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Abstract

A method to generate lower bounds for the channel assignment problem is given.
The method is based on the reduction of the channel assignment problem to a
problem of covering the demand in a cellular network by pre-assigned blocks of
cells, called tiles. This tile cover approach is applied to networks with a co-site
constraint and two different constraints between cells. A complete family of lower
bounds is obtained which include a number of new bounds, and improve or include
almost all known clique bounds. When applied to an example from the literature,
the new bounds give better results.

1 Introduction

Finding an optimal assignment of communication channels in a cellular network
is a difficult combinatorial optimization problem which has received considerable
attention over the last decade. This is due to the explosive growth of wireless com-
munications and the scarcity of the radio spectrum. The channel assignment prob-
lem (CAP) is NP-complete even in a drastically simplified form, and, consequently,
most efforts have gone towards the development of good heuristics. (Recently, in-
teger programming techniques which can lead to exact solutions have been used.
See, for example, [11]). Lower bounds play an important role in the evaluation
of any heuristic or approximation algorithm. Moreover, lower bounds can help to
identify the structures that form the bottleneck for a particular instance, and this
information can, in turn, be used to find better assignments.
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A basic model for a cellular network describes it in terms of the demand for
channels in each cell and a set of separation constraints which prescribe minimal
separations that must exist between channels assigned to certain cells in order to
avoid interference. The goal of the CAP is to assign channels (represented by inte-
gers) to the cells such that each cell receives as many channels as its demand requires
while respecting the separation constraints. Here, the objective is to minimize the
span of the assignment which is the difference between the highest and the lowest
channel assigned. (An alternative objective, when a limited span is given, can be
to minimize the number of violated interference constraints.)

Cellullar networks can be modeled as graphs where the nodes of the graph rep-
resent the cells, and two nodes are adjacent precisely when there exists a (non-zero)
separation constraint between them. The demands are given by a weight vector
indexed by the nodes, and the separation constraints are given by a vector indexed
by the nodes and edges. When all separation constraints are 1, the CAP reduces to
the problem of finding a colouring of a weighted graph.

The minimal span needed for any assignment will generally be determined by
the cells with highest demand. It is reasonable to assume that these cells will often
be geographically close, corresponding, for example, to a business district or a city
center. Since interference also tends to be highest between cells that are close, these
cells will often form a clique in the underlying graph.

Most lower bounds for the CAP are therefore based on cliques. The simplest
clique bound, mentioned in [5] but generally considered folklore, is found by assum-
ing all edge constraints and co-site constraints are equal to the lowest constraint in
the clique. A first refinement was obtained in [5], by considering two different con-
straints. A second refinement, similar to the situation studied here, was considered
in [16]. In all of these cases, bounds were obtained using ad-hoc methods.

In this paper, we study networks where the separation constraint between differ-
ent cells can take only three values, one of which is reserved for the co-site constraint.
The co-site constraint is the separation constraint between channels assigned to the
same cell, or node. Naturally, any bounds obtained from this approach can also be
used in networks with more general constraints by reducing the constraints in any
particular set of edges to the lowest constraint in that set.

We describe how lower bounds can be generated from an approach based on
reducing the CAP to a covering problem. The crucial step is to show that any
channel assignment can be broken down into a small blocks called tiles. A tile
cover is a collection of tiles so that the number of tiles covering a node equals the
number of channels assigned to that node. The conversion of the CAP to a tile
cover problem brings the advantage that tile covers can be easily analyzed using LP
duality and polyhedral methods. A similar tile cover method, applied to the simpler
case of cliques with one co-site constraint and one edge constraint, can be found in
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[10]. This particular result is used in our paper as the base case for the induction
which forms the proof of our main theorem. In [12], heuristic frequency assignment
methods using pre-assigned “tiles” of assigned channels are applied successfully to
a number of CAP instances.

We apply the tile cover approach to configurations which we call nested cliques.
These are cliques consisting of an inner clique and an outer clique where all edge
constraints involving an inner clique node take the larger constraint value, while all
edge constraints containing only nodes from the outer clique take the smaller value
(see Section 2 for a more precise definition). Nested cliques arise naturally from
the geographical layout of cellular networks and the fact that interference levels are
generally lower between transmitters that are at greater distance from each other.
Hence, it will be common to find a cluster of cells with high interference constraints
between them surrounded by an outer shell of cells at greater distance, and thus
with weaker interference constraints. Such a situation will form a nested clique in
the interference graph.

Using the tile cover approach on nested cliques, we derive a comprehensive family
of general “second generation” clique bounds. This family includes all bounds from
[5], and improves the bound obtained in [16]. We also show, using an example, how
the approach can be used directly to obtain specific lower bounds for any specific
set of parameters.

There are two types of clique bounds that cannot be derived directly from our
approach. In [14] and [7], it was shown how the Traveling Salesman Problem and
its Linear Program relaxation can be used to derive lower bounds for cliques. This
approach is most effective when the co-site constraint is relatively low. In [17] a
lower bounding method is described which is based on network flows. However,
our tile cover bounds give better results when applied to the example given in this
paper.

Since it is NP-hard to find a maximum weight clique in a graph, it will also
be hard to find the nested clique that gives the best bound. However, clique enu-
meration procedures such as the Cardaghan-Pardalos algorithm (see [4]) give good
performance in practice. The reduction of the CAP to a tile cover problem leads
to an easy way of computing the lower bound for any particular clique by way of a
linear program. Alternatively, any particular network can be analyzed in advance
using our method, and a complete family of easily computable lower bounds can be
obtained. Therefore, we expect the computation of the best tile cover clique bound
to be feasible and realistic.

In Section 3, we describe the tiles that can occur in a tile cover for nested cliques.
A cost is associated with each tile, which roughly corresponds to the part of the
span taken up by assigning channels to the tile. Our main result, proven in Section
5, states that each channel assignment can be reduced to a tile cover, such that the
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cost of the cover is no larger than the span of the assignment. This then implies
that any lower bound on the cost of a tile cover is a lower bound on the span of a
channel assignment.

In Section 4, we develop lower bounds for tile covers, which then directly trans-
late into bounds for the CAP. First we formulate the Integer Program which finds
tile covers of minimal cost, and then use its LP relaxation, LP duality and poly-
hedral methods to obtain lower bounds. We show how this approach generates or
generalizes the bounds from [5] and [16]. Moreover, we show how the same method
could be used to generate lower bounds for any particular choice of parameters. We
demonstrate this approach on an instance of the CAP taken from [17], where our
methods give an improvement of 13% over the previously best bound.

2 Preliminaries

For the basic definitions of graph theory we refer to [3]. A (simple) graph G is a
pair (V,E) of a node set V and an edge set E, where E is a set of 2-subsets of V .
A clique in a graph is a set of nodes of which every pair is adjacent.

In this paper, we will use the following notation for integer vectors: if y ∈ ZV

for some set V , then y(v) is the coordinate of y indexed by v. Sets will often
be represented by their characteristic vectors. Given a set V and A ⊆ V , the
characteristic vector χA ∈ ZV

+ is defined as follows:

χA(v) =
{

1 if v ∈ A
0 otherwise

Conversely, given a vector y ∈ ZV
+, the support of y, denoted by V (y), is the set

of all nodes in V indexing non-zero coordinates of y, so

V (y) = {v ∈ V : y(v) > 0}.

A constrained graph G = (V,E, s, e) is a graph G = (V,E) and positive
integer vectors s ∈ ZV

+ and e ∈ ZE
+ representing the reuse constraints: the vector

s represents the co-site constraints, the required separation between channels
assigned to the same node, and e represents the edge constraints, the required
separation between channels assigned to the two endpoints of an edge.

A constrained, weighted graph is a pair (G,w) where G is a constrained
graph and w is a positive integral weight vector indexed by the nodes of G. The
coordinate of w corresponding to node u is denoted by w(u) and called the weight
of node u. The weight of node u represents the number of channels needed at node
u.
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A channel assignment for a constrained, weighted graph (G,w) where G =
(V,E, s, e) is an assignment f of sets of non-negative integers (which will represent
the channels) to the nodes of G which satisfies the conditions:

|f(u)| = w(u) (u ∈ V ),
i ∈ f(u) and j ∈ f(v) ⇒ |i− j| ≥ e(uv) (uv ∈ E, u 6= v),
i, j ∈ f(u) and i 6= j ⇒ |i− j| ≥ s(u) (u ∈ V ).

For reasons of brevity, throughout this paper we will use the notation f(V ) to
denote f(V ) =

⋃
u∈V f(u), in deviation from the standard definition of f(V ) =

{f(u) |u ∈ V }.
The span S(f) of a channel assignment f of a constrained weighted graph is

the difference between the lowest and the highest channel assigned by f , in other
words, S(f) = max f(V )−min f(V ). The span S(G,w) of a constrained, weighted
graph G and a positive integer vector w indexed by the nodes of G is the minimum
span of any channel assignment for (G,w).

We will consider complete graphs with constraints that have a special, nested
structure. A constrained graph G = (V,E, s, e) is a nested clique with parameters
(k, u, a), where k ≥ u ≥ a, if s(v) ≥ k for all v ∈ V , and V can be partitioned
into two sets Q and R such that e(vw) ≥ a if v,w ∈ R, and e(vw) ≥ u otherwise.
The parameters k, u and a are always assumed to be positive integers. We can also
assume that k > 1. Otherwise, we would have k = u = a = 1, and S(G,w) =∑

v∈V w(v)− 1

3 Tile Covers

In this paper, we reduce the channel assignment problem for nested cliques to a
tile covering problem. The tiles that may be used for a tile cover are defined in
this section. We can think of these tiles as partial assignments, or ‘building blocks’,
from which any possible assignment can be constructed.

