Interpreting Lograph

Omid Banyasad
Philip T. Cox

Technical Report CS-2003-03

Mar 21, 2003

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, BS3H 1W5, Canada

Interpreting A Visual Logic Programming Language

Omid Banyasad

Philip T. Cox

Faculty of Computer Science
Dalhousie University, Halifax, Nova Scotia, Canada
(+1-902) 494-6460

banyasad@cs.dal.ca

ABSTRACT

Lograph is a non-deterministic, visual, logic programming lan-
guage which is being implemented as the basis for a visual lan-
guage for the design of structured objects.

Given the multi-paradigm nature of the language, implementing it
raises many issues such as a suitable editing and debugging envi-
ronment, a deterministic execution mechanism, and an efficient
interpreter engine.

The consideration of deterministic execution raises another issue.
In logic programming languages, deterministic execution is
obtained by ordering literals in the body of clauses, and ordering
clauses in the definition of a predicate, how should such ordering be
expressed in a visual logic programming language without resort-
ing to a confusing network of lines?

Lograph’s roots in logic raises the issue of efficient execution as it
is the case for any other logic programming language. s it possible
to take advantage of the considerable effort that has gone into logic
program compilation?

This paper describes our progress in addressing such issues. We
describe how Lograph can be made deterministic and potentially
efficient by appropriate orderings, and how these orderings can be
represented and managed. We then discuss the design of an inter-
preter engine which takes full advantage of an efficient implemen-
tation of Prolog while providing for animation of execution.

I INTRODUCTION

Language for Structured Design (LSD), is a visual language for
designing structured objects [7]. The goal of LSD is to provide a
basis for Computer-Aided Design (CAD) systems which unify the
design and programming activities necessary for creating complex,
parametrised objects. This is in contrast to existing CAD systems in
which design components are built in a 3D modelling environment,
and the programming necessary to create parametrised structures is
done in a separate textual programming environment. LSD is based
on Lograph, a visual logic programming language [S]. Hence, in
order to implement LSD we must first implement Lograph.

pcox@cs.dal.ca

Although various visual logic programming languages have been
proposed, for example [10,11,13], Lograph has some properties
that make it suitable for logic programming in general and as the
basis for a design language in particular. First, the semantics can be
realised as graph transformations: second, unification is replaced by
two execution rules that reveal the details of unification rather than
treat it as one large step [6]. Together, these properties allow an exe-
cution to be viewed as a movie depicting the morphing of a query
into a result, an important property for design language, where ani-
mating the assembly of objects is a desirable feature.

In this paper, we report on our progress towards implementing an
industrial strength Lograph as a general purpose logic program-
ming language, to be later used as the basis for LSD.

2 LOGRAPH SYNTAX AND SEMANTICS

Our presentation in this section is based on [5,6] to which we refer
the reader for a thorough description.

2.1 Lograph Syntax

A Lograph program is a collection of literal definitions with no ter-
minals in common. A [iteral definition (or definition for short) is a
set of cases. A case consists of a name, a head and a body. The head
of a case is an ordered list of »n terminals, where n, called the arity
of the case, is an integer = 0. The body of a case is a set of cells,
where a cell is either a function cell or a literal cell. If a terminal
occurs more than once in a case, either in the head or in any of the
cells, the occurrences are connected by lines called wires.

A function cell consists of a name, a root
terminal and a list of terminals of length
n =0, where » is called the arity of the
cell. A function cell is represented by an
icon bearing the name, having a curved face with the root terminal
on it, and a flat face along which the terminals, represented by small
circles, are arranged. A function cell can have two orientations as
shown in Figure 1. Regardless of the orientation, the terminals of
the function cell are ordered from left to right. A function cell with

Figure |: Function cells

<name>

arity 0, also called a constant, has the simpler representation ~5=

o . .
or wame , where <name> is the name of the function.

In Lograph, as in other logic programming languages, function
cells can be used to create data structures. For example, an empty is
represented by a constant, and a non-empty list by a function cell of
arity 2 with the first list element attached to the left terminal and the

tail list attached to the other terminal. For example, in Figure 2 the
constant ~— represents the empty list, and function cells named *

are used as the list constructors. This graph represents the
Tist[1,2,1,2]. In Lograph, a list can be abbreviated to a constant. For

example, the list in Figure 2 can be denoted 12,17 -

A literal cell consists of a
name and a list of termi-
nals of length n» = O
called the arity of the
cell. A literal cell is rep-
resented by a rounded rectangle with the name of
the literal in the centre. The terminals of a literal
cell are arranged along the perimeter starting from
the origin, a clockwise-pointing arrowhead which
may be placed anywhere on the perimeter of the
cell. Figure 3 shows a literal cell named Concat

4 Concat

Figure 3:A literal cell

Figure 2: A list

with arity 3.

Figure 4 below depicts a definition Concat consisting of two cases.

