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Abstract

We study the following problem: Given a set V of n vertices and a set E of m edge pairs, we
define a graph family G(V, E) as the set of graphs that have vertex set V and contain exactly
one edge from each pair in E. We want to find a graph in G(V, E) that has the minimal number
of connected components. We show that, if the edge pairs in E are non-disjoint, the problem
is NP-hard. This is true even if an edge is not allowed to appear in more than two edge pairs
and the union of all graphs in G(V, E) is planar. If the edge pairs are disjoint, we provide an
O(n?m)-time algorithm that finds a graph in G(V, E) with the minimal number of connected
components. Our proof of the latter statement is obtained using the concept of flipping edges
in the graphs in G(V, E), where a flip in a graph G € G(V, E) removes an edge e € G and re-
places it with the other edge in the pair in E that contains e. We answer the following questions:
Can every graph in G(V, E) be transformed into a graph in G(V, E) with the minimal number of
connected components using a sequence of edge flips that steadily decrease the number of con-
nected components in the graph? How long is the shortest such sequence (that is, how many
flips are in this sequence)? Can we transform any graph in G(V, E) with at most k connected
components into any other graph in G(V, E) with at most k connected components using a se-
quence of edge flips that never increase the number of connected components beyond k? How
long does such a sequence have to be?

1 Introduction

Edge flips in abstract and geometric graphs are a well-studied concept. One restricts one’s atten-
tion to a family G of graphs all of whose members have the same vertex set and the same number
of edges. An edge flip is the operation of removing an edge e from the current graph G and re-
placing it with an edge e’ # e so that the resulting graph G’ belongs to G. Clearly, the requirement
that G’ € G restricts the set of permissible edge flips because, by replacing an edge ¢ € G with just
any edge ¢/ ¢ G, one may produce a graph that does not belong to G. The removal of an edge e
may be altogether impermissible because there may not be any edge ¢’ € G so that (G —¢) U {¢'}
is in G. Sometimes, the set of permissible edge flips is constrained even further using additional
condition that disallow certain flips even though the resulting graph would be in G. Classic ex-
amples of graph families G include spanning trees of a graph G and triangulations of a point set



P in the plane. In the former case, the replacement of an edge ¢ € T with another edge ¢’ ¢ T
is permissible if (T —e) U {¢'} is a tree and ¢’ € G. In the latter case, we allow the replacement
of edge ¢ with edge ¢’ if the resulting graph is a valid triangulation of P; that is, edge ¢’ has to
be a diagonal of the quadrilateral created by removing edge ¢, and edge ¢’ must not intersect any
edge in G —e. (Remember that G is a triangulation of a planar point set; that is, every vertex is
augmented with a location, and every edge is represented as a straight line segment between the
two points representing its endpoints.)

Usually, one studies questions such as: Can every graph in G be transformed into any other
graph in G using a sequence of edge flips? How many edge flips are required? Or we may assign a
quality measure to the members of G, and we ask whether every member in G can be transformed
into an optimal member of G—optimal with respect to this quality measure—using a sequence
of edge flips. If the answer is affirmative, one is again interested in the number of flips required
to achieve this. Coming back to the example of spanning trees of a graph G, we may assign
weights w(e) to the edges of G and ask to find a minimum spanning tree of G with respect to
these edge weights. In this case, we are interested in flips where w(e) > w(e’) because each such
flip produces a spanning tree of weight less than the previous spanning tree. One can easily show
that n — 1 edge flips suffice to transform any spanning tree into a minimum spanning tree. As
for triangulations of planar point sets, the classical question is whether every triangulation of the
point set can be transformed into the Delaunay triangulation [1] of the point set using a sequence
of edge flips [3]. The flips we are interested in in this case are the so-called Delaunay flips, which
take an edge that violates the Delaunay property and flip it. Tt is known than Q(#2) flips are
necessary in the worst case [3] and O(n?) flips suffice [3] to transform any triangulation into
the Delaunay triangulation of the point set. For the case of arbitrary edge flips in triangulations
of point sets and polygons in the plane, see for example [4, 6]. For a survey on edge flips in
triangulated planar graphs, see [7].

In this paper, we study a very restricted class of graphs and a very restricted set of flips. The
graph family G = G(V, E) is defined by a vertex set V and a set E of edge pairs so that a graph
belongs to G(V, E) if and only if it has vertex set V and contains exactly one edge from every pair
in E. If the edge pairs are non-disjoint, it is possible that no graph in G(V, E) has a permissible
flip; that is, for every graph G € G(V, E), it is impossible to produce another graph in G(V, E) by
removing a single edge from G and replacing it with another edge. If the edge pairs are disjoint,
permissible flips are those that remove any edge e from the current graph G and replace it with
the other edge in the edge pair containing e. We are interested in the connectivity of the graphs
in G(V, E). The first question we ask is whether we can efficiently identify a graph in G(V, E) that
has the minimal number of connected components among all graphs in G(V, E); we call this the
maximal connectivity problem (MCP) (“maximal connectivity” because a graph with the minimal
number of connected components is maximally connected in a sense). This question was the
starting point of this research. It was raised by Edelsbrunner [2] as a graph-theoretic formulation
of a problem arising in the repair of self-intersections of triangulated surfaces in space. For non-
disjoint edge pairs, we prove that MCP is NP-hard, even if we restrict our attention to graph
families G(V, E) so that the union of the graphs in G(V, E) is planar and no edge is allowed to be