We assume that a particular nested clique G with node partition (Q,R) and
parameters (k, u, a) is given. We define the set T of all possible tiles that may be
used in a tile cover of G. All tiles are defined as vectors indexed by the nodes of
G. For reasons of brevity we will sometimes identify a tile with its support, and
thus think of tiles as node sets. It is this representation that allows mention of ‘the
nodes in tile t’.

In order to facilitate the definition and the proof of Theorem 5.1, we distinguish
various categories of tiles. So

T = TQ ∪ TR ∪ TQR ∪ T big
QR .

The tiles in each category are defined below.
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TQ = {χA : A ⊆ Q},
TR = {χB : B ⊆ R},
TQR = {χA + χB : A ⊆ Q, B ⊆ R where A 6= ∅, B 6= ∅}
T big

QR = {χA∪B + χA2∪B2 : A2 ⊆ A ⊆ Q, B2 ⊆ B ⊆ R, A2 6= ∅, B2 6= ∅}

The tiles in T big
QR will be called big tiles. Note that all coefficients of tiles in TQ,

TR and TQR have value either zero or one, while for tiles in T big
QR , the coefficients

indexed by nodes in A2 and B2 have value 2.
A tiling is a collection of tiles from T (multiplicities are allowed). We represent

a tiling by a non-negative integer vector y ∈ ZT
+, where y(t) represents the number

of copies of tile t present in the tiling. A tile cover of a weighted nested clique
(G,w) is a tiling y such that

∑
t∈T y(t)t(v) ≥ w(v) for each node v of G.

With each tile t ∈ T we associate a cost c(t). The costs of the tiles in each
category are given in Table 1. The cost of each tile t is derived from the span of a
channel assignment for (G, t) plus a ‘link-up’ cost of connecting the assignment to a
following tile. This ‘link-up’ cost is calculated using the assumption that the same
assignment will be repeated. For example, t = χA, where A = {v0, . . . , vj−1, vj},
is a tile of j + 1 distinct vertices in Q. Then the minimum span of (G, t) is u,
and an assignment of minimum span would be f(vi) = iu for all i. However, if
this assignment is repeated, the next channel that can be assigned will be (j + 1)u,
which is u more than the highest channel in the assignment. Hence the “link-up”
cost of this assignment equals u.

In other words, the cost of a tile t is such that for any constant α the minimum
span of (G,αt) equals αc(t) minus a small constant, or

S(G,αt)
α

→ c(t) as α →∞.

It will follow from Theorem 5.1 that our choice of the costs is justified.
The cost of a tiling y, denoted by c(y), is the sum of the cost of the tiles in the

tiling. So c(y) =
∑

t∈T y(t)c(t). The minimum cost of a tile cover of a weighted
nested clique (G,w) will be denoted by τ(G,w).

4 Polyhedral Bounds from Tile Covers

In Section 5 we will prove the following theorem.

Theorem 5.1. Let G be a nested clique with node partition (Q,R) and parameters
(k, u, a). Then for any weight vector w for G,

S(G,w) ≥ τ(G,w) − k.

6



Number of Number of
Category nodes in Q nodes in R Cost

TQ n 0 max{k, nu}
TR 0 m max{k, ma}
TQR n m max{k, nu + ma + u− a}
T big

QR n, of which m, of which max{k, nu}+ max{k, ma}
n2 have value 2 m2 have value 2 +n2u + m2a + u− a

Table 1: Costs of tiles

In this section, we will demonstrate how this theorem, combined with polyhedral
methods, leads to new lower bounds for S(G,w).

The problem of finding a minimum cost tile cover of (G,w) can be formulated
as an integer program (IP):

Minimize
∑

t∈T c(t)y(t)
subject to:∑

t∈T t(v)y(t) ≥ w(v) (v ∈ V )
y(t) ≥ 0 (t ∈ T )
y integer

We obtain the linear programming (LP) relaxation of this IP by removing the
requirement that y must be integral. Any feasible solution to the resulting linear
program is called a fractional tile cover. The minimum cost of a fractional tile
cover gives a lower bound on the minimum cost of a tile cover. The dual of this LP
is formulated as follows.

Maximize
∑

v∈V w(v)x(v)
subject to:∑

v∈V t(v)x(v) ≤ c(t) (t ∈ T )
x(v) ≥ 0 (v ∈ V )

By linear programming duality, the maximum of the dual is equal to the mini-
mum cost of a fractional tile cover. Thus, any vector that satisfies the inequalities
of the dual program gives a lower bound on the cost of a minimum fractional tile
cover, and therefore also on the span of the corresponding complete constrained,
weighted graph. The maximum is achieved by one of the vertices of the polytope
TC(G) defined as follows:

TC(G) = {x ∈ QV
+ :

∑
v∈V

t(v)x(v) ≤ c(t) for all t ∈ T }.
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A classification of the vertices of this polytope will therefore lead to a compre-
hensive set of lower bounds that can be obtained from fractional tile covers. The
next theorem demonstrates the strength of the tile cover approach, by giving a
family of bounds for nested cliques with parameters (k, u, 1).

Theorem 4.1 Let G be a nested clique with node partition (Q,R) and parameters
(k, u, 1). Let w ∈ ZV

+ be a weight vector for G, and let wQmax be the maximum
weight of any node in Q, and wRmax the maximum weight of any node in R. Then

τ(G,w) ≥ (λ1 − λ2)wQmax + λ2

∑
v∈Q

w(v) + (λ3 − λ4)wRmax + λ4

∑
v∈R

w(v),

for each 4-tuple (λ1, λ2, λ3, λ4), where λ1, λ2, λ3 and λ4 can take the following
values:

λ1 λ2 λ3 λ4 Case
k 0 0 0 (1)
0 0 k 0 (2)

k − (µ− 1)δ δ δ 0 (3)
δ δ k − (µ− 1)δ 0 (4)

k − (µ− 1)δ δ ε ε (5)
u u 1 1 (6)
u u u k−u

k−1 (7)
2u− 1 ν 1 1 (8)

where µ = bk
uc, δ = (µ + 1)u− k, ε =

{
1 if µ = 1
min{ δ

k−2u+1 , 2u+µδ−δ
k+1 , 1} otherwise

, and

ν =
{

1 if µ = 1
u−max{u−1

µ , δ−1
µ−1} otherwise .

Proof. For the proof we consider feasible points in TC(G) that are of the form
λ1χ

{q} + λ2χ
Q−{q} + λ3χ

{r} + λ4χ
R−{r}, where q ∈ Q and r ∈ R, and λ1 ≥ λ2,

λ3 ≥ λ4.
For such points, the inequality system that defines TC(G) reduces to the follow-

ing form:
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λ1 + (µ− 1)λ2 ≤ k
λ1 + µλ2 ≤ (µ + 1)u
λ3 + (k − 1)λ4 ≤ k
λ1 + (n − 1)λ2 + λ3 + (m− 1)λ4 ≤ max{k, nu + m + u− 1} for all m,n > 0, and

n < µ or m < k.
2λ1 + (µ− 1)λ2 + 2λ3 + (k − 1)λ4 ≤ 2k + 2u
2λ1 + µλ2 + 2λ3 + (k − 1)λ4 ≤ k + (µ + 3)u
λ1, λ2, λ3, λ4 ≥ 0

The first and second inequalities are obtained by choosing tiles of size µ and
µ + 1, respectively, from TQ. The inequalities corresponding to smaller tiles from
TQ are implied by this first inequality since λ2 ≥ 0 and the cost of any such tile is
k. The inequalities corresponding to larger tiles from TQ are implied by the second
inequality since the cost of a tile in TQ never increases by more than u if a node
from Q is added, and λ1 ≥ λ2 implies that λ2 ≤ u.

The third inequality is derived from a tile of size k from TR. The inequalities
corresponding to smaller tiles from TR are implied since λ4 ≥ 0 and the cost of any
such tile is k. Furthermore, the third inequality also implies that λ4 ≤ 1, and since
the cost of a tile in TR never increases by more than 1 if a node from R is added,
the inequalities that correspond to larger tiles from TR are also implied.

The forth inequality is derived from a tile in TQR where n < µ or m < k. The
inequalities derived from other tiles in TQR are implied by the first three inequalities.
(If n = µ and m ≥ k, the sum of the first and third inequalities suffice. If n > µ
and m ≥ k, the second and third inequalities suffice.)

The final two inequalities are obtained by choosing tiles from T big
QR where nodes

q and r have weight two, all others have weight one, and m = k. We have n = µ
and n = µ + 1 in the fifth and sixth inequalities, respectively. Note that the cost
of a tile in T big

QR never increases by more than u if a node from Q is either added or
has its weight increased from one to two. Similarly, the cost increases by no more
than 1 if a node from R is either added or has its weight increased from one to two.
Therefore, the inequalities corresponding to tiles of other sizes in T big

QR are implied.
We now turn our attention to verifying that Cases 1 through 8 listed in the

Theorem give feasible points. During this process, note that each point satisfies at
least one of the inequalities with equality.

All of the cases can be easily verified for µ = 1, so we will only consider µ ≥ 2.
Cases (1), (2), (6) and (7) are straightforward, keeping in mind that µu ≤ k and
u ≥ 1. We leave verification of these cases to the reader. A discussion of the
remaining cases follows.

Case (3). The first three inequalities, as well as the fifth inequality, can be easily
verified using the definition of δ and the fact that δ ≤ u ≤ k.
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To verify the fourth inequality, note that k − (µ − 1)δ + (n − 1)δ + δ = (µ +
1)u + (n − µ)δ. If n ≥ µ, we use the substitution δ ≤ u to obtain (µ + 1)u + (n −
µ)δ ≤ nu + u + m − 1. Otherwise, the substitution n ≤ µ − 1 is used to obtain
(µ + 1)u + (n− µ)δ ≤ k. The fourth inequality follows.