2.2 LographTransformation Rules

Lograph is a visual representation of flat Horn clauses, a specific
form of Horn clauses in which equality literals are introduced to
remove nested terms. For example, the two cases in Figure 4 repre-
sent the two flat Horn clauses:

concat (X,Y,Y):—
X=17.

concat (X,Y,2) :—
X=dot (H, T) , Z=dot (H, Temp) ,
concat (T,Y, Temp) .

The semantics of flat Horn clauses are provided by Surface Deduc-
tions set of three deduction rules discussed in detail in [6, 9]. The
three execution rules of Lograph are the pictorial manifestations of
the Surface Deduction rules.

Executing a Lograph program involves applying these execution
rules to a guery, which is a network of cells with wires connecting
their terminals.

The Replacement rule replaces a literal cell in the query with a copy
of the body of one of the cases of the definition with same name and
arity as the literal cell, if such a definition exists. The corresponding
terminals of the head of the case and the terminals of the literal are
connected in the process. By connecting two terminals, we mean
that every occurrence of one of the terminals is replaced by a new
occurrence of the other.

] Concat Attach

Figure 4: Definition ‘ /? |
Concat o f

The Merge rule can be applied to two compatible function cells
with the same root terminal, where two cells are compatible if they
have the same name and arity. First the corresponding terminals of
the two function cells are connected, then one of the cells is deleted.

The Deletion rule applies to a function cell with a dangling root ter-
minal, simply removing the cell from the query. A terminal is dan-
gling if it has no other occurrences.

Since a query provides the starting point for execution of a pro-
gram, we use the phrases “execution of a program” and “execution
of a query” interchangeably.

2.3 Lograph and Prolog

In Section 3, we present the restrictions we impose on Lograph to
obtain a viable programming language. Since we will make fre-
quent comparisons to Prolog, in this section we draw parallels
between features of the two languages.

A Lograph definition is analogous to a set of Prolog clauses that
define a predicate, and a case is analogous to a clause. A literal cell
is analogous to a literal in the body of a clause or a query, and a
function cell corresponds to a term. A terminal occurring in a literal
cell or in the head of a case corresponds to a variable. A dangling
terminal that is not the root of a function cell is analogous to an
anonymous variable in Prolog.

Just as the execution of a query in Prolog aims to produce the
empty clause, the goal of a Lograph execution is to reduce a query
to an empty graph. It is important to remember, however, that our
purpose in implementing Lograph is to provide a basis for LSD
where the goal is to generate geometric solids in a design space. In
that context, the graphical transformations accomplished by the
merge and deletion rules (finer grained than unification in Prolog)
are important; and the definition of “successful computation”
depends to a large extent on the nature of the solids produced in the
design space.

In Prolog, a failure occurs when two variables cannot be unified
because they are bound to terms that begin with different function
symbols. The analogy in Lograph occurs when the query is trans-
formed into a graph containing two function cells with a wire con-
necting their roots, and different names or arities. Such cells cannot
be merged, and therefore prevent the query from being transformed
into the empty graph. Note that in Lograph, there are other configu-
rations that will have the same effect. The simplest example is a
function cell, the root terminal of which also occurs as another ter-
minal of the same cell. This corresponds to a cycle detected by full
unification, not usually detected by Prologs.

3 DETERMINISTIC LOGRAPH

In Lograph there are three sources of non-determinism: the choice
of which execution rule to apply, which cell or collection of cells to
apply it to, and for the replacement rule, which case of a definition
to use. Because Lograph represents flat Horn Clauses graphically, it
expresses this non-determinism in a natural way: however, to make
Lograph viable as a programming language, we must impose
restrictions similar to those imposed on general, first-order, Horn
Clause resolution to obtain Prolog.

In Prolog, the clauses that define a predicate are linearly ordered,
indicating the order in which they will be applied to a query literal.

Similarly, the literals in the body of a program clause are linearly
ordered, and once introduced into a query, are executed in that
order. The order in which the search space is traversed is therefore
well defined, a fact which is exploited by the Prolog programmer.

Clearly, since Lograph is a first-order Horn Clause language like
Prolog, we can aim for the same kind of implementation based on
depth first search with backtracking instigated by failure, where
failure in Lograph is defined by the presence of undeletable func-
tion cells.

As in Prolog, we need to impose two orderings on a Lograph pro-
gram to obtain a well defined traversal of the search space: specifi-
cally, the order that cases of a definition should be tried in applying
the replacement rule, and the order in which the literal cells in a
query should be replaced. In addition, we need to decide on the
order in which the three execution rules are to be applied, We
address the latter issue first.

3.1 Order of Transformation Rules

In this section we show that if a particular ordering of the transfor-
mation rules leads to an execution that reduces a query to an empty
graph, then any ordering will do the same.

As mentioned in section 2.2, the deletion rule is applied to func-
tions with dangling root terminals. Since a deletable function cell
cannot participate in any other transformation rules, the order in
which deletable cells are removed will have no effect on the rest of
the execution.