a member of more than two edge pairs in E; we call this version of the problem planar 2-MCP.
More generally, we define k-MCP as MCP restricted to graph families G(V, E) where no edge is
allowed to be in more than k pairs in E. For 1-MCP—the case of pairwise disjoint edge pairs—we
provide an O(n?m)-time algorithm, where n = |V| and m = |E|. We prove that every graph G
in G(V,E) can be transformed into a graph with the minimal number of connected components
using a sequence of at most m edge flips such that no flip in the sequence increases the number of
connected components in the current graph. We do not know how to compute such a sequence
efficiently; but we present an O(nm)-time algorithm that computes a sequence of at most m flips
such that no flip increases the number of connected components in the current graph and the final
graph has less connected components than the initial graph G. In order to find a graph with the
minimal number of connected components, we apply this algorithm at most # — 2 times, thereby
obtaining the O (n?m)-time algorithm for finding a graph with the minimal number of connected
components in G(V,E). Another question we ask is whether any graph G € G(V, E) with at
most k connected components can be transformed into any other graph in G(V, E) with at most
k connected components using a sequence of flips that never produces a graph with more than
k connected components. We prove that if k is greater than the minimal number of connected
components of the graphs in G(V, E), then there exists such a sequence of at most 2m flips. If k
is the minimal number of connected components of the graphs in G(V, E), we prove that such a
sequence of flips may not exist.

The paper is organized as follows: In Section 2, we introduce the necessary notation and ter-
minology. In Section 3, we provide the NP-hardness proof for planar k-MCP, for k > 2. In Sections
4 through 6, we study 1-MCP. In Section 4, we provide the proof that every graph G € G(V,E)
has a sequence of at most m flips that transforms it into a maximally connected graph in G and
so that no flip increases the number of connected components in the current graph. In Section 5,
we provide our O(nm)-time algorithm for finding a sequence of at most m flips that transforms a
given graph G into a graph with less connected components than G and never increases the num-
ber of connected components along the way. Using this algorithm, we obtain our O (1#%m)-time
algorithm for solving 1-MCP. In Section 6, we prove that, as long as there is a graph in G(V, E) with
less than k connected components, every graph G € G(V, E) with at most k connected components
can be transformed into any other graph with at most k connected components using a sequence
of at most 2m flips such that no flip produces a graph with more than k connected components. If
k is the number of connected components of the maximal graphs in G(V, E), we prove that such a
sequence may not exist. In Section 7, we conclude the discussion with a number of open problems.

2 Preliminaries

Given a set V of vertices and a set E of m edge pairs Py, ..., P, over V, we define a graph family
G(V, E) so that a graph G belongs to G(V, E) if and only if G has vertex set V and contains exactly
one edge from every pair P;, 1 < i < m. We say that family G(V, E) is k-thick if every edge
appears in at most k pairs in E. For a graph G, we define y(G) to be the number of connected
components of G. For a family G(V, E), we define ¥(G(V,E)) = min{y(G) : G € G(V,E)}. We



say that a graph G € G(V, E) is maximally connected (or maximal for short) if y(G) = y(G(V,E)).
The maximal connectivity problem (MCP) is the problem of determining y(G(V,E)), for a given
family G(V, E). MCP as a decision problem is to decide whether a given family G(V, E) contains
a connected graph. We define k-MCP to be the maximal connectivity problem restricted to k-thick
graph families G(V, E). Planar k&-MCP is the k-MCP problem restricted to graph families G(V, E)
such that the union of the graphs in G(V, E) is planar.

Given a 1-thick family G(V, E) with E = {P,..., P, } and an edge e € P, we denote the other
edge in P, by € and call it the complementary edge of e. Given a graph G € G(V,E) and anedgee € G,
the flip of edge e produces the graph G{e) = (G — ¢) U {é}; that is, we replace edge e with edge é.
This flip may affect the number of connected components in the graph. We call the flip profitable
if y(Gle)) < y(G) and augmenting if v(G{e)) < y(G). We can extend this notion to sequences of
flips: Let ey, ..., e, be a list of edges in G. In this paper, we will use ey, ..., e, to denote also the
sequence of flips defined by flipping edges ey, . . ., e, in this order. It will be clear from the context
whether ey, .. ., e; denotes a sequence of edge flips or a list of edges. We denote the graph obtained
from a graph G by flipping edges ey, ..., ¢, as Gle,..., eq>. We say that the flip sequence ey, ..., ¢,
is profitable if the flip of edge ¢; is profitable for G(ey,...,e;_1), forall 1 <i < g. A profitable flip
sequence ey, ..., e, is augmenting if y(Gley, ..., e;)) < v(G).

Let ¢ be an edge of a graph G in a 1-thick family G(V, E), let V4, ..., V) be the vertex sets of the
connected components of G, and let Wy, ..., W, be the vertex sets of the connected components of
G{e). We say that the connected components of G are invariant under the flip of edge e if k = £,
and there exists a permutation ¢ such that V; = WU(Z-), for all 1 < i < k; that is, the vertex sets of
the connected components stay invariant, while their edge sets do change.

3 Planar k-MCP is NP-Hard

Our proof that planar &-MCP is NP-hard for k > 2 uses a linear-time reduction from 3-SAT to
planar 2-MCP. Let us first agree on the terminology we use to talk about formulas in 3-CNF. Given
a Boolean variable x, we denote its negation as ¥. A liferal is a Boolean variable or its negation. A
clause is the disjunction of literals: C = Aq V Ay V -+ V A A Boolean formula T is in conjunctive
normal form (CNF) if itis of the form F = C{ ACo A - - - ACyy,, where Cy, ..., Cy, are clauses. Formula
F is in 3-CNF if every clause C;, 1 < i < m, contains exactly three literals. In this case, we denote
the literals in C; as A; 1, A; 2, and A, 3. We denote the Boolean variables that occur in F as x1, ..., xy.
The satisfiability problem for formulas in 3-CNF (3-5AT) is defined as the problem of deciding
whether a given formula in 3-CNF is satisfiable, that is, whether there exists a truth assignment to
the variables x1, ..., x, so that F is true. It is well-known that 3-SAT is NP-complete [5]. Hence, if
we can provide a polynomial-time reduction from 3-SAT to MCP, MCP is NP-hard. In this section,
we provide such a reduction.