For the sixth inequality, note that 2(k− (µ−1)δ)+µδ +2δ = k+(µ+1)u+2δ +
(1−µ)δ). Since µ ≥ 1 and δ ≤ u, we have k+(µ+1)u+2δ+(1−µ)δ ≤ k+(µ+3)u.

Case (4). The first three inequalities are easily verified keeping in mind δ ≤ u and
µu ≤ k. The remaining inequalities are identical to those in Case (3).

Case (5). If µ = 1 then the inequalities are easily verified using the fact k ≤ 2u−1.
Hence, we will assume that µ ≥ 2.

The first two inequalities are easily verified, and the third follows from the fact
that ε ≤ 1. To verify the fourth inequality, we need to show that k+(n−µ)δ+mε ≤
max{k, nu + u + m− 1} for n < µ or m < k.

If n ≥ µ, then k + (n−µ)δ + mε ≤ k + (n−µ)u+ m. Since k−µu < u, we have
k + (n− µ)u + m < nu + u + m.

Suppose n < µ and m ≤ k − 2u + 1. Since n − µ ≤ −1 and ε ≤ δ
k−2u+1 , then

k + (n− µ)δ + mε ≤ k. Furthermore, every increase of 1 in m results in an increase
of at most ε ≤ 1 in the cost of the tile. Hence, k + (n− µ)δ + mε ≤ nu + u + m− 1
for n < µ and m > k − 2u + 1, as well. Hence, the fourth inequality holds for all
required values of n and m.

The fifth inequality follows directly from the fact ε ≤ 2u+µδ−δ
k+1 , while the final

inequality uses this fact together with the substitution k + δ = (µ + 1)u.

Case (8). The first and fifth inequalities follow from the fact that ν ≤ u − δ−1
µ−1

and (µ + 1)u − δ = k. The second and sixth inequalities follow from the fact that
ν ≤ u − u−1

µ . The forth follows from the fact that ν ≤ u. The third inequality is
straightforward.

So for each vector x = λ1χ
{q}+λ2χ

Q−{q}+λ3χ
{r}+λ4χ

R−{r} with (λ1, λ2, λ3, λ4)
as given in the table, and q and r any nodes in Q and R, respectively, it holds that
x ∈ TC(G), and thus τ(G,w) ≥

∑
v∈V w(v)x(v). Since λ1 ≥ λ2 and λ3 ≥ λ4,∑

v∈V w(v)x(v) is maximized when we choose q and r to be the nodes of maximum
weight in Q and R, respectively. With this choice of q and r,

∑
v∈V w(v)x(v) =

(λ1 − λ2)wQmax + λ2
∑

v∈Q w(v) + (λ3 − λ4)wRmax + λ4
∑

v∈R w(v), and the result
follows. �

Theorem 4.1 leads to a family of bounds, since each case of values for the param-
eters (λ1, λ2, λ3, λ4) as given in the table leads to a different bound. Some of these
bounds are new, while others have been obtained before by conventional methods.

The bounds derived from Cases (5), (7) and (8) are new. From Case (7), where

10



(λ1, λ2, λ3, λ4) = (u, u, u, k−u
k−1 ) we obtain the bound

S(G,w) ≥ u(
∑
v∈Q

w(v) + wR max) +
k − u

k − 1

∑
v∈R,v 6=vRmax

w(v) − k.

This bound strengthens the bound S(G,w) ≥ u
∑

v∈C w(v) − u (first mentioned in
[5]), which holds for any clique C with where all edge constraints have value at least
u.

From Case (8), which uses the point (2u − 1, ν, 1, 1) we obtain the new bound

S(G,w) ≥ (2u− 1)wQmax + ν
∑

v∈Q,v 6=vQmax

w(v) +
∑
v∈R

w(v) − k.

In [15] a bound of (2u− 1)wQmax +
∑

v∈R w(v)− κ (where κ is a small constant) is
given for nested cliques with the special property that |Q| = 1. The bound resulting
from Case (8) can be seen as an generalization of this bound for nested cliques where
Q contains more than one node.

Case (5) uses the point (k − (µ− 1)δ, δ, ε, ε) and leads to the bound

S(G,w) ≥ (k − µδ)wQmax + δ
∑
v∈Q

w(v) + ε
∑
v∈R

w(v) − k.

The new bound from Case (5) can be seen as an extension of the bound S(G,w) ≥
(k − µδ)wmax + δ

∑
v∈C w(v) − κ (κ is a small constant) that was given for cliques

with co-site constraint k and uniform edge constraint u in [5].
Using the clique Q∪{vRmax} (with edge constraint at least u), our method also

gives the bound

S(G,w) ≥ (k − µδ)wmax + δ(
∑
v∈Q

w(v) + wRmax)− k.

We simply use Case (3) or Case (4), depending on whether wmax = wQmax or
wmax = wRmax, respectively.

The bound from Case (6), namely

S(G,w) ≥ u
∑
v∈Q

w(v) +
∑
v∈R

w(v) − k

was the first bound treating nested cliques specifically. It was derived in [5] using
ad hoc methods.

The bound derived from Cases (1) and (2) is the well known bound

S(G,w) ≥ kwmax − k.
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In all these results, we have used the general rule, stated in Theorem 5.1 that
S(G,w) ≥ τ(G,w)−k. A careful reading of the proof of Theorem 5.1 will show that
in most cases the extra term k is too pessimistic. In principle, it is possible to find a
more precise additive term by a more precise, and hence more complicated, analysis.
Since our main interest here lies in showing a method by which lower bounds can be
derived, rather than finding the best possible lower bounds, we contented ourselves
with the additive factor of k. However, this may cause our bounds to differ slightly
from the older bounds.

The following theorem gives two new bounds for another variation of the pa-
rameters (k, u, a).

Theorem 4.2 Let G be a nested clique with node partition (Q,R) and integer pa-
rameters (k, u, a), where bk

uc = 1 and bk
ac = 2. Let w ∈ ZV

+ be a weight vector for G,
and let wQmax be the maximum weight of any node in Q, and wRmax the maximum
weight of any node in R. Then

S(G,w) ≥ u(
∑
v∈Q

w(v) + wRmax) + α
∑

v∈R,v 6=vRmax

w(v) − k.

where α == min{3a−u
2 , k − u} and

S(G,w)) ≥ β
∑
v∈Q

w(v) + (2k − 3a)wRmax + (3a − k)
∑
v∈R

w(v)− k,

where β = min{2u + 3a− 2k, u}.

Proof. For the proof we again consider feasible points in TC(G) that are of the
form λ1χ

{q} + λ2χ
Q−{q} + λ3χ

{r} + λ4χ
R−{r}, where q ∈ Q and r ∈ R, and λ1 ≥ λ2,

λ3 ≥ λ4.
For such points, and for parameters as mentioned in the theorem, the inequality

system that defines TC(G) reduces to the following form:

λ1 ≤ k
λ1 + λ2 ≤ 2u
λ3 + λ4 ≤ k
λ3 + 2λ4 ≤ 3a
λ1 + λ3 ≤ 2u
λ1, λ2, λ3, λ4 ≥ 0

It is straightforward to check that (u, u, u, α) where α = min{3a−u
2 , k − u} and

(β, β, 2k − 3a, 3a − k) where β = min{2u + 3a − 2k, u} are feasible points of this
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system. When we choose the vectors of this form so that the maximum coordinates
correspond to the nodes of maximum weight, the bounds follow. �

The preceding theorems show how new lower bounds can be generated for any
particular choice of parameters. In practice, it will often be useful to apply the tile
cover method directly to the exact parameters of the particular network. For any
specific nested clique, a classification of all extreme points of TC(G) can be obtained
by using vertex enumeration software, for example the package lrs, developed by
David Avis [2]. In general, we can use the dual program to obtain families of vertices,
and hence bounds, for certain choices of parameters.

This approach is demonstrated in the following example. The example is taken
from [17], where it was used to demonstrate a lower bound derived from network
flows. We will see that our tile cover approach gives a significant improvement.

Example 4.1 Consider the cellular network layout as shown Figure 4.1. The cir-
cled numbers in each cell represent the label of the cell; the node associated with the
cell with label i is called vi. The larger number in each cell gives the demand in
the cell, i.e. the weight of the associated node. The particular hexagonal cell layout
of this example is that of the “Philadelphia problem” [1], which has been frequently
used as a benchmark for algorithms and lower bounds for the channel assignment
problem (see for example [5],[6],[9],[12],[13],[18]).

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21

28 13 15

28573631

8

8

8888 25

77521815

15

1310

Figure 1: The layout of the example.

The constraints are described in terms of the distance dij between the centers of
cells vi and vj where the unit is the distance between the centers of adjacent cells.

cij =




0 if dij > 3,

1 if
√

3 < dij ≤ 3,
2 if 0 < dij ≤

√
3,

5 if i = j
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This layout contains nested cliques of size 8, with 2 nodes in Q and 6 nodes in
R, and nested cliques of size 7, with one node in Q and 6 nodes in R. The nested
cliques have parameters (5, 2, 1).

For a nested clique with bipartition (Q,R) where |Q| = 2 and |R| = 6, we
derived a set of lower bounds using the software lrs. We looked for points of the
form (x1, x2, y1, y2, y3, y4, y5, y6), where x1 and x2 correspond to nodes of Q and
x1 ≥ x2, and y1, . . . , y6 correspond to the nodes of R, and y1 ≥ y2 ≥ ... ≥ y6. The
inequality system that defines TC(G) reduces to the following:

x1 + x2 ≤ 5
y1 + y2 + y3 + y4 + y5 ≤ 5
x1 + y1 + y2 ≤ 5
x1 + y1 + y2 + y3 ≤ 6
x1 + y1 + y2 + y3 + y4 ≤ 7
x1 + x2 + y1 ≤ 6
x1 + x2 + y1 + y2 ≤ 7
x1 + x2 + y1 + y2 + y3 ≤ 8
x1 + x2 + y1 + y2 + y3 + y4 ≤ 9
x1 ≥ x2, y1 ≥ y2 ≥ . . . ,≥ y6

x1, x2, y1, y2, y3, y4, y5, y6 ≥ 0

Given this system, lrs returned a set of vertices, 14 of which could be used to
generate lower bounds (the other vertices could be obtained from those 14 by dropping
some coordinates to zero).