Let us suppose that the replacement rule precedes the merge rule in
the chosen rule ordering, and that the current query contains a pair
{A, B} of function cells connected by their roots. Clearly A and B
are compatible, since otherwise the query cannot be reduced to the
empty graph.

We have four cases to consider: either

(a) the query contains some literal cells, or

the query does not contain any literal cells, and, either

(b) the roots of the two compatible cells identified above are not
connected to any other terminals, or

(¢) the roots of the two cells are connected to the roots of some
other function cells, or

(d) the roots of the two cells are connected only to non-root ter-
minals of some other function cells.
In case (b), the only transformations that can be applied to A and B
is a merge followed by a deletion. These transformations are inde-
pendent of any others, and can therefore be applied immediately.

In case (¢), since the query is eventually reduced to the empty
graph, any function cell connected by its root to the roots of A and
B must be compatible with them. Since every merge produces a
function cell compatible with the merged cells, and therefore with
any other compatible cells attached to them by root terminals, the
order in which the cells in such a group are merged is irrelevant.
Hence the merge of A and B can be performed before any other
merges of cells in the group.

In case (d), suppose that the execution removes the “other” function
cells before any other transformations occur. The “other” cells are
removed either by (d1) deletion, or by (d2) merging followed by

deletion.

In case (d1), we are left with an instance of case (b) or (c), so that
merging A and B can be the next operation performed. Clearly the
deletion of the “other” function cells does not depend on the pres-
ence of cells A or B, so the merging of A and B could be performed
earlier.

In case (d2), we are left with an instance of case (b), (c) or (d). We
deal with (b) and (c) as in the previous paragraph. As for (d), we
need only note that cases (d) and (d2) cannot alternate forever since
the transformations that occur in case (d2) strictly reduce the size of
the graph, so we must eventually get case (b) or (¢).

In case (a), no merging of A and B will occur until all replacements
have been performed. Clearly, performing the replacements is not
affected by the presence or absence of A or B, so we can merge A
and B at any time.

Since, as we have seen, the transformation rules can be applied in
any order, we need to consider the best order in which to apply
them. Obviously, if we are doing a depth first search of the solution
space as in Prolog, then we should try to discover “nonunifiability”
early. In Lograph, this means applying the merge rule as early as
possible. The deletion rule does not really affect this since it just
plays the role of “garbage collector”; however, if we are interested
in useful animated visualisations of executions, then we might want
to apply it early as well, in order to reduce clutter.

Another issue relating to the order of rule application is whether or
not we want to optimise our search for a solution. Interestingly, the
graphical structures built from function cells are very similar to
structures for terms proposed in [3] to enable intelligent backtrack-
ing. If intelligent backtracking were to be implemented, the merge
and deletion rules would not necessarily be applied as early as pos-
sible.

Finally, since Lograph replaces unification with explicit transfor-
mation rules, there may be ways to apply them which are better
suited to the application. For example it might be possible in some
circumstances to “batch” merges and deletions, applying them only
occasionally between sequences of consecutive replacements.

3.2 Ordering Cases and Cells

Just as the Prolog programmer orders the clauses of a predicate def-
inition, the Lograph programmer needs to order the cases of a defi-
nition. Since Lograph is a visual language, the sequentiality of text
cannot be used as the means to specify this order. As described in
section 4, the Lograph environment provides the programmer with
tools for ordering cases.

Since merge and deletion can be applied at any time, the only cells
that need to be ordered for execution are literal cells. Specifying the
order, however, presents an interesting problem. Like other visual
languages, Lograph exposes the structure of algorithms without
imposing needless sequentiality; nevertheless, sequentiality is
required for the sake of efficiency. This looks like the same problem
that arises in implementing other visual languages, for example
dataflow languages. In the case of dataflow languages, operations
are partially ordered, and any linear order produced by topological
sort will do [4]. In Lograph, however, the wires are not data flow
links, so no suitable order can be automatically generated. It is
therefore up to the Lograph programmer to specify an order that

will do. Prolog programmers order literals by textually writing
them in a linear order. This cannot be done with Lograph cells.

One obvious solution is to add special connections between literal
cells to indicate execution order, like the synchros of Prograph [4].
However these would be far more intrusive than in Prograph where
data flow provides most of the ordering so synchros are needed only
occasionally. The solutions we have adopted in the Lograph envi-
ronment are described in the next section.

4 PROGRAMMING ENVIRONMENT

When Lograph is started, a menu bar containing, File, Edit, Run,
and Settings appears together with an empty window named Unti-
tled in which a program is created and maintained. Double-click-
ing in this window creates a definition icon with no terminal, an
origin on its left end, and the default name Un-named. Every defini-
tion icon has a sensitive boundary; that is, the cursor changes to o
whenever it is near the perimeter of the cell, indicating that a click
will add a terminal.

Double-clicking on the definition opens its cases window, consist-
ing of the list of cases on the right and a thumbnail of the selected
case on the left. A new case is added to the definition of a literal by
double clicking in the list. This creates a new case named Case N
where N is the number of cases previously created. The name of a
case can be edited at any time by selecting it in the list and typing.
Note that our implementation allows cases to be named, which is
not a feature of Lograph as described above.The order of cases can
be changed by dragging them in the list. This order is the order in
which cases will be applied during execution.