The central element used in a number of constructions in this paper is the “connector graph”
shown in Figure 1. This graph is planar. Its edges are grouped into disjoint edge pairs as indicated
by the numbering in Figure 1. We call this graph a connector graph because, no matter which
edge we choose from each edge pair, the resulting graph is connected. We leave it as an exercise



Figure1
The connector graph. Two edges belong to the same edge pair if they have the same number.

to verify this fact. Since any subgraph of the connector graph that contains exactly one edge from
every pair is connected, we can distinguish two of its vertices a and b—call them endpoints—
and think of the graph as a “permanent” edge between vertices a and b; that is, this edge has to
be present in every graph in the graph family. In all subsequent figures, we will represent such
permanent edges as fat grey edges. In order to obtain a valid graph all of whose edges are assigned
to edge pairs, each of these permanent edges has to be replaced by a connector graph containing
the endpoints of the edge.

Given a formula F in 3-CNF with 7 variables x4, ..., x, and m clauses C4, ..., C,,, we construct
a graph G'(F) and assign its edges to appropriate edge pairs to obtain a graph family G(F). We
make sure that no edge is in more than two pairs and that G’(F), which is the union of the graphs
in G(F), is planar. We construct family G(F) in such a way that it contains a connected graph if
and only if F is satisfiable. Graph G'(F) consists of a long chain of permanent edges (connector
graphs sharing their endpoints); m vertices I, . .., [}, one per clause in F; and a number of regular
edges that represent the literals in the clauses of F (see Figure 2).

For every literal A, let k(1) be the number of clauses containing A. For a variable x;, we define
«*(x;) = |«(x;) —&(%;)|. Let «* = Y | k(x;). Then the chain of permanent edges contains 3m +
2k* 4+ 2 vertices. We denote the vertices in this chain by o+, as—1,..., 00, &, B/, B1, B2, - - -, Bxs,
VI, Y12, Y13, Y20, V2,2, Y23 « « «» Y1, Y2, Ym,3, in this order. Vertices I, ..., I}, are not part of this
chain. Besides the permanent edges, graph G’ contains regular edges ¢;; = (T}, v;;), 1 <i < m
and 1 < j < 3,and fi, 1 < k < «*. We refer to an edge ¢, ; as a [iteral edge and to an edge fi as a
dummy edge.

Graph G/'(F) is obviously planar. The presence or absence of dummy edges does not affect the
number of connected components in a subgraph of G'(F). For such a subgraph to be connected,
we need at least one edge ¢; ; per clause C; to be present. Next we group literal edges and dummy
edges into pairs so that, in every graph in G(F), a literal edge ¢; ; is present if and only if every
edge ey with A;; = Ay i is present and every edge ey » with A; ; = Ay j» is absent. Hence, the
presence and absence of edges in a graph in G(F) corresponds to a truth assignment to the vari-
ables x1, ..., x,; a graph G in G(F) is connected if and only if the corresponding truth assignment



Figure 2

The graph derived from the formula F = (x1V xp V X3) A (%1 V %2 V xg) A (x1V x3 V %1) A (x3 VX3V xg).
Regular edges are labelled with their names. The small italic labels identify the edge pairs that contain each
edge.

satisfies F.

Consider a variable x; and the literals AiyjireeesNig,j, SO that A; ;, = x; or A ;, = X, for
alll < h < g. We assume wlo.g. that A, ;; = -+ = A, = xcand Ay, 0,000, A X
for some 1 < r < g. We also assume that «*(x;) = k(xg) — (%), that is, there are at least as

= xk/

many positive literals x; in F as negative literals ¥x. Then we choose a set of s = «*(x¢) dummy
edges f,,..., fi, that have not been included in any pairs yet. We define the following edge pairs,
where t = g —r: {e&;, ;. €. .t for 1 < h <t {e i€ it forl < h < max(t,r —1);
{ei i S}, for 1. < h < s; and {fy,,€i,.,.. 50004, for 1 < h < s. Intuitively, this looks like
in Figure 3; that is, we construct a “path” of edge pairs, where edges corresponding to positive
and negative literals alternate until we run out of negative literals; once this happens, we place
a dummy edge between every pair of consecutive positive literals. Clearly, this ensures that all
edges corresponding to literal x; are either all present or all absent and that the former is the case
if and only if all edges corresponding to literal ¥, are absent, and the latter is the case if and only if
all edges corresponding to literal ¥, are present. Note that, by creating «* dummy edges, we made
sure that we have enough dummy edges to complete this construction for all variables x1, ..., x,
while using every dummy edge in the creation of edge pairs for exactly one variable x;. This
ensures that, indeed, every edge is in at most two edge pairs, as illustrated in Figure 2.

Lemma 1 There is a connected graph in G(F) if and only if F is satisfiable.