We applied these bounds to the nested clique formed by the cells as indicated
in Figure 1. Here Q = {v9, v16}, and R = {v2, v8, v10, v15, v17, v20}. To obtain
best possible results, the nodes of larger weight in Q and R were matched with
larger coordinates xi or yi, respectively. The best result was obtained by the point
(3, 2, 1, 1, 1, 1, 1, 1). The corresponding lower bound is

S(G,w) ≥ 3w(v9) + 2w(v16) +
∑
v∈R

w(v) − 5

= 3 · 77 + 2 · 57 + (52 + 36 + 28 + 28 + 25 + 13) − 5
= 522.

This improves by 13% the lower bound of 460 obtained in [17].

5 From Channel Assignments to Tile Covers

In this section we give the proof of the theorem:
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Theorem 5.1 Let G be a nested clique with node partition (Q,R) and parameters
(k, u, a). Then for any weight vector w for G,

S(G,w) ≥ τ(G,w) − k.

This theorem will follow as a corollary from a more technical lemma. The lemma
reduces any channel assignment to a tiling that uses only tiles from T , except for
at most one extra tile called a patch. A patch is added to take care of the highest
channels assigned, for which there is no ‘link-up’ cost. Patches are defined as follows.

Given a nested clique G with node bipartition (Q,R) and constraints (k, u, a),
the patch set P is defined as follows:

P = PQ ∪ PR ∪ PQR ∪ Pbig
QR.

The patches in each category are defined below.

PQ = {χA : A ⊆ Q}
PR = {χB : B ⊆ R},
PQR = {χA + χB : A ⊆ Q, B ⊆ R, A 6= ∅, B 6= ∅}.

Pbig
QR = {χA∪B + χA2∪B2 : A2 ⊆ A ⊆ Q, B2 ⊆ B ⊆ R, A2 6= ∅, B2 6= ∅}

The costs of the patches in each category are given in Table 2.

Number of Number of
Category nodes in Q nodes in R Cost

PQ n 0 (n− 1)u
PR 0 m (m− 1)a
PQR n m nu + (m− 1)a

Pbig
QR n, of which m, of which (n + n2)u + (m2 − 1)a+

n2 have weight 2 m2 have weight 2 max{k, ma}

Table 2: Costs of patches

When we reduce a channel assignment to a tiling, a patch from PR will only be
used when the first channel is assigned to a node in R, and a patch from either PQ

or Pbig
QR will only be used if the first channel is assigned in Q.

For the rest of this section we will adopt the following terminology. Suppose f
is a channel assignment for a constrained graph G with node set V , where f(V ) =
{c0, c1, . . . , cf}, with c0 ≤ c1 ≤ . . . ≤ cf . We say that a tiling y of G covers channels
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ci to cj (where j ≥ i) if y is a tile cover of the subgraph induced by the nodes of
G that were assigned channels between ci and cj . More precisely, y covers channels
{ci, . . . , cj} if for each node v ∈ V ,

∑
t∈T y(t)t(v) ≥ |f(v)∩{ci, . . . , cj}|. Also, when

y is a tiling and t is a patch or tile, we use y + {t} to mean the tiling where one
more copy of t is added, so, strictly speaking, the tiling y + χ{t}.

We start by stating a lemma that proves that any channel assignment can be
reduced to a tile cover for the cliques where there is only one edge constraint, and a
co-site constraint. This lemma was proved in [10]. A restatement of the proof can
be found in Appendix A.

Lemma 5.2 [10] Let G be a clique with co-site constraint k and edge constraint u.
Let Q be the node set of G, and let the tile set TQ and patch set PQ be as defined
above. Then for any channel assignment of (G,w) of span s there exists a tile cover
y ∈ ZTQ∪PQ, which contains exactly one patch, p, of (G,w) with cost at most s.
Moreover, the support of p consists of the nodes that receive the last |V (p)| channels
of the assignment.

The proof of Lemma 5.2 provides the following method of constructing the tile
cover y, with patch p. Begin by finding the set of nodes that are assigned channels
in the range [c0, c0 + k). Let V0 denote that set. For j ≥ 1, we recursively define
Vj to be the nodes assigned channels in the range [cj′ , cj′ + k) where cj′ is the first
channel not covered by the tiling χV0 + · · ·+ χVj−1 . This continues until we have a
tiling y = χV0 + · · ·+ χVl that covers all the channels. The final tile χVl is taken to
be the patch p.

When y contains at least one tile in addition to p = Vl, it is shown that the cost
of χV0 + · · ·+ χVj−1 is at most cj′ − c0, for 1 ≤ j ≤ l . Hence, c(y−{p}) ≤ cf−n− c0

where n = |V (p)|. This is a result of particular note, as it is used throughout the
remainder of the paper.

We are now ready to state and prove the technical lemma from which Theorem
5.1 will follow. The proof of this lemma uses a straightforward induction on the
number of times the channel assignment “crosses over” from Q to R or vice versa.
The base case can be directly derived from Lemma 5.2. For the induction step, three
different tilings are obtained. By invocation of Lemma 5.2, tilings are obtained for
the first parts of the channel assignment up to the first crossover and between the
first and second crossover, respectively. Then induction is used to obtain a tiling of
the channel assignment that includes all channels after the second crossover. These
three tilings are then combined to obtain one new tiling which satisfies the induction
hypothesis. The difficulties arise mainly from the fact that three different patches
must be combined. Because of the different types of patches, there are a number of
cases that must be considered.

16



In order to demonstrate some of the different cases, we will refer to the following
example. The channels are presented in terms of the nodes to which they have been
assigned and in terms of their crossovers. Note that when tilings are presented in
subsequent examples, each tiling is expressed as a sum of individual tiles together
with at most one tiling. That is, χA +χB will always represent the sum of two tiles,
as opposed to a single tile from T big

QR , for example. Furthermore, no tiling will have
more than one patch. In general, the patch will be the last term listing in the tiling
It will explicitly stated as to which tile is serving as the patch.

Example 5.1 Consider the complete graph G with node set {q1, . . . , q5, r1, . . . , r4},
and channel assignment as given in the Table 3. The graph G is a nested clique
with parameters k = 5, u = 2 and a = 1.

We will use the constructions that appear throughout the paper, together with the
induction hypothesis to construct the tiling

y = χ{q1,q4} + χ{q1,r1,q3} + χ{q3,q4} + χ{q2,r1,q5} + χ{q4} + χ{q4,q1}+

χ{q3,q1,r2,r3,r4,r1} + χ{r2,r3,r4} + χ{r1,r2,r3} + χ{q1,q2,r1,r4} + p′

where p′ = χ{r3,r4} + χ{q1,q5,r1,r3} + χ{q5} ∈ Pbig
QR. This tiling covers the graph and

its cost is less than the span of the channel assignment.

Vertex Channels Vertex Channels

q1 0, 15, 22, 50, 56, 63 r1 12, 24, 39, 61, 72, 78
q2 17, 37 r2 58, 67, 73
q3 26, 31, 54 r3 7, 13, 59, 69, 74
q4 2, 34, 43, 48 r4 8, 60, 70, 79
q5 5, 41, 65

Channels assigned to Q Channels assigned to R
0, 2, 5 7, 8, 12, 13
15, 17, 22 24
26, 31, 34, 37 39
41, 43, 48, 50, 54, 56 58, 59, 60, 61
63, 65 67, 69, 70, 72, 73, 74, 78, 79

Table 3: Channel Assignment
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Lemma 5.3 Let G be a nested clique with node partition (Q,R) and integer con-
straints (k, u, a), and let T and P be the tile and patch set for G. Let f be a channel
assignment for G, where f(V ) = {c0, c1, . . . , cf}, c0 < c1 < . . . < cf . Then there ex-
ists a tile cover y ∈ ZT ∪P

+ of (G,w) which contains one patch p, covers all channels
{c0, . . . , cf}, and has cost at most cf − c0.

Furthermore, if c0 is assigned to a node in Q then p /∈ PR, and if c0 is assigned
to a node in R then p /∈ PQ ∪ Pbig

QR.

Proof. Let G be a nested clique as defined in the statement of the lemma.
We will prove the lemma by induction on the number of crossovers of the channel
assignment. A crossover is a pair of channels (ci, ci+1) where the nodes that receive
channels ci and ci+1 are in different part of the bipartition (Q,R).
Base Case

If f is a channel assignment for G with no crossovers, then the statement follows
directly from Lemma 5.2.

Let f be a channel assignment with one crossover, and f(V ) = {c0, c1, . . . , cf},
where c0 < c1 < . . . < cf .

Suppose that c0 is assigned to a node in Q. Let c` be the first channel in R
greater than c0. By Lemma 5.2, we can cover the channels in {c0, · · · , c`−1} (which
are all assigned to nodes in Q) with a tiling yQ, containing one patch pQ ∈ PQ, with
cost at most c`−1 − c0. Likewise, the channels in {c`, · · · , cf} can be covered with a
tiling yR of cost at most cf − c` containing one patch pR ∈ PR. Combining the two
patches into one, we form a new patch p′ = pQ +pR ∈ PQR with cost nu+(m−1)a,
where n = |V (pQ)| and m = |V (pR)|. So c(p′) = c(pQ) + c(pR) + u. Moreover,
c` − c`−1 ≥ u since c`−1 is assigned to a nodes in Q, and c` to a node in R.

