi is greedy for G〈Qi+1, Qi+2, . . . , Qq).

10



Proof. For i = q, the lemma is trivially true because Qq is a leaf and, hence, its flip is greedy for
G.

To prove the lemma for i < q, we will use the following argument: Since Qi+1 is an out-neighbour
of Qi in H, there must exist two edges ēi ∈ Q̄i and ei+1 ∈ Qi+1 such that ei+1 is a cut edge of G,
but not of G ∪ {ēi}. The definition of H states that ei+1 is not a cut edge of G ∪ Q̄i. However,
if ei+1 is also a cut edge of G ∪ {ēi} and G ∪ {ē′i}, where Q̄i = {ēi, ē

′
i}, then it is easy to see that

either ei+1 is a cut edge of G ∪ Q̄i or not a cut edge of G; either case leads to a contradiction.
Since ei+1 is not a cut edge of G ∪ {ēi}, there exists a path P in G that includes ei+1 and

connects the endpoints of ēi. We prove that P exists in G〈Qi+2, Qi+3, . . . , Qq〉 and that ei+1

and e′i+1 are cut edges of G〈Qi+2, Qi+3, . . . , Qq〉. This implies that there cannot be any path
in G〈Qi+1, Qi+2, . . . , Qq〉 that connects the endpoints of ēi, so that the flip of Qi is greedy for
G〈Qi+1, Qi+2, . . . , Qq〉. Indeed, the removal of edge ei+1 breaks path P ; if there were another path
connecting the endpoints of ēi that does not include ei+1, edge ei+1 would not be cut edge of
G〈Qi+1, Qi+2, . . . , Qq〉; the flip of Qi+1 cannot create a path between the endpoints of edge ei+1

because the flip is greedy and both edges in Qi+1 are cut edges. We have to prove our claim.
To see that P exists in G〈Qi+2, Qi+3, . . . , Qq〉, assume the contrary. Then one of the edges

in Qi+2, Qi+3, . . . , Qq must be part of P . Since the edges in Qi+2, Qi+3, . . . , Qq are cut edges,
this would imply that there is an edge (Qi, Qj), for some j > i + 1, in H, which contradicts the
assumption that (Q1, Q2, . . . , Qq) is a shortest path from Q1 to Qq.

To see that ei+1 and e′i+1 are cut edges of G〈Qi+2, Qi+3, . . . , Qq〉, observe that, by induction,
the flip of Qj , for j > i + 1, is greedy for G〈Qj+1, Qj+2, . . . , Qq〉, and the edges in Qj are cut edges
of G〈Qj+1, Qj+2, . . . , Qq〉. No such flip can create a cycle. Hence, since edges ei+1 and e′i+1 are cut
edges of G, they are cut edges of G〈Qi+2, Qi+3, . . . , Qq〉.

Corollary 2 For a shortest root-to-leaf path (Q1, Q2, . . . , Qq) in H, the sequence Qq, Qq−1, . . . , Q1

is merging for G.

Proof. Every flip Qi is greedy for G〈Qi+1, Qi+2, . . . , Qq〉, for 1 ≤ i ≤ k. Hence, there are no splitting
flips in the sequence. For 1 < i ≤ k, the edges of Qi are cut edges of G〈Qi+1, Qi+2, . . . , Qq〉. Hence,
the flip of Qi leaves the cycles of G〈Qi+1, Qi+2, . . . , Qq〉 unchanged. Since Q1 is a root of H, at
least one of its edges must belong to a cycle in G. Since the flip sequence Qq, Qq−1, . . . , Q2 does
not destroy this cycle and the flip of Q1 is greedy, the flip of Q1 is merging for G〈Q2, Q3, . . . , Qq〉.

To find a shortest root-to-leaf path in H, we use the algorithm of Section 2, with the following
modification. The graph Gc contains only those cut edges whose twins are also cut edges of G;
that is, during the construction of Gc, cut edges whose twins are not cut edges are treated as if
they belonged to a cycle in G. To find the children of a node Qi in the BFS-forest it is sufficient to
query Gc for the fundamental cycle of one edge ēi in Q̄i because it is easy to see that both edges
must induce the same fundamental cycle. Hence, except for the decreased size of Gc, we use the
algorithm without modifications, and we obtain the following result.