Proof. 1t follows from the above discussion that every graph G € G(F) corresponds to a valid
truth assignment to variables x1,..., x;. If G is connected, there is at least one edge connecting
each clause node T; to one of its corresponding nodes 7; ;. The presence of this edge corresponds
to the presence of a true literal in clause C;, namely A; ;. Hence, formula F is satisfied by the truth
assignment corresponding to G. Conversely, if F is satisfiable, there exists a truth assignment so
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Figure 3

The “path” of alternating literal edges for the variable x; in the formula F = (x1V x, V %3) A (%1 V X V
x4) A (%1 Va3V g) A(x2V X3V x4). The membership in edge pairs is shown by dotted boxes around every
such pair.

that every clause contains at least one true literal. Hence, in the graph G € G(F) corresponding to
this truth assignment, every clause node [; has at least one incident edge, and G is connected. [

From Lemma 1, we obtain our first main result.

Theorem 1 Planar k-MCP is NP-hard, for any k > 2.

Proof. Graph G'(F) has size ©(m) and is planar. It is easy to see that every edge is contained in
at most two edge pairs. Hence, graph family G(F) is 2-thick, and there are © (i) edge pairs. The
construction of graph G'(F) and of the edge pairs from a given formula F can be carried out in
O(m) time. Hence, if planar k-MCP is solvable in polynomial time, for any k > 2, so is 3-SAT. This
shows that planar k-MCP is NP-hard. O

Corollary 1 k-MCP is NP-hard, for any k > 2. In particular, MCP is NP-hard.

4 Existence of Profitable and Augmenting Flips and Sequences

Given the NP-hardness of k--MCP for k > 2, we restrict our attention to 1-MCP in the remainder
of this paper. We will apply a “greedy” strategy to solve 1-MCP: Given a 1-thick graph family
G(V,E), we start with an arbitrary graph G € G(V, E) and then compute an augmenting sequence
of flips that transforms G into a maximal graph. In this section, we prove that such a sequence
always exists; in fact, there always is such a sequence consisting of at most m flips. In the next
section, we show how to find such a sequence consisting of at most (1 — 2)m flips in O(n?m) time.
Efficiently finding an augmenting flip sequence for a non-maximal graph G that transforms G into
a maximal graph and consists of at most m flips is an open problem.



Let us start slowly, by showing that every non-maximal graph has a profitable, though not nec-
essarily augmenting flip. We prove that there is such a flip that leaves the connected components
of G invariant unless it is augmenting.

Lemma 2 Every non-maximal graph G in a family G(V,E) has an augmenting flip or a profitable
flip so that the connected components of G are invariant under this flip.

Proof. Observe that if G is a forest, it must be maximal. Hence, G is not a forest. Then we can
choose an edge e that is on a cycle in G. Removing edge e from G does not alter the connected
components of G. Adding edge é decreases the number of connected components by one if the
endpoints of € are in different connected components of G; the flip is augmenting in this case. If
the endpoints of & are in the same connected component of G, the addition of edge & leaves the
connected components of G invariant. O

Givena graph G, we call a flip of an edge ¢ € G greedy if the endpoints of edge ¢ are in different
connected components of G. A sequenceey, ..., ¢, of edge flips is greedy if, forevery 1 <i < g, the
flip of edge e; is greedy for G{ey, ..., e;_1). The following two observations suggest that restricting
our attention to greedy flips is a good idea.

Observation 1 A flip is augmenting for a graph G if and only if it is greedy and removes an edge
from a cycle in G.

Observation 2 An edge e € G so that the flip of edge e is greedy, but not augmenting, for G is a
cut-edge of G.

Another way to interpret Observation 2 is that non-augmenting greedy flips leave all cycles in
G intact. This will be important in a number of arguments we make. Also observe that for every
greedy flip e, edge € is a cut-edge of G(e). Armed with these two observations, we are now ready
to prove that not every non-maximal graph has an augmenting flip.

Lemma 3 Not every non-maximal graph has an augmenting flip.

Proof. Consider Figure 4a. By Observation 1, every augmenting flip has to remove an edge in
the bold triangle. However, none of these flips is augmenting, as each of them inserts an edge
between two vertices in the same connected component. Still, graph G is non-maximal because the
sequence 2, 5 transforms G into the graph in Figure 4b, which has one less connected component
than G. O

Even though, by Lemma 3, not every non-maximal graph has an augmenting flip, every such
graph has an augmenting sequence of flips.

Lemma 4 Every non-maximal graph has an augmenting sequence of flips.



Figure 4

(a) A graph G with no augmenting flip. Solid edges are in the graph; dotted edges are not in the graph
and can be exchanged for edges in the graph through flips. (b) A graph in the same family with one less
connected component than G.

Proof. Let G be a non-maximal graph in a 1-thick family G(V,E), let k = y(G) be the number
of connected components of G, and let G' € G(V, E) be a graph with less than k connected com-
ponents. Graph G’ exists because y(G) > y(G(V, E)). We prove the lemma by induction on the
number of edges in G that are not in G'. If there is exactly one such edge e, flipping this edge
transforms G into G’; this one-flip sequence is augmenting. So assume that G contains » > 1 edges
that are not in G’ and that the lemma holds for every graph G” that contains less than » edges
that are not in G’. Since G’ has one less connected component than G, there has to be an edge
e in G’ that connects two vertices in different connected components of G. The flip of edge ¢ is
greedy for G; that is, this flip is profitable, if not augmenting for G. If G(&) has less than k con-
nected components, then the one-flip sequence @ is augmenting for G. Otherwise, G(&) is a graph
with k connected components that contains less than r edges that are not in G’. Hence, by the in-
ductive hypothesis, there exists an augmenting sequence ey, ... ., ¢ of flips for G(€). The sequence
e ei,..., e is augmenting for G. O

The following corollary is an immediate consequence of the proof of Lemma 4.