Our final tiling is y = yQ − {pQ}+ yR − {pR}+ {p′} with cost

c(y) = c(yQ) + c(yR) + (c(p′)− c(pQ)− c(pR))
≤ (c`−1 − c0) + (cf − c`) + u

= cf − c0 − (c` − c`−1 − u)
≤ cf − c0.

When c0 is assigned to a node in R, the proof is analogous.

Example 5.2 We will find a tiling of G in Example 5.1, restricted to the chan-
nels 63 through 79. There is one crossover, (65, 67), in this restricted assign-
ment. The tiling yQ must cover channels in {63, 65}, while yR covers those in
{67, 69, 70, 72, 73, 74, 78, 79}. For yQ, only one tile is required to cover {63, 65}.
Therefore, yQ = {pQ} = χ{q1,q5}. For yR, we form three tiles covering {67, 69, 70},
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{72, 73, 74} and {78, 79}, respectively. Hence, yR = χ{r2,r3,r4}+χ{r1,r2,r3}+χ{r1,r4},
where the final tile listed is pR.

Our new tile, y1, will have patch pQ+pR = χ{q1,q5,r1,r4}. Hence, y1 = χ{r2,r3,r4}+
χ{r1,r2,r3} + χ{q1,q5,r1,r4}. The cost of y1 is c(y1) = max{5, 3 · 1}+ max{5, 3 · 1}+ (2 ·
2 + (2− 1) · 1) = 15. Hence, c(y1) ≤ 79− 63 = 16.

Induction Step

For the induction step, let f be a channel assignment with g crossovers, where
g ≥ 2, and assume that the lemma holds for any channel assignment with less than
g crossovers. Let f(V ) = {c0, c1, . . . , cf}, where c0 < c1 < . . . < cf .

CASE 1: Channel c0 is assigned to a node in Q.
Let c` be the first channel assigned to a node in R, and cj the first channel greater
than c` assigned to a node in Q. So (c`−1, c`) and (cj−1, cj) are the first two
crossovers of f . Note that c` ≥ c`−1 + u and cj ≥ cj−1 + u.

By lemma 5.2, we can find a tiling yQ (with one patch, pQ ∈ PQ) which covers
channels {c0, · · · , c`−1} in Q and has cost at most c`−1−c0, and a tiling yR (with one
patch, pR ∈ PR) which covers channels {c`, . . . cj−1} and has cost at most cj−1− c`.

Define n and m to be the number of nodes in V (pQ) and V (pR), respectively.
Note that V (pQ) consists of the nodes that receive channels {c`−n, . . . , c`−1} and
c(pQ) = (n − 1)u. Similarly, V (pR) consists of the nodes that receive channels
{cj−m, . . . , cj−1}, and c(pR) = (m− 1)a.
Case 1A. Tiling yR contains only the patch pR.

In this case, patch pR covers all channels from c` to cj−1.

(i) If cj − c`−n ≥ k, then a complete tile cover is obtained as follows:

Step 1 Form a tile t′ = pQ + pR (t′ ∈ TQR),

Step 2 Find a tiling yend which covers channels {cj , . . . , cf} and has cost at most
cf − cj ,

Step 3 Form tile cover y = yQ − {pQ}+ {t′}+ yend.

Note that the existence of a tiling yend with the desired properties in Step 2
follows directly from the induction hypothesis.

Since t′ contains the same nodes as pQ and pR, and hence covers the same
channels, it is clear that y covers all channels from c0 to cf and contains one patch
(the patch from yend). Moreover, since the channel cj is assigned to a node of Q,
the patch of yend is not from PR. Hence, y has a patch of the required type. It now
remains to be proven that c(y) ≤ cf − c0.
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Since the channels from c`−n to cj cover n+1 nodes in Q and m nodes in R, with
two crossovers, we have cj ≥ c`−n + (n− 1)u + (m− 1)a + 2u. Also, by assumption,
cj − c`−n ≥ k. Therefore, cj − c`−n ≥ max{nu + ma + u− a, k} = c(t′), and

c(y) = c(yQ − {pQ}) + c(t′) + c(yend)
≤ (c`−n − c0) + (cj − c`−n) + (cf − cj)
= cf − c0

Example 5.3 We will find a tiling of G in Example 5.1, restricted to the channels
43 through 79. This channel assignment has three crossovers, (56, 58), (61, 63)
and (65, 67). The tiling yQ will cover channels in {43, 48, 50, 54, 56}. This requires
three tiles, covering {43}, {48, 50} and {54, 56}, respectively. The tiling yR will
cover channels in {58, 59, 60, 61}. This only requires a single tile. Hence, yQ =
χ{q4} + χ{q4,q1} + χ{q3,q1} and yR = χ{r2,r3,r4,r1}.

According to the above notation, cj = 63 and c`−n = 54. Since channel 43 is
assigned to a node in Q, yR contains only a patch and cj − c`−n = 63− 54 ≥ 5 = k,
this example falls under Case 1A(i).

We will now form the new tiling, y2. By Step 1, t′ = pQ +pR = χ{q3,q1,r2,r3,r4,r1}.
Step 2 requires a tiling that covers channels 63 through 79. The tiling y1 formed in
Example 5.2 can be used. Finally, by Step 3, y2 = χ{q4}+χ{q4,q1}+χ{q3,q1,r2,r3,r4,r1}+
y1.

Then c(y2) = max{5, 1 · 2}+ max{5, 2 · 2}+ max{5, 2 · 2+ 4 · 1+ 2− 1}+ c(y1) =
5 + 5 + 9 + 15 = 34. Hence, c(y2) ≤ 79 − 43 = 36. Furthermore, the patch of y2 is
χ{q1,q5,r1,r4} ∈ PQR (the same one used for y1). So y2 has the required cost, and the
required type of patch.

(ii) Suppose cj − c`−n < k, and suppose that there exists a channel ci in the range
[c`−n + k, c`−n + k + u) which been assigned to a node in Q. (Note that the choice
for ci is unique, since the given range has length less than u.) In this case, the final
tile cover is formed as follows.

Step 1 Let A be the set of all nodes that receive channels from {c`−n, . . . , ci−1},
Step 2 Form tile t′ = χA ∈ TQR.

Step 3 Find a tiling yend which covers channels {ci, . . . , cf} and has cost at most
cf − ci.

Step 4 Form tile cover y = yQ − {pQ}+ {t′}+ yend.

As in Case 1A(i), the only statement requiring a non-trivial proof is that c(y) ≤
cf − c0. We proceed with this proof.
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Note that no two channels from {c`−n, . . . , ci−1} can be assigned to the same
node. This is because the co-site constraint on any node is at least k, and by
assumption ci−1 < c`−n + k.

Let n1 = |A∩Q| and m1 = |A∩R|. The channels from {c`−n, · · · , ci} are covered
by n1 +1 nodes from Q, m1 nodes from R, and contain at least two crossovers since
both c`−1 and cj fall in this range. Therefore, ci ≥ c`−n +(n1−1)u+(m1−1)a+2u.
Also, ci ≥ c`−n+k, by definition. Therefore, ci−c`−n ≥ max{k, n1u+m1a+u−a} =
c(t′), and

c(y) = c(yQ − {pQ}) + c(t′) + c(yend)
≤ (c`−n − c0) + (ci − c`−n) + (cf − ci)
= cf − c0

Example 5.4 We will find a tiling of G in Example 5.1, restricted to the channels
31 to 79. This channel assignment has five crossovers. The tiling yQ will cover
channels in {31, 34, 37}, while yR covers 39. Therefore, yQ = χ{q3,q4} + χ{q2} and
yR = χ{r1}.

By the above notation, cj = 41 and c`−n = 37. Note that channel 31 is assigned
to a node in Q, yR has only a patch, cj − c`−n = 41 − 37 = 4 < 5 = k, and a
channel in the range [37 + 5, 37 + 5 + 3), namely 43, has been assigned to a node in
Q. Therefore, this example falls into Case 1A(ii).

We let ci = 43 and, by Step 1, let A be the set of nodes receiving channels 37,
39, and 41. Hence, t′ = χA = χ{q2,r1,q5}. By Step 2, we require a tiling that covers
channels 43 through 79. The tiling y2 from Example 5.3 will suffice.

By Step 4, we obtain the new tiling y3 = χ{q3,q4} + χ{q2,r1,q5} + y2. The patch, p,
of y2 is used as the patch of y3. From Example 5.3, we know that p ∈ PQR. Hence,
y3 has a patch of the required type. Furthermore, c(y3) = max{5, 2 · 2}+ max{5, 2 ·
2+1 ·1+2−1}+ c(y2) = 5+6+34 = 45. Hence, c(y3) ≤ 79−31 = 48, as required.

(iii) Suppose cj − c`−n < k, and no channel in the range [c`−n + k, c`−n + k + u)
has been assigned to a node in Q. If there is a channel greater than or equal to
c`−n + k + u, let ci be the first such channel. If no such ci exists, let ci−1 = cf . The
final tile cover is formed as follows.

Step 1 Let A be the set of all nodes that receive channels from {c`−n, . . . , ci−1}.
Step 2 Find a tiling yend which covers channels {ci, . . . , cf} and has cost at most

cf − ci. Let p be the patch of yend. (In the case that ci−1 = cf both yend and
p are empty.)

Step 3 If p ∈ PQ ∪ PQR ∪ Pbig
QR, form tile t′ = χA ∈ TQR, and let y = yQ − {pQ} +

{t′}+ yend.
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Step 4 If p ∈ PR, then

4a Pick a node v ∈ A ∩Q,
4b Form patch p′ = p + χ{v} ∈ PQR,
4c Form tile t′ = χA − χ{v},
4d Form tile cover y = yQ − {pQ}+ {t′}+ yend − {p}+ {p′}.