Theorem 2 It takes O(n + m) time to compute a merging sequence of at most n − 1 flips for a

given graph G in a self-intersection family G(V, E).

Corollary 3 It takes O(nm) time to compute a maximal graph in a self-intersection family G(V, E)
and to compute a maximizing sequence of at most n − 1 flips for a given graph G in G(V, E).

11



4 Concluding Remarks

The LCA-algorithm of [4] uses the floor function, and the algorithm of [11] uses complicated bit
calculations; thus, they do not adhere to the algebraic model of computation. However, it is
easy to verify that these non-algebraic computations can be eliminated through the addition of
a constant number of linear-sized lookup tables to the data structure. The computation of these
tables increases the time and space complexities of the algorithm by only a constant factor.

Our paper represents a significant improvement over the O(n2m)-time algorithm for 1-MCP
of [21]. However, we believe that further improvements should be possible. In particular, we
conjecture that 1-MCP can be solved in O(n + m) time. The intuition behind this conjecture is
that the flips in every maximizing sequence as in the existence proof of [21] can be rearranged
and then partitioned into greedy merging subsequences. We currently find one such sequence in
O(n + m) time. By constructing the auxiliary graph more carefully, it may be possible to find all
merging subsequences of a maximizing sequence in one single BFS-step on the auxiliary graph.

References

1. O. Aichholzer, F. Aurenhammer, P. Brass, and H. Krasser. Pseudo-triangulations from surfaces and a
novel type of edge flip. SIAM Journal on Computing, 32(6):1621–1653, 2003.

2. O. Aichholzer, F. Aurenhammer, and F. Hurtado. Sequences of spanning trees and a fixed tree theorem.
Computational Geometry: Theory and Applications, 21(1–2):3–20, 2002.

3. O. Aichholzer, F. Aurenhammer, and H. Krasser. Adapting (pseudo)-triangulations with a near-linear
number of edge flips. In Proceedings of the 8th International Workshop on Algorithms and Data Struc-

tures, volume 2748 of Lectures Notes in Computer Science, pages 12–24. Springer-Verlag, 2003.
4. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of LATIN 2000, pages

88–94, 2000.
5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,

second edition, 2001.
6. B. Delaunay. Sur la sphère vide. Izvestiya Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestven-

nyka Nauk, 7:793–800, 1934.
7. H. Edelsbrunner. Personal communication. 2003.
8. H. Edelsbrunner and D. V. Nekhayev. Repairing self-intersections of triangulated surfaces in space.

Technical Report rgi-tech-03-053, Raindrop Geomagic Inc., 2003.
9. H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations.

Algorithmica, 15:223–241, 1996.
10. S. Fortune. Voronoi diagrams and Delaunay triangulations. In Computing in Euclidean Geometry, D.

Z. Hu and F. K. Wang, (eds.), pages 225–265. World Scientific, Singapore, 2nd edition, 1995.
11. H. N. Gabov and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages 246–251, 1983.
12. J. Galtier, F. Hurtado, M. Noy, S. Pérennes, and J. Urrutia. Simultaneous edge flipping in triangulations.

International Journal on Computational Geometry and Applications, 13(2):113–133, 2003.
13. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and

Voronoi diagrams. Algorithmica, 7:381–413, 1992.
14. F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete and Computational

Geometry, 22:333–346, 1999.
15. B. Joe. Three-dimensional triangulations from local transformations. SIAM Journal on Scientific and

Statistical Computing, 10:718–741, 1989.
16. B. Joe. Construction of three-dimensional Delaunay triangulations using local transformations. Com-

puter Aided Geometric Design, 8:123–142, 1991.

12



17. Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (eds) and st-numbering in
graphs. Theoretical Computer Science, 47:277–298, 1986.

18. S. Negami. Diagonal flips of triangulations on surfaces, a survey. Yokohama Mathematical Journal,
47:1–40, 1999.

19. V. T. Rajan. Optimality of the delaunay triangulation in <d. Discrete & Computational Geometry,
12:189–202, 1994.

20. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1:146–159,
1972.

21. N. Zeh. Connectivity of graphs under edge flips. Technical Report CS-2003-07, Faculty of Computer
Science, Dalhousie University, 2003.

13