Corollary 2 Every non-maximal graph in G(V, E) has an augmenting sequence of at most m flips.

In fact, the arguments in the proof of Lemma 4 are easily generalized to show the following
lemma. All we have to do is choose the graph G’ in the proof to be maximal and, instead of
stopping the construction as soon as we find a graph with less than k connected components,
continue flipping edges until we obtain a maximal graph.

Lemma 5 Every non-maximal graph G in G(V, E) has an augmenting sequence of at most m flips
that transforms G into a maximal graph.



5 Finding Augmenting Sequences of Flips

Given that every graph can be transformed into a maximal graph using a sequence of at most m
flips, each of which is profitable, we would like to be able to compute such a sequence. Finding an
efficient algorithm that computes such a sequence consisting of at most m flips is an open problem.
However, in this section, we provide an algorithm that finds an augmenting flip sequence of length
at most m for any non-maximal graph. Applying this procedure at most 7 — 2 times, we obtain a
maximal graph. Hence, by concatenating the computed flip sequences, we obtain a sequence of at
most (n — 2)m flips that transforms the given graph into a maximal one.

Given a graph G € G(V,E), we use an auxiliary directed graph H, which is derived from G,
to find an augmenting sequence of flips for G. We prove that every shortest path between certain
vertices in H corresponds to an augmenting sequence of flips for G and that at least one such path
exists if G is non-maximal. Hence, all we have to do is apply breadth-first search to H to either find
such a shortest path and report the corresponding sequence of flips or output that G is maximal if
no such path exists.

The vertex set of H is the edge set of G. For two edges e and f of G, there is an edge (e, f)
(directed from e to f) in H if the endpoints of & are in the same connected component of G, f is
a cut-edge of G, and f is on every path in G connecting the two endpoints of &. We allow edges
(e, e) if edge e is itself a cut-edge and is on every path connecting the two endpoints of &. We call
a source e of H a root if it does not correspond to a cut-edge of G; that is, there exists a simple
cycle in G that contains e. We call a sink e a leaf if edge é has its endpoints in different connected
components of G. To be more explicit, a vertex e may be a source if edge e is not a cut-edge oritisa
cut-edge that is not on any path connecting the endpoints of an edge f. Only in the former case is
the vertex considered to be a root. A vertex e may be a sink because the complementary edge & of
e has its endpoints in different connected components or because & connects two vertices in a cycle
in G. Only in the former case is the vertex considered to be a leaf. Every augmenting sequence
of flips has to flip an edge corresponding to a root, because it has to break at least one cycle in G.
It also has to flip at least one edge corresponding to a leaf in H because, otherwise, the flips in
the sequence cannot reduce the number of connected components. In particular, the augmenting
sequence constructed in the proof of Lemma 4 starts with a greedy flip, which corresponds to a
leaf in H, and ends with an augmenting flip, which, by Observation 1, corresponds to a root.

Our goal now is to show that graph H contains a root-to-leaf path if G is not maximal and that
every shortest such path corresponds to an augmenting sequence of flips. So assume that G is
not maximal, and let ey, ..., e; be an augmenting sequence of greedy flips for G. As shown in the
proof of Lemma 4, such a sequence exists if G is not maximal. Moreover, assume that ey, ..., e, is
the shortest augmenting sequence of greedy flips for G. The following two lemmas are the first
steps toward showing that there exists a root-to-leaf path in H.

Lemma 6 Edgesey,...,e; 1 are cut-edges of G.

Proof. Assume the contrary and choose j minimal so that ¢; is not a cut-edge; that is, ey,...,e;1
are cut-edges. We claim that ey, .. ., e; is an augmenting greedy sequence of flips. This would con-
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tradict the assumption that ey, ..., e, is the shortest greedy sequence of flips and would hence
prove the lemma. Sequence ey, ...,e; is certainly greedy, as every subsequence ey,...,¢, of a
greedy sequence of flips must itself be greedy. To see that sequence ey,...,¢; is augmenting,
observe that graph G{ey, ... ,ej,1> has no less connected components than G, because sequence
e1,...,e; is augmenting; edge &; has its endpoints in different connected components of graph
G{et,...,ej_1); and the cycles of G are invariant under deletion of cut-edges from G. Hence,
ej is not a cut-edge of G<e1,...,ej,1>. To summarize, flipping edge e; removes an edge from
a cycle and inserts an edge between two connected components of G(ey,...,e;j_1). Therefore,
by Observation 1, the flip of edge ¢; is augmenting for G{ei,...,ej_1), and y(G{ey,...,e;)) <
yY(Glet,...,ej—1)) <¥(G). O

Lemma 7 Edge e, is not a cut-edge of G.

Proof. Sincesequenceey,..., egisa shortest augmenting greedy sequence of flips, no subsequence
e, ---,€j, j < ¢,is augmenting. Hence, the flip of edge ¢, is augmenting for Gle, ... ,eq,1>. By
Observation 1, this implies that edge ¢, is not a cut-edge of Gle, ... ,€5—1 ). If ey is a cut-edge
of G, we choose j minimal so that ¢, is not a cut-edge of G(ey,...,e;). Since e, is a cut-edge of
G(et,...,ej_1), the insertion of edge &; must create a cycle in G(ey, ..., ¢;). But then the endpoints
of &; are in the same connected component of Gley, ... ,ej,1>, contradicting the greediness of se-
quence ey, ..., e5. Thus, edge e, is not a cut-edge of G. O

Lemma 7 implies that ¢, is a root in H. Since the endpoints of edge ¢; are in different connected
components of G, by the greediness of sequence ¢, ..., ¢, edge ¢; is a leaf of H. Hence, to prove
that graph H contains a root-to-leaf path if G is not maximal, it suffices to show that there exists
a path from e, to ¢;. We are unable to show exactly this; but we can show that if there is no path
from e, to eq, there exists a path from ¢, to another leaf.