Double clicking on a case in the case list or on the thumbnail of the
selected case, opens a case window consisting of a workspace to
the left and a layer list to the right, both of them initially empty.
Figure 4 illustrates two case windows. The workspace and layer list
provide two representations of literal-cell ordering, analogous to
the two representations of multi-layered images in Photoshop [1].
The layer list is a list of icons similar to the list of layers displayed
in Photoshop’s “layers” palette. The workspace displays the cells of
the case as a series of layers, like the layers in a Photoshop image
window which each contain some of the items that make up the
whole image. In Lograph, each layer contains one or more literal
cells. Cells in the top layer are to be executed first, followed by
those in the next layer, and so forth. There is no ordering imposed
on literals within a layer, so the programmer can group together lit-
erals which could be executed in parallel.

As a clue to the ordering of layers, the literal cells are painted in a
range of shades of one colour, the darkest shade applied to the top
layer and the lightest to the bottom. The literal and function cells
are transparent, giving a sense of depth to the layers. The transpar-
ency of icon cells is user-adjustable. This is similar to the use of
transparency to give the illusion of depth in the Macintosh OS X
Aqua interface.

Layers are reordered by dragging their iconic representations in the
list view. The relative shading of layers is adjusted whenever layers
are reordered or a new layer is added. Literals can also be moved
from layer to layer. When the number of layers increases, the range
of shades is subdivided, resulting in less differentiation between
layers. Clearly, as the number of layers grows, the programmer may

have to rely more on the layer list for ordering.

Note that during execution, when a literal cell is replaced by a copy
of the body of a case, the layers of the case body are placed in front
of the existing layers of the query.

A new literal cell can be added to the workspace by dragging and
dropping a definition from the program window or by double click-
ing in the workspace. Definition icons in the program window and
literal cell icons in case windows are similar except for their
colours, green and blue respectively. The colour settings for differ-
ent icon classes can be customized. Figure 4 illustrates two case
definition windows of a literal named Concat.

A new function cell can be added to the workspace by double click-
ing while holding down the “I"’ key. The new function cell has arity
0 and named Un-named by default which can be edited. Terminals
can be added by clicking at the sensitive boundary of the cell
around its flat face. Double clicking a function cell changes its ori-
entation, from pointing-up to pointing-down and vice versa. All the
function cells in the workspace are automatically placed on the top-
most layer.

Queries are created and executed in a query window, which is simi-
lar to a case window, providing both workspace and layer list. A
query can be executed in three different modes: Run, Single Step
and Animated. In the Run mode, the result is computed by the
Lograph interpreter and displayed in the query window.

In Animated mode, the interpreter displays an animation of each
rule application. The deletion of a function cell is animated by fad-
ing out the cell and releasing all attached wires, which shrink away
from the disappearing function cell towards their other ends. The
merge rule is animated by morphing two function cells into one.
Animation of replacement is accomplished by expanding the
replaced literal to the size of the case that replaces it, then fading in
the body of the case together with the necessary connecting wires.

In Single Step mode, the interpreter animates each step but stops
between steps. In both Animated and Single Step modes, back-
tracking is visualized by reversing the animations. A more detailed
description of the Lograph programming environment can be found
in [2].

5 INTERPRETER ENGINE

Our first attempt to implement Lograph was a proof of concept pro-
totype, the core of which was a Java implementation of a standard
logic programming interpreter. This had the usual advantages, such
as ease of development and debugging, cross-platform executability
and so forth. It also had the usual disadvantages, such as slow exe-
cution considering that the interpreter itself was interpreted. Once
past the proof-of-concept stage, we required a more “industrial
strength” implementation, using more appropriate technologies and
implementation techniques to obtain a fast and capable interpreter
engine able to support the demands of the intended application.

Our initial Lograph prototype provided capabilities similar to pure
Lisp and Prolog. However, in order to make Lograph suitable for
our intended application, some of the extra features of those lan-
guages need to be included as well. For example, although logic
programming is not usually used for numerical problems, Prolog
provides numbers as special constants and some basic arithmetic
operations that compute functions of numbers in a data flow fash-

ion. In the domain of structured object design, there is a clear need
for numerical computation far more extensive than that normally
expected in pure logic programs, so it will be necessary to extend
Lograph to provide this capability beyond the mechanisms pro-
vided by pure logic programming languages, which are inconve-
nient at best.

Based on the above observations, we chose the SICStus implementa-
tion of Prolog [12] as the basis for Lograph’s interpreter. The latest
release of siCstus Prolog provides a bidirectional interface to Java,
as well as several constraint solvers.