Step 5 If p is empty, then

5a Form the patch p′ = χA ∈ PQR.
5b Form tile cover y = yQ − {pQ}+ {p′}.

As before, it is easy to see that y covers all channels from c0 to cf . Steps 3, 4
and 5 guarantee that the patch of y is not in PR, as required. We prove that in all
cases, c(y) ≤ cf − c0.

In all cases, let n1 = |Q ∩A|, and m1 = |R ∩A|. Also note that of the channels
in {cl−n, . . . , ci−1}, only those in the range [cl−n, cl−n + k) are assigned to nodes
in Q, and only those in the range [cl−n + u, cl−n + u + k) are assigned to nodes
in R. Therefore, no two channels from {cl−n, . . . , ci−1} are assigned to the same
node. Furthermore, A contains nodes from both Q and R since both c`−n and cj

are covered by A.
In Steps 3 and 4, we assume that there is channel ci in the required range. Hence,

ci − c`−n ≥ k + u. We now show that ci − c`−n ≥ n1u + m1a + u− a
First, suppose ci is assigned to a node in Q. Since {c`−n, . . . , ci} is covered by

n1 + 1 nodes in Q, m1 nodes in R and contains at least two crossovers, we have
ci − c`−n ≥ (n1 − 1)u + (m1 − 1)a + 2u. Therefore, ci − c`−n ≥ n1u + m1a + u− a.

If ci assigned to a node in R then {c`−n, . . . , ci} covers n1 nodes of Q, m1 + 1
nodes in R and contains at least three crossovers. Hence, ci − c`−n ≥ (n1 − 2)u +
(m1 − 1)a + 3u = n1u + m1a + u− a.

Hence, in Steps 3 and 4, ci − c`−n ≥ max{k + u, n1u + m1a + u− a}.
In Step 3, we have t′ = χA ∈ TQR, and c(t′) = max{k, n1u + m1a + u − a} ≤

ci − c`−n. Therefore,

c(y) = c(yQ − {pQ}) + c(t′) + c(yend)
≤ (c`−n − c0) + (ci − c`−n) + (cf − ci)
= cf − c0.

In Step 4, a new patch p′ = p + χ{v} ∈ PQR, is formed since p is not of the
required type. The cost of this new patch is c(p′) = c(p) + u. In finding the cost
of t′ there are two possibilities to consider. If n1 > 1, then t′ = χA − χ{v} ∈
TQR and c(t′) = max{k, (n1 − 1)u + m1a + u − a}. If n1 = 1, then t′ ∈ TR and
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c(t′) = max{k,m1a} ≤ max{k, (n1 − 1)u + m1a + u − a}. Now, since ci − c`−n ≥
max{k +u, n1u+m1a+u−a}, it follows that c(t′) ≤ ci− c`−n−u. Hence the tiling
y has cost

c(y) = c(yQ − {pQ}) + c(yend) + (c(p′)− c(p)) + c(t′)
≤ (c`−n − c0) + (cf − ci) + u + (ci − c`−n − u)
= cf − c0.

In Step 5, we have ci−1 = cf . Since p′ ∈ PQR, we have c(p′) = n1u + (m1 − 1)a.
Furthermore, since {c`−n, . . . , cf} contains n1 nodes from Q, m1 nodes from R and
at least two crossovers, cf − c`−n ≥ n1u + (m1 − 1)a = c(p′). Therefore,

c(y) = c(yQ − {pQ}) + c(p′)
≤ (c`−n − c0) + (cf − c`−n)
= cf − c0.

Example 5.5 We will find a tiling of G in Example 5.1, restricted to the channels
22 through 79. This channel assignment has seven crossovers. The tiling yQ will
cover channel 22, while yR covers channel 24. Hence, yQ = χ{q1} and yR = χ{r1}.

Since 22 is assigned to a node in Q, yR contains only a patch, cj − c`−n =
26− 22 < 5 = k, and there is no channel in the range [22 + 5, 22 + 5 + 2) = [27, 29)
assigned to a node in Q, this example falls into Case 1A(iii). We let ci = 31
and, by Step 1, let A be the set of nodes receiving channels in {22, 24, 26}. Step 2
requires a tiling covering channels 31 through 79. We can choose y3 from Example
5.4 to serve as yend. The patch of y3 is in PQR, so we proceed to Step 3. Then
t′ = χA = χ{q1,r1,q3} and y4 = χ{q1,r1,q3} + y3.

The patch of y3 serves as the patch for y4, so y4 has a patch in PQR. Further-
more, c(y4) = max{5, 2·2+1·1+2−1}+c(y3) = 6+45 = 51. Hence, c(y4) ≤ 79−22,
as required.

Example 5.6 We will find a tiling of G in Example 5.1, restricted to the channels
15 through 26. This channel assignment has two crossovers. As in Example 5.5,
yQ = χ{q1,q2} + χ{q1} and yR = χ{r1}.

Since 15 is assigned to a node in Q, yR contains a patch only, cj − c`−n =
26− 22 < 5 = k, and there is no channel in the range [22 + 5, 22 + 5 + 2) = [27, 29)
assigned to a node in Q, this example falls into Case 1A(iii). However, in this
example cf = 26, so there is no ci to choose. We let ci−1 = 26 and proceed to
Step 1. Then A is the set of nodes receiving channels in {22, 24, 26}. By Step 2,

23



both yend and p are empty, so we proceed to Step 5. By Step 5, p′ = χ{q1,r1,q3} and
y = χ{q1,q2} + χ{q1,r1,q3}.

We see that p′ is in PQR and c(y) = max{5, 2 ·2}+2 ·2+(1−1) ·1 = 9 ≤ 26−15,
as required.

Case 1B. yR contains a tile other than pR.
By Lemma 5.2, patch pR covers channels {cj−m, . . . , cj−1}, and these channels

are all assigned to nodes in R, so j − m ≥ `. Since (c`−1, c`) is a crossover, the
assignment of channels {cj−m, . . . , cf} has g − 1 crossovers. Then, by induction,
there exists a tiling yend that covers all channels in {cj−m, . . . , cf}, contains a patch
p ∈ PQR ∪ PR, and has cost at most cf − cj−m.

Let VQ = V (p) ∩ Q, VR = V (p) ∩ R, and let np and mp denote |VQ| and |VR|,
respectively. Note that c(p) = npu + (mp − 1)a if p ∈ PQR, and c(p) = (mp − 1)a if
p ∈ PR.

Choose t to be any tile from yR other than pR. Let Vt = V (t) and mt = |Vt|.
Note that t ∈ TR and c(t) = max{k,mta}. Let VpQ

= V (pQ). Recall that |VpQ
| = n

and c(pQ) = (n− 1)u.
In Table 4, we show how to combine pQ, p and t into a new tile t′ and a new

patch p′.

Case Condition Tile t′ Patch p′

(1) p ∈ PQR

(1.1) (1) and VQ ∩ VpQ
= ∅ t p + pQ

(1.2) (1) and VQ ∩ VpQ
6= ∅

(1.2.1) (1.2) and VR ∩ Vt = ∅ p + t pQ

(1.2.2) (1.2) and VR ∩ Vt 6= ∅ there is no t′ t + p + pQ

(2) p ∈ PR t p + pQ

Case Cost c(t′) t′ ∈ Cost c(p′) p′ ∈
(1.1) c(t) TR (n + np)u + (mp − 1)a PQR

(1.2.1) max{k, npu + mpa + mta + u− a} TQR c(pQ) PQ

(1.2.2) – – (n + np)u + |VR ∩ Vt|a− Pbig
QR

a + max{k, |VR ∪ Vt|a}
(2) c(t) TR nu + (mp − 1)a PQR

Table 4: Combining patches

In Cases (1.1), (1.2.1) and (2), we form the new tiling
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y = yQ − {pQ}+ yR − {pR} − {t}+ yend − {p}+ {t′}+ {p′}.

In each of these three cases, c(t′) + c(p′)− c(pQ)− c(p)− c(t) ≤ u. This can be
easily verified for Cases (1.1) and (1.2.1). Hence, we will only work through Case
(1.2.1).

Note that in Case (1.2.1), the supports of p and t are disjoint. Hence, c(t′) =
max{k, npu + (mp + mt)a + u− a}. If k ≥ npu + (mp + mt)a + u− a, then k ≥ mta
and c(t′) = c(t) = k. Otherwise c(t′) = npu + mpa + mta + u− a and c(t′)− c(t) ≤
(npu + mpa + mta + u− a)−mta = c(p) + u. Hence, c(t′)− c(t)− c(p) ≤ u. Since
c(p′) = c(pQ), it follows that c(t′) + c(p′)− c(pQ)− c(p)− c(t) ≤ u.

Hence, for all three cases,

c(y) = c(yQ) + c(yR − {pR}) + c(yend) + (c(t′) + c(p′)− c(pQ)− c(p)− c(t))
≤ (c`−1 − c0) + (cj−m − c`) + (cf − cj−m) + u

= cf − c0 − (c` − c`−1 − u)
≤ cf − c0.

In Case (1.2.2), there is no t′, so we take the tiling

y = yQ − {pQ}+ yR − {pR} − {t}+ yend − {p}+ {p′}.

Note that, in this case, the supports of t and p are not disjoint, nor are the
supports of p and pQ. Hence, p′ ∈ Pbig

QR. We now show that c(p′)− c(t)− c(p) ≤ nu.
If |VR ∪ Vt|a ≥ k, then c(p′) = (n + np)u + |VR ∩ Vt|a − a + |VR ∪ Vt|a =

(n + np)u + mta + mpa − a. Since c(t) ≥ mta, we have c(p′) − c(t) ≤ (n + np)u +
mpa−a = nu+ c(p). If |VR∪Vt|a < k, then it is also the case that mta < k. Hence,
c(p′) = (n+np)u+|VR∩Vt|a−a+k ≤ (n+np)u+mpa−a+k and c(t) = k. Therefore,
c(p′)− c(t) ≤ (n + np)u + mpa− a = nu + c(p). Hence, c(p′)− c(t)− c(p) ≤ nu and

c(y) = c(yQ)− c(pQ) + c(yR − {pR}) + c(yend) + (c(p′)− c(t)− c(p))
≤ (c`−1 − c0)− (n− 1)u + (cj−m − c`) + (cf − cj−m) + nu

= cf − c0 − (c` − c`−1 − u)
≤ cf − c0.