Lemma 8 If G is not maximal, then there exists a root-to-leaf path in H.

Proof. Consider the same augmenting greedy flip sequence ey, ..., ¢, as before. (For this proof, it
is irrelevant whether this sequence is shortest possible.) We have just observed that e is a leaf,
and e, is a root of H. We show that for every edge ¢;, 1 < i < g, there exists a path from ¢; to
a leaf in H. Hence, this is true in particular for ¢,, which is a root. The proof is by induction.
Since ¢1 is itself a leaf, the claim holds for ¢1. So assume that i > 1 and that the claim holds for
e1,...,ei1. If e; is a leaf, the claim holds for ¢;. Otherwise, the endpoints of ¢; are in the same
connected component of G. But they are in different connected components of G{ey,...,e;_1); so
there must be an edge e;, j < i, that is on all paths in G connecting the endpoints of ¢;. This implies
that ¢; is an out-neighbour of ¢; in H. By the induction hypothesis, there exists a path from ¢; to a
leaf. This implies that there exists a path from e; to a leaf. O

Given that graph H is guaranteed to contain a root-to-leaf path if G is not maximal, it is natural
to ask what the relationship between root-to-leaf paths in H and augmenting flip sequences for G
is. Our first question is whether just any root-to-leaf path corresponds to an augmenting sequence
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Figure 5

(a) A portion of a graph G and four edge pairs. Solid edges are in G. Dashed edges are not in G. The edge
in G that belongs to pair 1 is not shown; it belongs to a cycle in G. (b) The graph G{ey, . .., e4) has the same
number of connected components as graph G. (c) The graph G(ey, e4) has one less connected components
than G.

of flips. The example in Figure 5 provides a negative answer. However, the problem with this
example seems to be that we did not choose the shortest path from the root e; to the leaf e4. The
shortest path is (eq, e4); as shown in Figure 5¢, the sequence ¢y, ¢4 is augmenting. Next we prove
that every shortest root-to-leaf path in H corresponds to an augmenting sequence of flips. To
prove this fact, we make use of the following two results.

Lemma 9 For a shortest root-to-leaf path (ey, ...,e;) in Hand any 1 < i < g, edges & and e; 1 are
in a common cycle of graph G{ey, ..., ;).

Proof. Assume that the lemma does not hold. Then there exists an i so that edges ¢; and e; ; are
not in a common cycle in G{ey, ..., ¢;). Choose i minimally so. Since edge (¢;,¢;,1) exists in H,
edges ¢; and ¢;,1 are in a common cycle in G U {¢;}. Choose j maximal so that & and ¢;. are
in a common cycle of G{ey,...,e,) U{&}, forall0 < h < j. Then j < i, and edges ¢; and ¢; 1
do not belong to a common cycle in the graph G{e1,...,¢j.1) U {&}. Hence, edge ¢, is on the
cyclein G{ey,...,e;) U {&} containing edges e; 1 and ¢; (see Figure 6a). Since é; and e}, belong to
the same cycle in G{ey, ..., e;), the removal of edge e; still leaves a cycle containing &; and e;
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Figure 6
(a) Edges e;41 and e, belong to a cycle in G{ey, ..., e;) U {g}. (b) If edge ;11 is not on the cycle in
Gle1,---,e;) containing edges e;,1 and ¢;, then there exists a cycle (bold) in G{ey, ..., ej41) U {&} that
contains edges ; and e; 1. (c) The case when edge e;, 1 is on the cycle in G{ey, .. ., e;) containing edges e;1
and e;

i
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Figure 7
The proof that there must be an edge (&, ¢;41) in H, where 1 < i, if edge ;1 is on the cyclein G{ey, ..., ;)
that contains edges ¢;.1 and &;.

(Figure 6b), unless the cycle containing &; and ¢;,1 also contains ¢; 1 (Figure 6c). In the former
case, we obtain a contradiction to the assumption that no cycle containing é; and e;;1 exists in
Gle1,...,ej11) U {&}. We prove that in the latter case, there exists a shorter path from ¢; to ¢; in
H, which contradicts the assumption that path ey, ..., e, is a shortest root-to-leaf path in H. This
proves that edges é; and e; .1 do belong to a common cycle in G{ey, ..., ¢;).

Since edge (ej,e;11) exists in H, edge e, is a cut-edge on the path in G connecting the two
endpoints of &;. If ¢, ; is also on this path, then edge (¢;, ;1) exists, and (eq,...,ej,¢i11,...,¢;) is
a shorter path from e to ¢, in H, a contradiction. So assume that ¢; 1 is not on this path. Edge e;
is a cut-edge of G, and initially both endpoints of edge @ jarein the same connected component of
G —¢;,1. Moreover, none of edges &y, ..., &; connects two vertices in different connected compo-
nents of G. Hence, the only way to create a path in G{ey, ..., ¢ j,1> that connects the endpoints of
edge ¢; and contains edge e;, 1 is the addition of an edge &, I < j, whose endpoints are in differ-
ent connected components of G — ¢;11, but in the same connected component of G (see Figure 7).
Then, however, edge (e, ¢;+1) exists in H, and the path (e, ..., ey, ¢i11,...,¢,) is a shorter path
from e to e, in H, again a contradiction. O

Corollary 3 Letey,...,e; be a shortest root-to-leaf path in H; let Vi, ..., V| be the vertex sets of the
connected components of G; and let Wy, ..., W, be the vertex sets of the connected components
of Gley, .. .,ej>, for an arbitrary 1 < j < q. Then k = I, and there exists a permutation o so that
V,' = W(T(i)/ foralll S i S k.