Although flat Horn clause programs can be correctly executed by
Prolog, the fine-grained view of unification provided by the surface
deduction rules is lost. Consequently, direct Prolog execution of the
flat clauses corresponding to a Lograph program cannot be used for
the animated executions described above. This kind of execution is
achieved by augmenting the flat clauses with “probes”, inserted at
appropriate places, so that during the execution of a query, the inter-
preter can report to the graphical interface, implemented in Java,
the actions taken by Prolog that can be interpreted as equivalent to
Lograph execution rules. Our interpreter implements the merge and
deletion rules explicitly, while search, backtracking, and replace-
ment are provided by Prolog.

5.1 Translating Lograph to Prolog

In the above, we have alluded several times to the correspondence
between Lograph and Prolog. In this section we describe how
Lograph programs are transformed into Prolog programs. The
transformation produces flat Horn clauses which can be directly
executed by Prolog.

To illustrate the translation process, we begin with a Lograph query.
The textual representation of a query is a flat Horn clause consisting
of a set of flat equalities in the form of x = f(...) and a list of flat lit-
erals pi(...),p2(...).p3(...)s +.. ,Pm(...), where each ... stands for a
list of variables. The order of the literals in the clause reflects the
order of the corresponding literal cells in the layered structure of
the Lograph query. The equalities are not ordered in any particular
way since they represent function cells, and can be inserted any-
where in the clause. However, it would be natural to place the
equalities at the beginning so merge and deletion can be applied to
them before any application of replacement. Although this need not
be the case, it will result in a more efficient execution by simplify-
ing the query as soon as possible.

Based on the above, we start with the following Prolog query corre-
sponding to the Lograph query.

egList, pl (.), P2 (), 3 (), w,em) .

where eqlist is a list of equalities and p1 (..) to pm(..) corre-
spond to the literal cells in the query.

The body of the clause that represents a Lograph case has structure
similar to that of a query. Translating a definition p to Prolog, pro-
duces a sequence of clauses with the following structure.

p(.):—
eqsl,pll (.),pl2(.) .., plky ().

p(.) -
eqs2, p2l (), P22 () . P2Ky () .

4

p(.) 1~
egsn,pnl (), pPn2 (), ., pnk, (L)

In the above, each clause corresponds to one case, and the order of
the clauses represents the order of cases in the cases window of the

definition p. In the ith clause, the head p (...) corresponds to the head

of the i case; eqsi is the list of equalities corresponding to the
function cells in the body of the case; pil(...), ...,pik;(...) corre-
spond to the k; literal cells in the body of the case, their order
obtained from the order of corresponding literal cells in the layered

structure of the i case window.

As an example, consider the translation to Prolog of the definition
of Concat shown in Figure 4.

concat (X,Y,Y):—
X=[].

concat (X,Y,2) :—
X=[H|T],Z=[H|Temp],
concat (T, Y, Temp) .

The translation described so far provides clauses and queries which
will run correctly in Prolog. However, as we mentioned earlier,
when executing a query in Animated or Single Step mode, the
details of merge, deletion and replacement rules need to be visual-
ised. In the next section we show how this is achieved.

5.2 Interpreting Lograph Programs

Lograph and Prolog are both based on Horn clauses. However, what
distinguishes Lograph from Prolog is how Lograph visually reveals
the details of resolution and unification through its three execution
rules.

Once a Lograph program is translated to Prolog, the steps Prolog
takes in executing the query needs to be translated to a series of
applications of the three Lograph execution rules. This is essential
for the Lograph editor to be able to provide a visualisation of the
execution in a Single Step or Animated mode.

The Lograph replacement rule is a simple version of resolution, in
which only variable-to-variable substitution is required. Hence
replacement can be handled directly by Prolog. Prolog deals with
equalities by resolution with the clause x = x :—, but for equalities
we require merge and deletion, which we therefore need to imple-
ment.

During the execution of a Lograph query, the interpreter must
report to the editor environment when an execution rule is applied,
identifying the cell or cells involved, and in the case of replace-
ment, the clause which was used. This requires a one-to-one map-
ping between the Lograph components in the editor and items in the
engine. This is accomplished by assigning unique Ids to literal cells
and function cells in the Lograph program, and their corresponding
literals and equalities in the corresponding Prolog.

Figure 5 shows a high-level block diagram of the front and back
ends of the Lograph implementation.

In Figure 5, Editor implements the visual programming environ-
ment of Lograph as described above. It includes an automatic lay-
out algorithm for queries and an XML translator for saving and
loading programs and queries. Model is a module that maintains
structures representing Lograph programs and queries, translates

Lograph [«@———— Lograph «@——Interpreter

Editor > Model p| Engine
(Java) (Java) (Prolog)

Figure 5: Implementation Block Diagram

them into Prolog for execution, and generates Ids. The Interpreter
Engine is a Prolog program which consists of a set of predicates for
executing the three Lograph execution rules and communicating
with the Model. Editor and Model communicate in order to build
and edit Lograph programs and queries. Model and Engine commu-
nicate to manage execution.

To describe execution, we consider the following Prolog query,
obtained from a Lograph query as described above:

eqglist,pl(..),.,pm(.).

