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Abstract

Magnetic resonance imaging technology is one of the most promising investigative and di-
agnostic methodologies in brain research and in clinical neurological practice. To acquire
informative magnetic resonance signals, a variety of equipment parameters require identifi-
cation. However, depending on which neuronal metabolites and brain tissues are of interest
and on what types of clinical or research questions are being asked, the relation between
equipment parameters is often complex. This complexity means that computerized tools
that can design valid novel settings to control the activities of the magnet during data ac-
quisition would be beneficial. The goal of the present research is to build such a tool using
constraint satisfaction based on the constraints associated with different imaging protocols.
A constraint-resolving program, which is generated automatically from the constraints pro-
vided by the user in text form, enumerates the value domains of the variables, enforces the
constraints associated with each possible setting, and produces a complete set of all valid
parameter settings for controlling the magnetic device during signal acquisition.
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List of Abbreviations

AC : Arc Consistency

AVG : Average Number of Scans

BCSP: Binary Constraint Satisfaction Problem

CFG : Context-Free Grammar

CGN : Constraint Graph Network

CO : Constraint Optimisation

CP : Constraint Programming

CSP : Constraint Satisfaction Problem

CT : Computerized Tomography

CTQ : Consistency Technique

DP : Data Point

FOV : Field of View

FT : Fourier Transform

GT : Generate and Test

LA : Look Ahead

LB : Look Back

MR : Magnetic Resonance

MRA : Magnetic Resonance Angiography

MRI : Magnetic Resonance Imaging

fMRI: Functional Magnetic Resonance Imaging

MRS : Magnetic Resonance Spectroscopy

NEX : Number of Averages

NMR : Proton Nuclear Magnetic Resonance

PC : Path Consistency

PET : Positron Emission Tomography

RF : Radio Frequency

SE : Spin Echo

SNR : Signal to Noise Ratio

T1 : Longitudinal Relaxation Time or Spin-Lattice Relaxation Time

T2 : Transverse Relaxation Time or Spin-Spin Relaxation Time

TE : Echo Time

TI : Inversion Time

TR : Repetition Time

TT : Total Time
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1 Introduction

This report addresses the use of constraint programming (CP) to solve a constraint satis-

faction problem (CSP) in the field of magnetic resonance imaging. A generic solution is

presented for the control of parameter settings and signal acquisition for magnetic resonance

imaging and spectroscopy (MRI/MRS). The associated MRI/MRS constraints are investi-

gated and algorithms developed to represent, recognize, parse, and resolve the associated

constraints.

Imaging of the human brain using magnetic resonance (MR) technology includes magnetic

resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and functional magnetic

resonance imaging (fMRI). MR technology is a promising modern method for the study of

brain structures and functions [13, 40]. It is also very important in the diagnosis of brain

damage and brain disease [13] and can be used to map physiological parameters of neural

metabolism to ongoing brain activities and mental processes [4, 38].

Acquisition of the raw magnetic resonance signal is the first step for a MR examination.

MRI reconstructs the signals to provide remarkably high-resolution images of brain anatomy

on the computer screen. MRS extracts information from the signals to determine the nature

and the amount of certain neurotransmitter and neural metabolite molecules existing in a

well-defined volume of the brain [30, 35]. Depending on which neural processes or neural

metabolites are being imaged, the size and location of regions of interest to be analysed, and

the types of clinical or research questions being asked, the MR signal acquisition parameters

need to be varied in complex ways [23, 33, 35].

Because no standard sequence patterns are available for many combinations of target imag-

ing features, individual researchers often must develop their own scanning protocols for

individual MR devices. Unfortunately, devising appropriate stimulation sequences and other

necessary parameters for obtaining the MR signals, and programming these into a computer

that controls the performance and operation of the MRI system is a very laborious and time-

consuming task [19]. In addition, the sequence settings, developed with great effort, may

turn out not to be useful because they failed to address the complex effects of the diverse

variables associated with imaging properties [28].
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The overall objective of the research reported here is to develop algorithms to support the

control of MRI/MRS signal acquisition. This consists of the following objectives: a) To

define the MRI/MRS parameter setting problem; b) To extract heuristics from MR physics

and neuroscience knowledge bases and to apply them in the development of constraints on

parameter settings; c) To implement and evaluate a constraint satisfaction program for this

problem.