Hence, in all cases, y covers all channels, the patch of y is of the required type,
and c(y) ≤ cf − c0.
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Example 5.7 We will find a tiling of G in Example 5.1. In this example, we are
covering all channels 0 through 79. The tiling yQ will cover channels in {0, 2, 5},
while yR covers those in {7, 8, 12, 13}. Then yQ = χ{q1,q4}+χ{q5} and yR = χ{r3,r4}+
χ{r1,r3}. Since 0 is assigned to a node in Q and yR contains a tile other than pR,
this example falls under Case 1B. Then we need a tiling yend that covers channels
12 through 79. It will be shown later in Example 5.8 that there such a tiling, y5.
This tiling has patch p = χ{q1,q5,r1,r3} ∈ PQR. Note that c(p) = 2 · 2+ (2− 1) · 1 = 5.

We now have VQ = {q1, q5}, VR = {r1, r3} and VPQ
= {q5}. The tiling yR

has only one tile besides its patch. Therefore, Vt = {r3, r4}. Since VQ ∩ VPQ
and

VR ∩ Vt are both nonempty, this example falls under Case (1.2.2). Hence, there is
no tile t′, and p′ = χ{r3,r4} + χ{q1,q5,r1,r3} + χ{q5}. Hence, p′ ∈ Pbig

QR, and c(p′) =
(2 + 1) · 2 + (1− 1) · 1 + max{5, 3 · 1} = 11.

We now form the final tiling, y6 = χ{q1,q4} + y5 − {p} + p′. In Example 5.8, it
will be shown that c(y5) = 58. Therefore, c(y6) = max{5, 2 · 2} + 58 − 5 + 11 = 69.
Hence, the cost of the tiling for G is less than the span of the channel assignment.

CASE 2: Channel c0 is assigned to a node in R.
Let c` be the first channel assigned to a node in Q, and cj the first channel

greater than c` assigned to a node in R. So (c`−1, c`) and (cj−1, cj) are the first two
crossovers of f . Note that c` ≥ c`−1 + u and cj ≥ cj−1 + u.

By Lemma 5.2, we can find a tiling yR (with one patch, pR ∈ PR) which covers
channels {c0, · · · , c`−1} in R and has cost at most c`−1−c0, and a tiling yQ (with one
patch, pQ ∈ PQ) which covers channels {c`, . . . cj−1} and has cost at most cj−1− c`.

Let |V (pQ)| = n and |V (pR)| = m. By Lemma 5.2, V (pR) consists of the nodes
that receive channels {c`−m, . . . , c`−1} and c(pR) = (m − 1)a. Also note that yR −
{pR} covers channels {c0, . . . , c`−m−1} and has cost at most c`−m − c0.
Case 2A. Tiling yQ contains only the patch pQ.

Since this case is similar to Case 1A, we omit some of the details of the proof.
If cj − c`−m ≥ k, then we form the tile t′ = pQ + pR ∈ TQR. Since there are two

crossovers in {c`−m, . . . , cj}, we have cj ≥ c`−m + (n − 1)u + (m − 1)a + 2u, and
thus cj−c`−m ≥ c(t′). By induction, there exists a tiling yend which covers channels
{cj , . . . cf}, has cost at most cf − cj , and its patch is not from PQ or Pbig

QR.
Let y = yR − {pR}+ {t′}+ yend. Then y covers all channels, and

c(y) = c(yR − {pR}) + c(t′) + c(yend) ≤ cf − c0.

Suppose that cj − c`−m < k. If there exists a channel in the range [c`−m +
k, c`−m + k + u) which has been assigned to a node in R, then let ci be the first
such channel. If no channel from the range [c`−m + k, c`−m + k + u) is assigned to a
node in R, then let ci be the first channel greater than or equal to c`−m + k + u. In
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either case, let w be the node that has been assigned ci, let yend be a tiling covering
channels {ci, . . . , cf} of cost at most cf − ci, and let p be the patch of yend. If no
channel ci can be selected, then let ci−1 = cf . In all cases, A denotes the set of
nodes receiving channels from {c`−m, . . . , ci−1}. Let n1 = |A∩Q| and m1 = |A∩R|.

If p ∈ PR ∪ PQR, then let t′ = χA ∈ TQR. Since {cl−m, . . . , ci} contains at
least two crossovers, ci ≥ c`−m + n1u + m1a + u − a. Therefore, ci − c`−m ≥
max{k, n1u+m1a+u−a} = c(t′). Let y = yR−{pR}+ {t′}+ yend. Tiling y covers
all channels, and has cost

c(y) = c(yR − {pR}) + c(t′) + c(yend) ≤ cf − c0.

If p ∈ PQ, let p′ = p + χ{v} where v is any node in A∩R. Then c(p′) = c(p)+ u.
Also, let t′ = χA−{v}. If m1 > 1, then c(t′) = max{k, n1u + (m1 − 1)a + u− a}. If
m1 = 1, then c(t′) = max{k, n1u} ≤ max{k, n1u+(m1−1)a+u−a}. Since p ∈ PQ

only if w is in Q, ci was chosen so that ci ≥ c`−m +k+u. Furthermore, the channels
{c`−m, . . . , ci} are covered by n1 +1 nodes in Q, m1 nodes in R, and contain at least
three crossovers. Hence, ci ≥ c`−m+(n1−1)u+(m1−2)a+3u. Hence, ci−c`−m−u ≥
max{k, n1u + m1a + u− 2a} ≥ c(t′). Let y = yR − {pR}+ {p′}+ yend − {p}+ {t′}.
The tiling y covers all channels, has a patch of the right type, and has cost

c(y) = c(yR − {pR}) + c(t′) + c(yend) + (c(p′)− c(p))
≤ (c`−m − c0) + (ci − c`−m − u) + (cf − ci) + u

= cf − c0.

If p ∈ Pbig
QR, let VQ = V (p) ∩ Q, VR = V (p) ∩ R, np = |VQ|, and mp = |VR|.

Let BQ and BR be the subsets of Q are R, respectively, that contain those nodes of
weight two in p. Let np

2 = |BQ| and mp
2 = |BR|. Then c(p) = (np + np

2)u + (mp
2 −

1)a + max{k,mpa}.
We form two new tiles, t′ = χVQ + χVR ∈ TQR and t′′ = χA ∈ TQR, as well

as a patch p′ = χBQ + χBR ∈ PQR. Then c(t′) = max{k, npu + mpa + u − a},
c(t′′) = max{k, n1u + m1a + u − a} and c(p′) = np

2u + (mp
2 − 1)a. We now verify

that c(t′) + c(p′)− c(p) ≤ u− a.
If k ≥ npu + mpa + u − a, then k ≥ mpa and c(t′) + c(p′) − c(p) = k + (np

2u +
(mp

2− 1)a)− ((np + np
2)u+ (mp

2− 1)a+ k) = −np
2u. Otherwise, c(t′)+ c(p′)− c(p) ≤

(npu + mpa + u− a) + (np
2u + (mp

2 − 1)a)− ((np + np
2)u + (mp

2− 1)a + mpa) = u− a.
Hence, c(t′) + c(p′)− c(p) ≤ u− a.

Note that p ∈ Pbig
QR only if w ∈ Q. Using the same argument that was used for

the case p ∈ PQ, it can be shown that ci − c`−m−u ≥ max{k, n1u+ m1a+ u− 2a}.
Therefore, ci − c`−m − u + a ≥ max{k, n1u + m1a + u− a} = c(t′′).
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Let y = yR − {pR} + yend − {p} + {t′} + {t′′} + {p′}. The tiling y covers all
channels, has a patch of the right type, and has cost

c(y) = c(yR − {pR}) + c(yend) + (c(t′) + c(p′)− c(p)) + c(t′′)
≤ (c`−m − c0) + (cf − ci) + (u− a) + (ci − c`−m − u + a)
= cf − c0.

Case 2B. yQ contains tiles other than pQ.
By Lemma 5.2, patch pQ covers channels {cj−n, . . . , cj−1}, and these channels

are all assigned to nodes in Q, so j − n ≥ `. By induction there exists a tiling yend

that covers channels {cj−n, . . . , cf}.
Let p be the patch of yend. As previously, VQ = V (p) ∩ Q, VR = V (p) ∩ R,

np = |VQ| and mp = |VR|. If p ∈ Pbig
QR, then we also define BQ, BR, np

2 and mp
2

as in Case 2A. Let t be a tile from yQ − {pQ}, let Vt = V (t) and nt = |Vt|. Then
c(t) = max{k, ntu}.

In the following table, we show how we will combine pR, p and t into a new tile
t′ and a new patch p′.

Case Condition Tile t′ Patch p′

(1) p ∈ Pbig
QR

(1.1) (1) and Vt ∩ VQ = ∅ p + t pR

(1.2) (1) and Vt ∩ VQ 6= ∅ p + χVt−VQ χVt∩VQ + pR

(2) p ∈ PQR t + χVR χVQ + pR

(3) p ∈ PQ t p + pR

Case Cost c(t′) t′ ∈ Cost c(p′) p′ ∈
(1.1) max{k, (np + nt)u}+ max{k, mpa} T big

QR c(pR) PR

+np
2u + mp

2a + u− a

(1.2) max{k, |Vt ∪ VQ|u}+ max{k, mpa} T big
QR |Vt ∩ VQ|u + c(pR) PQR

+np
2u + mp

2a + u− a
(2) max{k, ntu + mpa + u− a} TQR npu + c(pR) PQR

(3) c(t) TQ npu + c(pR) PQR

Table 5: Combining patches

In all cases, we form the new tiling
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y = yR − {pR}+ yQ − {pQ} − {t}+ yend − {p}+ {t′}+ {p′}.