Model generates unique Ids, id1,...,idm, for the literals in the
above, modifying the query as follows.

eglist,pl(..,1idl),..,pom(..,idm) .

When replacement is applied to this query, it will be applied to
pl (..), replacing it with the body of the first clause for predicate
pl. Translated directly from Lograph, this clause will have the form

ol () -
egsl,pll (.),pPl2(.),w, Pl ().

However, literals in the query have been augmented with Ids, so the
head of the clause must be modified, by adding a new variable to
match the Id in the query literal. Also, when this replacement is per-
formed, Engine should tell Model that clause 1 for p1 was used,
and pass the identity of the replaced literal. In return, Model should
generate Ids for the new goal literals introduced. This is achieved
by a new literal added at the beginning of the body of the clause,
and adding new variables to the body literals to accept the Ids gen-
erated by Model. With these modifications, the clause has the fol-
lowing form.

pl (.., Id) -
replace (74,1, [Tdl,Td2, .., Tdk]),
eqgsl,
pll (.., Idl),
12 (., T7d2),

4

plk; (.., Idk) .

When the literal p1 (.., id1) in the query is replaced using this
clause, the variable 1d is instantiated to the constant id1.

The replace predicate implements the required interface with
Model. The list [1d1, 142, .., Idk] contains new Ids generated by
Model for the literals in the body of the substituted clause.

In general, the i clause for corresponding to a L.ograph definition p
will have the form:

P (., Td) : -
replace(Id, i, [Id1,Id2,..,Id3]),
eqgsi,
p11 (., Td1),
pl2 (.., Id2),

13 (., Id3) .

Next we consider the merge and deletion rules. Since these two
rules operate on function cells (equalities in the equivalent Prolog
clauses), they also need to have Ids so that when Engine reports the
application of merge and deletion rules to Model, it can also report
the cells involved. To account for these, the structure of a clause is
further expanded, as follows:

o (., Id) :—
replace (Id, i, [EgqsIds, [Idl,..,Id311),
matchIds (egsi, EgsIds,EgsMatched),
Py (e Id1),
Pis (., Id2),
’

pij(m,Idj).

Now let us recap the replacement rule, describing the functionality
added in the last step. When a replacement occurs, the Id of the
replaced literal is already instantiated to a constant. The first literal
in the body of the replacing clause, replace, will report to Model
the Id of the replaced literal together with the case number of the
clause. Model uses these to identify which literal cell in its query
structure is being replaced. The case number will be used to cor-
rectly identify the case in the Lograph program, the body of which
will replace the literal cell. This enables Model to generate Ids for
the function and literal cells in the body of the replacing case. These
Ids are then reported to both Editor and Prolog. Editor will use the
Ids to identify the components that need to be redrawn. A success-
ful execution of replace also instantiates [Id1,.., Id3] and
EgsIds which are then assigned to the equalities in egsi by execu-
tion of the matchTds literal.

The next modification deals with the merge rule. Merge is applied
to function cells with connected roots and identical names and ari-
ties. In the Prolog representation of Lograph queries, merge is
applied to equalities which have the form X = f(X;,X,.....X,) and
X=f(Y,Y>5,...,Yy). One of the equalities is removed after variables
X; and Y; are unified for all 1 <j < s, and the Id of the removed

equality is reported back to Model. Model responds by an appropri-
ate action depending on the mode in which the program is running.

The merge rule is applied on any two function cells in the query.
Therefore, after a replacement, all the equalities in the query must
be inspected for application of merge. This implies that in the body
of each clause, all the equalities in the query must be available as
well as the new equalities introduced by the clause itself. This is
achieved by passing the list of equalities from one predicate to the
next in the query, as follows:

pl(..,eqgslist,EgListl1, idl),

2 (.., EqlListl,EqList2, 1d2),

.

pm (.., EgList (m-1),EgListOut, idm) .
Note that in the original version of the query, the list of equalities
egsList preceded the first literal. It has now been inserted as a

parameter to the first literal. The ih literal takes as a parameter
EgList (i-1), the list of equalities that exist once all preceding lit-
erals have been executed, and returns a modified list EqListi.
With this in mind, clauses in the program must be similarly modi-
fied leading to the following structure.

p (.., EqlistIn,EqListOut, Id) : -
replace(Id, i, [EgsIds, [Idl,..,Id311),
matchIds (egsi, EqsIds, EgqsMatched),
append(EglistIn, EgsMatched, Egs),

merge (Egs, EgList0),
il (.., EgqList0,EgListl, Idl),
pi2 (.., Eqlistl, EgLlist2,Id2),

-

pij(.,EglList (m-1),EqListOut, Idj).

Here, the append literal attaches the incoming list of equalities to
the list of equalities introduced by the clause itself. The new list,
Egs, is then passed to the merge literal which implements the
merge rule, producing Eqlist0, a list of equalities no two of which
have the same left hand side (in Lograph terms, no two function
cells connected at their roots).