Using Lemma 9 and Corollary 3, we can now prove that every shortest root-to-leaf path in H
corresponds to an augmenting sequence of flips for G.

Lemma 10 A shortest root-to-leaf path in H corresponds to an augmenting sequence of flips for
G.

Proof. Consider a shortest root-to-leaf path ey,...,e; in H. By Corollary 3, all flips in the se-
quence ey, ...,e, 1 are profitable, but not augmenting. By Lemma 9, edge ¢, belongs to a cycle
inGley,..., eq,1> ; by Corollary 3, edge &, has its endpoints in different connected components of
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Gle,..., €51 ), because this is true in G. Hence, by Observation 1, the flip of edge eq isaugmenting
for G{ey,...,e; 1), and the whole sequence ey, ... ., ¢; is augmenting for G. O

Given this correspondence between root-to-leaf paths in H and augmenting sequences for G,
we can find an augmenting sequence of flips for G in O(nm) time: First we create the vertex set of
graph H by adding a vertex for every edge of G. Next we identify the cut-edges of G and label all
those vertices in H as roots whose corresponding edges in G are not cut-edges. We contract every
2-edge connected component into a single vertex. Call the resulting graph G’. We compute its
connected components, which are trees, and root each such tree at an arbitrary vertex. To identify
the edge set of H and the leaves of H, we scan the set of complementary edges of the edges in
G. We can discard edges which have become loops as the result of the contraction of the 2-edge
connected components of G, as they run parallel to a path in a 2-edge connected component of G
and hence neither have any out-neighbours nor are leaves. We mark a vertex e in H as a leaf if
the endpoints of edge é are in different connected components of G’. For every edge é that is not
a loop and that has its endpoints in the same connected component of G’, we add an edge (e, f),
for every edge f on the tree path connecting the endpoints of é. These edges can be identified by
traversing paths from the endpoints of é to their LCA in the tree. Since there are at most n — 1
cut-edges in G, the edge set of G’ has size at most n — 1; the vertex set has size at most 1. There
are m edges &. Hence, after constructing G/, which takes O(n + m) time, it takes O(nm) time to
construct H. Now we decide whether there exists a root-to-leaf path in H and, if so, find a shortest
such path by running BFS simultaneously from all roots. That is, we place all the roots at the first
level of the BFS and then grow the BFS-forest as usual level by level. This takes O (nm) time. If G
is not maximal, our discussion implies that this procedure finds a root-to-leaf path. Since we use
BFS to find it, it is a shortest such path. Hence, we report the sequence of flips corresponding to
the vertices on the path as an augmenting sequence of flips.

Theorem 2 It takes O(nm) time to decide whether a graph G € G(V, E) is maximal and, if not,
find an augmenting sequence of at most m flips.

Corollary 4 It takes O(n’m) time to compute a maximal graph G € G(V,E). The procedure to
compute G performs at most (n — 2)m edge flips, each of which is profitable.

Proof. We start with an arbitrary graph G € G(V,E), which can be constructed in O(n + m)
time. If there is at least one edge pair in E, graph G has at most n — 1 connected components;
otherwise, G is maximal, and we are done. A maximal graph in G(V, E) has at least one connected
component. Hence, we can construct a sequence G = Gqy, ..., G; of at most n — 2 graphs so that
G; is maximal and G; is obtained from G;_; through an augmenting sequence of flips. Such a
sequence can be found in O(nm) time, for every graph G, 1, and we repeat this computation at
most n — 2 times. Hence, we obtain G; from G in O(n?m) time. Every graph G; is obtained from
graph G;_; using an augmenting sequence of at most m edge flips. Hence, we perform at most
(n — 2)m flips in total, and every flip is profitable. O
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6 Connectivity of Sub-Families Under Edge Flips

Since every graph in a 1-thick family G(V, E) can be transformed into a maximal graph, an inter-
esting question to ask is whether for any two graphs G; and G in G(V, E) with at most k con-
nected components, there exists a flip sequence ey, . .., ¢, that transforms Gy into G2 and such that
Y(Gi{er,...,e)) <k foralll <i < g. We call such a sequence semi-profitable, as not all its flips
are necessarily profitable, but the sequence maintains a certain minimal connectivity throughout.
Another question to ask is how many flips such a sequence has to contain. Formally, this trans-
lates into the following problem: We consider a given family G(V, E) to be a graph whose nodes
correspond to the graphs in G(V,E). There is an edge between two nodes in this graph if the
two corresponding graphs can be transformed into each other by flipping a single edge. For any
k > v(G(V,E)), we denote by G(V, E) the subgraph of G(V, E) induced by all nodes whose
corresponding graphs have at most k connected components. Then we ask whether G<(V, E)
is connected, for any k > y(G(V,E)), and, if so, what is its diameter. We prove that G<(V, E)
is connected, for every k > y(G(V,E)), and that G, gv,r))(V, E) may be disconnected. We also
show that, for k > y(G(V, E)), G<x(V, E) has diameter at most 2m. To show this, we prove a fact
that is in a sense orthogonal to Lemma 5. While Lemma 5 shows that every non-maximal graph
can be transformed into sorme maximal graph using an augmenting sequence of at most m flips,
we prove next that every non-maximal graph can be transformed into any maximal graph using a
semi-profitable sequence of at most m flips, which is not necessarily augmenting,.

Lemma 11 For any graph family G(V,E) and any k > y(G(V,E)), G<(V, E) is connected and has
diameter at most 2m.