It can be verified, using the table, that in all cases, c(p′) + c(t′)− c(t)− c(pR)−
c(p) ≤ u.

Consider Case (1.1). Since p ∈ PQR, c(p) = (np+np
2)u+(mp

2−1)a+max{k,mpa}.
Hence, c(t′)− c(p) = max{k, (np + nt)u} − npu + u ≤ c(t) + u. Since c(p′) = c(pR),
we have c(p′) + c(t′)− c(t)− c(pR)− c(p) ≤ u.

In Case (1.2), we again have c(p) = (np+np
2)u+(mp

2−1)a+max{k,mpa}. Hence,
c(t′)− c(p) + c(p′)− c(pR) = max{k, |Vt ∪ VQ|u} − npu + u + |Vt ∩ VQ|u ≤ c(t) + u.
Hence, c(p′) + c(t′)− c(t)− c(pR)− c(p) ≤ u.

In Case (2), c(p) = npu+(mp−1)a. Therefore, c(p′)−c(p)−c(pR) = −(mp−1)a.
Furthermore, c(t′)−c(t) ≤ u+(mp−1)a. Hence, c(p′)+c(t′)−c(t)−c(pR)−c(p) ≤ u.

In Case (3), c(p) = (np − 1)u. Therefore, c(p′) − c(p) − c(pR) = u. Since
c(t′) = c(t), we have c(p′) + c(t′)− c(t)− c(pR)− c(p) ≤ u.

Therefore, in each case, y covers all channels, the patch of y is of the right type,
and

c(y) = c(yR) + c(yQ − {pQ}) + c(yend) + (c(p′) + c(t′)− c(t)− c(p)− c(pR))
≤ (c`−1 − c0) + (cj−n − c`) + (cf − c0) + u

= cf − c0 − (c` − c`−1 − u)
≤ cf − c0

Example 5.8 We will find a tiling of G in Example 5.1, restricted to the channels
12 to 79. The tiling yR will cover channels in {12, 13}, while yQ covers channels
{15, 17, 22}. Then yR = χ{r1,r3} and yQ = χ{q1,q2}+χ{q1}. Since 12 is assigned to a
node in R and yQ contains a tile other than pQ, this examples falls under Case 2B.

We need a tiling that covers channels 22 through 79. We can used tiling y4 from
Example 5.5. Note that c(y4) = 50. The tiling y4 has patch p = χ{q1,q5,r1,r4} ∈ PQR.
We, therefore, need to consider Case (2).

By definition, VQ = {q1, q5} and VR = {r1, r4}. The tiling yQ contains only one
tile besides the patch, so t = χ{q1,q2}. Therefore, t′ = χ{q1,q2}+χ{r1,r4} = χ{q1,q2,r1,r4}

and p′ = χ{q1,q5} + χ{r1,r3} = χ{q1,q3,r1,r3}.
Therefore, the final tiling is y5 = y4 − {p} + {t′} + {p′} = y4 − χ{q1,q5,r1,r4} +

χ{q1,q2,r1,r4} + χ{q1,q5,r1,r3}. Hence, c(y5) = c(y4) − (2 · 2 + (2 − 1) · 1) + max{5, 2 ·
2 + 2 · 1 + 2− 1}+ (2 · 2 + (2− 1) · 1) = 51− 5 + 7 + 5 = 58

Example 5.9 In Example 5.7, it was shown that y6 = χ{q1,q4}+y5−{p}+p′, where
p is the patch of y5 and p′ is the patch of y6, is a tiling that covers the graph given
in Example 5.1. We now give the tiling explicitly.
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¿From Example 5.8, we obtain y6 = χ{q1,q4} + y4 − {p}+ χ{q1,q2,r1,r4} + p′ where
p is the patch of y4.

¿From Example 5.5, we have y6 = χ{q1,q4}+χ{q1,r1,q3}+y3−{p}+χ{q1,q2,r1,r4}+p′

where p is the patch of y3.
¿From Example 5.4 we have y6 = χ{q1,q4} + χ{q1,r1,q3} + χ{q3,q4} + χ{q2,r1,q5} +

y2 − {p}+ χ{q1,q2,r1,r4} + p′ where p is the patch of y2.
¿From Example 5.3 we have y6 = χ{q1,q4} + χ{q1,r1,q3} + χ{q3,q4} + χ{q2,r1,q5} +

χ{q4} + χ{q4,q1} + χ{q3,q1,r2,r3,r4,r1} + y1 −{p}+ χ{q1,q2,r1,r4} + p′ where p is the patch
of y1.

Finally, from Example 5.2, y6 = χ{q1,q4} + χ{q1,r1,q3} + χ{q3,q4} + χ{q2,r1,q5} +
χ{q4} + χ{q4,q1} + χ{q3,q1,r2,r3,r4,r1} + χ{r2,r3,r4} + χ{r1,r2,r3} + χ{q1,q2,r1,r4} + p′, where
p′ = χ{r3,r4}+χ{q1,q5,r1,r3}+χ{q5} ∈ Pbig

QR. This tiling does indeed cover all channels,
has a patch of the required type, and has a cost of c(y6) = 69 ≤ 79, as required.

This completes the proof. �

6 Conclusions

We have described how a new general method of obtaining lower bounds for the
channel assignment problems, when applied to the specific example of nested cliques,
leads to a complete family of lower bounds which include almost all known clique-
bounds, are easy to compute, and give improved results when applied to an example
from the literature.

Further work should address the computational issues related to lower bounds.
A computational study comparing the performance of tile cover bounds to the TSP
bound and the network flow bound on a number of realistic CAP instances would
be a valuable addition to this theoretical analysis.

It is also an interesting question whether the tile cover approach can be used
to obtain good channel assignments. Knowledge about which lower bound is most
restrictive for any particular instance could be used to determine which tiles were
most suited to build the best assignment.
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Appendix A

In this Appendix we give the proof of Lemma 5.2. The lemma as stated in this
paper differs slightly from the version presented in [10], since a slightly extended
version was needed for its use in the proof of Lemma 5.3. Also, the proof of this
lemma gives the flavour of proof of Lemma 5.3, and may therefore by useful to the
reader.

Lemma 5.2[10]
Let G be a clique with co-site constraint k and edge constraint u. Let Q be the node
set of G, and let the tile set TQ and patch set PQ be as defined above. Then for any
channel assignment of (G,w) of span s there exists a tile cover y ∈ ZTQ∪PQ , which
contains exactly one patch, p, of (G,w) with cost at most s. Moreover, the support
of p consists of the nodes that receive the last |V (p)| channels of the assignment.

Proof. Let f be a channel assignment of (G,w) of span s, using channels
{c0, c1, . . . , cf}, where c0 < c1 < . . . < cf . Let µ = bk

uc. We will construct the
required tile cover tile by tile.

For all j, 0 ≤ j ≤ f , let the partial tile cover yj denote a collection of tiles
(no patches) such that c(yj) ≤ cj − c0 and yj covers channels {c0, . . . , cj−1}. We
start the construction of the tile cover with the empty tile collection y0 = 0, so
c(y0) = 0 = c0 − c0. Next, supposing that we already have a partial tile cover yj,
we proceed to construct a new family yj′ for some higher value j′ > j.

(i) If any node of G receives a channel cj′ such that cj + k ≤ cj′ < cj + (µ + 1)u,
then since G is a clique and because channels on neighbouring nodes have to
differ by at least u, no node in G has a channel in the interval [cj +µu, cj +k).
Let A be the set that contains all nodes of G with a channel in the range
[cj , cj +µu), and let the tile t = χA; t covers all channels between cj and cj′−1.
Since A can contain at most µ nodes, t has cost k. Let yj′ = yj + {t}, then
c(yj′) = c(yj) + c(t) ≤ cj − c0 + k ≤ cj′ − c0.

(ii) If (i) fails and cf ≥ cj + (µ + 1)u, then no node can have two channels from
the range [cj , . . . , cj + (µ + 1)u), because of the requirement that channels on
the same node have to differ by at least k. Let cj′ be the least channel such
that cj′ ≥ cj + (µ + 1)u. Let A be the set that contains all nodes of G with
a channel in the range [cj , cj + (µ + 1)u), and let tile t = χA; t covers all
channels between cj and cj′−1. Since A can contain at most µ + 1 nodes, t
has cost at most (µ + 1)u. Let yj′ = yj + {t}, then c(yj′) = c(yj) + c(t) ≤
cj − c0 + (µ + 1)u ≤ cj′ − c0.

(iii) If (i) fails and cf < cj +(µ+1)u, then we conclude the construction by adding
one patch, p = χA, where A is the set which consists of the nodes of G with a
channel in the range [cj , cf ]. Since cf < cj +(µ+1)u, |A| ≤ µ+1, and because
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(i) fails, no node can have two channels from {cj , . . . , cf}. Take y = yj + {p}.
Now cf ≥ cj +(|A|− 1)u, and thus c(y) = c(yj)+ c(p) = cj − c0 +(|A|− 1)u ≤
cf − c0 = s. Therefore, y is the desired tile cover. �

In fact, it is possible to strengthen the lemma and show that for a clique with
uniform co-site constraint k and edge constraint u, for any tile cover of cost s, there
exists a channel assignment that covers the same weights of span at most s. By
using tile covers of this kind, bounds can be obtained from a polyhedral analysis in
the same way as was done in the previous sections. For a complete discussion of
this case, see [8], and for a synopsis see [10].
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