The clauses that define the merge predicate also report to Model
both successful and failed applications of merge. Recall that in
Lograph, a failure occurs when two function cells connected at their
root terminals cannot be merged. This can happen when the two
function cells either have different names or unequal arities. When
a failure is detected during execution of merge, the call to merge
will also fail, causing backtracking. We will discuss this further
below.

Deletion removes from the query all function cells the roots of
which have no other occurrences. This corresponds in the Prolog
query to deleting equalities the left hand sides of which have no
other occurrences. Deciding whether or not an equality is deletable,
requires determining whether the variable on the left hand side has
other occurrences. Prolog, however, does not keep track of the num-
ber of occurrences of a variable and therefore is not capable of
making this determination.

To deal with this problem, we keep a count of the number of occur-
rences of each variable in the query. Every variable in our inter-
preter engine is represented by a pair, of which the first element is
the variable and the second is the number of occurrences. Maintain-
ing variables in this form requires further modifications to the form
of query and clauses, since whenever a replacement, merge or dele-
tion takes place, the number of occurrences of the variables
involved in the application of the rule need to be updated. This
leads us to the following format for the query.

pl(..,eqslist,EqLlistl, varsIn,Varsl, idl),

2 (..,EqListl,EqList2,Varsl,Vars2,id2),

CICI 4

pm (.., EqList (m-1),EgListOut, Vars (m-1),
VarsOut, idm) .

Here, varsIn is the list of variables occurring in the query. When

the i literal is executed, vars (i-1) is the current list of variables
in the query. Execution of the literal produces an updated list
varsi. Clauses in the program are further modified to include this
process, as follows:

P(..,VarsIn,VarsOut,EqListIn, EqlListOut, Id) :—
replace (Id, i, [EgsIds, [Idl,..,Id311),
unify (VarsIn,updateVars,vars),
matchIds (egsi, EgsIds, EgsMatched),
append (EqListIn, EgsMatched, Egs),
merge (Vars,VarsMerged, Egs, EqsMerged) ,
delete (VarsMerged,Vars0, EqsMerged, EgList0),

P;1(.,Vars0,Varsl,EqList0,EqList1, Idl),
Pis(..,Varsl,Vars2,EqListl,EqList2, Id2),
-
P,:(.,Vars (m-1),VarsOut,EqlList (m-1),
EgListOut, IdJ) .

ij

In the above, updatevars consists of new variables introduced by
this clause, together with variables that appear in the head of the
clause. The counts the latter need to be adjusted as a result of
replacement of a literal in the query using this clause. The second
element of each variable pair in updatevars is an integer (possibly
negative), computed by subtracting the number of occurrences of
the variable in the head of the clause from the number of occur-
rences in the body of the clause. Clearly, it a variable has the same
number of occurrences in the head and the body of the clause, it can
be omitted from updatevars.

As mentioned earlier, our interpreter implements merge and dele-
tion explicitly while relying on Prolog for search, backtracking and
the replacement rule. Although in case of failure Prolog will suc-
cessfully undo the application of Lograph rules, it cannot undo the
side effects of predicates which communicate with Model. There
are three such predicates, replace, and two other predicates that
report to Model the application of merge and deletion, along with
the Ids of the involved equalities. However, in order for Lograph to
provide a visualisation of backtracking, our interpreter engine must
also report to Model the undoing of replacement, merge and dele-
tion during backtracking. We will show how the replace predicate
is modified to accomplish this. The other two predicates which
cause side effects can be modified in a similar way.

We introduce another predicate called undo_replace which
reports to Model the Id of the replaced literal and the number of the
clause used in the replacement.

P(..,VarsIn,VarsOut,EqListIn,EgqListOut, Id) : -
(replace (Id,1i, [Egs_Ids, [Idl,..,Id3]]) |
undo_replace (Id,1i), fail),
unify(VarsIn,updateVars,Vars),

Backtracking into the OR structure causes execution of the
undo_replace literal which reports the Id and the clause number
to Model. This is immediately followed by execution of fail
which stops execution of the clause body from being repeated.

As an example, consider the two cases of Concat in Figure 4.
Model creates the following two clauses which it passes to Engine.

concat (X,Y,Y,VarsIn,VarsOut,

EgListIn, EgListOut, Id):—
(replace (Id,cn, [EqListIn, [11) |
undo_replace (Id,1), fail),
unify(varsIn, [v(Y,-2)],Vars),
matchIds ([e(X=[])1,EqsIds,EqsMatched),
append (EgqsListIn, EgMatched, Eqs),
merge (Vars,VarsMerged, Egs, EgsMerged),
delete (VarsMerged,VarsOut,

EgsMerged, EgListOut) .

concat (X,Y,Z,VarsIn,VarsOut,
EglistIn,EgListOut, Id):—
replace (Id, 2, [EgqsIds, [Id1]]) |
undo_replace (Id,2),fail),
unify(varsIn,

[V(H,2),v(T,2),v(Temp, 2)]1,Vars),

matchIds ([e(X—[H|T]),e(Z—[H|Templ)],
EgsIds,EgsMatched),

append (EgsListIn, EgsMatched, Eqgs),
merge (Vars, VarsMerged, Egs, EgsMerged),
delete (VarsMerged, VarsOut,

EgsMerged, EqList0),
concat (T, Y, Temp, VarsO, VarsoOut,

EgList0, EqOut, Idl).