Proof. The proof is an adaptation of the proof of Lemma 4. We prove that, for any two graphs
G1 and G in G<(V, E), where G; is maximal, there exists a semi-profitable sequence e, ... /€4
of at most m flips that transforms Gy into G,. Note that this implies the lemma because, for any
two graphs Gy and G, in G (V, E), we can choose a maximal graph G; and two semi-profitable
sequences sequences e1, ..., e; and ey, ..., € that transform Gy and G; into Gz and such that g, <
m. Then the sequence ey, ..., ¢, e, ...,&,which has length g + » < 2m, transforms Gy into G, and
is semi-profitable for G;.

So let G1 € G<((V, E), let G, be maximal, and let ey, ..., e, be the edges in G; that are not in
Gz. We prove by induction on £ that there exists a permutation o : {1,...,¢} — {1,...,¢} such
that the sequence e, (1), ..., €4y is semi-profitable for G;. Clearly, Gy <e(r(1), e ,EG(€)> = G3. Since
£ < m, this proves our claim.

For £ = 1, there is exactly one edge e; € Gp that is not in G,. Flipping this edge produces
Gy; thatis, Gi{e1) = Gy. Since we flip exactly one edge and both G; and G, have no more than k
connected components, this establishes the base case of our inductive proof.

So assume that £ > 1 and that the claim holds for any two graphs G| and G} in G(V, E) such
that G} is maximal and G/ contains less than £ edges that are not in G5. If G; is maximal, we can
choose any edge in G; thatisnotin G, say 1, and flip it. Observe that graph G; (1) isin G(V, E).
This is true because G; is maximal and k > y(G(V, E)). Moreover, the edges in graph Gj{e1) that
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Figure 8
A family G(V, E) of graphs so that G, g(v,r)) (V, E) is disconnected.

are not in G; are edges e, . . ., ¢;. By the induction hypothesis, we can find a permutation of these
edges so that the resulting sequence is semi-profitable for Gy(e1). The sequence of flips starting
with edge 1, followed by this semi-profitable sequence of flips for Gi{e;), is semi-profitable for
Gi.

If G1 is non-maximal, there has to be an edge ¢; € G, that has its endpoints in two different con-
nected components of Gi. As argued before, the flip of edge ¢; is profitable for Gp in this case, so
that Gi{e;) is in G (V, E). The edges in Gi (¢;) that are not in G, are edgesei,..., ¢, 1,8 11,-.., €.
By the inductive hypothesis, we can find a permutation of these edges so that the resulting se-
quence is semi-profitable for Gy (¢;). The sequence of flips starting with edge e;, followed by this
semi-profitable sequence of flips for Gy (¢;), is semi-profitable for G;. This completes the inductive
step and thus finishes the proof of the lemma. O

The statement of Lemma 11 is true for any k > y(G(V, E)). Our proof of the lemma exploits
the fact that, for a maximal graph, any edge flip produces a graph that is in G<(V, E). Is this just
a caveat of the proof, or can G, g(v,r))(V, E) indeed be disconnected? The next lemma proves that
the latter is the case.

Lemma 12 There exists a graph family G(V, E) so that G, g(v,r))(V, E) is disconnected.

Proof. Consider the graph shown in Figure 8. The horizontal edges are permanent; that is, they
are to be replaced by connectors again. We can construct two graphs Gy and G; by including
the permanent edges and the solid vertical edges in G1 and including the permanent edges and
the dashed vertical edges in G,. Observe that, starting with G4, flipping any edge in a connector
does not bring us any closer to Gy; flipping any vertical edge increases the number of connected
components by one. Hence, there is no semi-profitable sequence of flips that transforms G; into
Go. O

7 Open Problems

The algorithm for finding an augmenting sequence of flips takes O (nm) time. We do believe that
there should be an O(n + m) time algorithm for this problem. If this is true, we would be able
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to compute a maximal graph in a 1-thick graph family G(V, E) in O(n(n + m)) time. What is the
lower bound for the running time of any algorithm that solves 1-MCP. Can one obtain a more
efficient algorithm for planar 1-MCP? Can we improve the output computed by the algorithm;
more precisely, is there an algorithm that computes an augmenting sequence ¢y, ..., ¢, of at most
m flips for any graph G € G(V, E) so that G{ey, ..., e;) is maximal? By Lemma 5, such a sequence
exists; but we do not know how to compute it efficiently. Also note that, if we drop the requirement
that every flip in the sequence be profitable, at most n — 1 flips suffice to obtain a maximal graph
from any graphin G(V, E). (It suffices to make sure that the edges in a spanning forest of a maximal
graph are present.) Is there an efficient algorithm to find these flips?

As for the diameter of G(V, E), for k > y(G(V, E)), we believe that it is at most am, for some
constant a < 2, but at least m + b, for some constant b > 1. Determining the correct bound is an
open problem.

Finally, one can ask similar questions about the behaviour of the biconnected components of a
graph under edge flips. We could define the maximal biconnectivity problem (MBP) as the prob-
lem of finding a graph in a family G(V, E) that has the minimal number of biconnected compo-
nents. We can then ask whether (planar) k-MBP is NP-hard for k > 2. We believe that the answer
to this question is “yes” and that some adaptation of our proof from Section 3 proves this. The
more interesting question is how to adapt our algorithm for 1-MCP to obtain an efficient solution
for 1-MBP.

Acknowledgments. I would like to thank Anil Maheshwari for some insightful discussion on
the subject and Ferran Hurtado for giving a talk that made me see 1-MCP as an edge-flip problem.
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