A more detailed description of the engine including the implemen-
tation of replace, undo-replace, merge, and delete along
with the implementation of the interface to Model can be found in

[2].
6 SUMMARY

We have reported on our progress towards implementing Lograph,
a visual, logic programming language intended as the basis for a
visual language for design of structured objects.

For execution efficiency, it is necessary to restrict the Lograph lan-
guage from a general first-order Horn-clause theorem-prover to an
efficiently implementable language. Many of the restrictions are
obvious counterparts of the restrictions inherent in Prolog, involv-
ing the ordering of clauses and the ordering of literals.

The front-end of the language is a visual programming environment
for creating, editing, and debugging Lograph programs imple-
mented in Java. The core of the language, also in Java, implements
the semantics of Lograph with proper interfaces to the front-end as
well as an interpreter engine implemented in Prolog.

Since Lograph is based on surface deduction rather than simple res-
olution, it is also necessary to consider how its three execution rules
should be ordered. We have shown that the merge and deletion rules
can be applied at any time, and to simulate the search order of Pro-
log, should be applied as early as possible.

Like other visual languages, Lograph exposes the structure of algo-
rithms in a useful way. However, since it is not dataflow, there is no
way to automatically linearise operations, so like the Prolog pro-
grammer, the Lograph programmer must take responsibility for this
task. We have proposed and implemented a layering scheme similar
to the layering of Photoshop images, for visualising the ordering of
literal cells in a case.

We have also identified issues arisen in using Prolog for interpret-
ing Lograph programs and proposed solutions for them. Prolog
translation of Lograph programs are probed at appropriate places
such that equivalent applications of Lograph rules are reported to
Lograph as the side effect of the execution of a program. Our inter-
preter takes advantage of search mechanism and backtracking of

Prolog while implements the delete and merge rule exclusively. Our
interpreter in Prolog is currently implemented and fully functional.

We believe that Lograph can be a valuable programming environ-
ment for teaching logic programming as well as a useful editing and
debugging environment for logic programs. Animating the transfor-
mation of a query and backtracking can be a valuable substitute for
typical textual tracing techniques. This, however, cannot be sup-
ported without empirical studies.

7 REFERENCES

[1] Adobe Systems Inc., Photoshop 6.0 User Guide, (2000).

[2] O. Banyasad, P. T. Cox, Interpreting Lograph, Dalhousie Uni-
versity, CS-2003-03.

[3] P.T. Cox, On determining the causes of nonunifiability, Jour-
nal of Logic Programming 4, American Elsevier (1987), pp
33-58.

[4] P.T. Cox, FR. Giles, T. Pietrzykowski, Prograph: a step
towards liberating programming from textual conditioning,
Proc. 1989 IEEE Workshop on Visual Programming, Rome
(Oct. 1989), 150-156. Reprinted in Visual Object-Oriented
Programming: Concepts and Environments, M. Burnett, A.
Goldberg, & T.G. Lewis (Eds), Manning Publications (1995).

[5] P.T.Cox, T. Pietrzykowski, LOGRAPH: a graphical logic pro-
gramming language, Proceedings IEEE COMPINT 85, Mont-
real (1985), pp 145-151.

[6] P.T. Cox, T. Pietrzykowski, Incorporating equality into logic
programming via Surface Deduction, Annals of Pure and
Applied Logic 31, North Holland (1986), pp 177-189.

[7] P.T. Cox, T. Smedley, LSD: A Logic Based Visual Language
for Designing Structured Objects, Journal of Visual Languages
and Computing, v9, Academic Press (1998), 509-534.

[8] K.M. Kahn, V.A. Saraswat, Complete Visualizations of Con-
current Programs and their Executions, Proc. IEEE Workshop
on Visual Languages, (1990), pp 7-15.

[9] E. Kanill, P.T. Cox, T. Pietrzykowski, Equality and abductive
residua for Horn clauses, Theoretical Computer Science, 120
(1993), pp 1-44.

[10] L.F. Pau, H. Olason, Visual Logic Programming, Journal of
Visual Languages and Computing, v2 (1991), pp 3-15.

[11] 7. Puigsegur, W.M. Schorlemmer, J. Agusti, From Queries to
Answers in Visual Logic Programming, Proc. [EEE Sympo-
sium on Visual Languages, (1997), pp 102-109.

[12] Swedish Institute of Computer Science (2002), SICStus Prolog
User’s Manual release 3.10.0.

[13] L.L. Spratt, A.L. Ambler, A Visual Logic Programming Lan-
guage Based on Sets and Partitioning Constraints, Proc. 1993
IEEE Symposium on Visual Languages, (1993), pp 204-208.