The research has successfully fulfilled the following objectives.

a) The MRI/MRS data acquisition control problem has been characterized as a constraint

satisfaction problem (CSP) that can be tackled by constraint programming (CP; [8, 41]).

b) The MRI signal acquisition control parameters that determine imaging features have been

interpreted as appropriate input and output entities (variables). The value domains of these

variables have been defined based on MR physics and neuroscience knowledge.

c) The complex interrelations among the entities have been defined, interpreted, and for-

mulated into several types of constraints. Users are allowed to specify and/or modify the

constraints to meet their special measurement needs.

d) A constraint-resolution program has been designed and implemented to propagate the

constraints and obtain valid parameter settings.

e) Search strategies based on CP have been applied to reduce the search space to a practical

size and enumerate all feasible parameter settings in a given imaging context.

Section 2 of this report introduces MRI/MRS technology and its applications in neuroscience

research, and the principles of MRI/MRS data acquisition control. It then defines the MRI

parameter-setting problem and reviews previous efforts to provide a solution.

Section 3 reviews relevant techniques in Constraint Satisfaction and Constraint Program-

ming.

Section 4 then formulates the MRI/MRS parameter-setting problem into a Constraint Sat-

isfaction Problem.

Section 5 describes the algorithms and data structures constituting the generic constraint-

resolving engine. It gives detailed information on how the constraints are formulated, recog-

nized, parsed, enforced, and resolved and how implementation efficiency has been achieved

with the use of heuristics.
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Section 6 shows system performance and sample outputs of the generic constraint-resolving

engine.

Section 7 summarizes the contributions of the research, and discusses its limitations and

further research directions.

2 Related Work

2.1 Magnetic Resonance Technology and Brain Imaging

MR technology relies on the differential decay and recovery characteristics of the proton

nuclear magnetic resonance (NMR) signal (i.e. relaxation behaviour) to detect differences

in magnetic resonance in localized regions [26]. Discovered in 1946, the NMR phenomenon

was originally developed and used for chemical and physical molecular analysis.

NMR began to be considered for medical purposes in the early 1970’s when the nuclear

magnetic relaxation times of tissues were found to be different from those of tumours [13].

It was demonstrated on small test tube samples [25] shortly after x-ray-based computerized

tomography (CT) was introduced. The localisation technology was significantly improved in

1975 when phase and frequency encoding and the Fourier Transformation (FT) were applied

[13]. In 1977, at the time when positron emission tomography (PET) was developed, MRI

of the whole body was demonstrated. In 1987, MRI started to be used to perform real-time

imaging of a single cardiac cycle. Since then, efforts have been made to reduce imaging time,

and the time required to obtain a single image has finally reached only a few seconds [39].

In 1993, three years after magnetic resonance angiography (MRA) was perfected, allowing

imaging of flowing blood without the use of radioactive contrast agents, the functional MRI

(fMRI) method was first developed [4, 6]. This opened up a new application era for MR

technology by providing views of the functional activity of living brains. Thus researchers

can not only observe the structure, but also investigate the functions, diagnose diseases and

monitor activity of the living brain and other tissues [21, 16].

In comparison with other modern brain imaging technologies such as CT and PET, MR

technology has the following advantages. It provides detailed views of the brain in spatial
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Figure 1: A typical scanner for MRI/MRS exams

dimensions and/or information on important neurochemicals with no x-ray or radioactive

isotope being used. It is non-invasive, safe, and painless. It involves no blood sampling

or special preparations. With the ongoing progress in MR technology aimed at improving

the signal acquisition speed, the quantitative accuracy for localizing characteristic signals

and data processing quality and spatial resolution, MRI will play an important role in many

aspects of brain research. These include basic research, clinical investigations and treatments

related to the nervous system and other organs [5, 26, 16].

The milestones of MRI technology are listed in appendix B.

MRI/MRS is based on absorption and emission of energy by protons (mainly hydrogen,

1H) in the radio-wave frequency range of the electromagnetic spectrum. Measurement and

interpretation of the emitted energy in brain tissues can provide an anatomical view of the

brain as well as neurochemical and functional information [17]. Figure 1 shows a typical

scanner used for MRI/MRS studies.
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Tissue components such as lipid and water in the brain have a large number of hydrogen

and other atoms. The atomic nuclei spin on their axes. Moreover, each spinning positive

electronic charged particle acts as a magnet with the poles located in the axis of spin. When a

patient is subject to a strong, externally applied superconductor magnetic field, the spin axes

of all these tiny magnets align with the field. This creates an average vector of magnetization

of the nuclei that is oriented parallel to the magnetic field [17].

When a radio frequency (RF) pulse is broadcast toward the patient in a line perpendicular

to the magnetization vector, it causes the net magnetization vector to deviate from the main

magnetic field and the magnetization of individual nuclei to diverge at different angles from

their original axes (Figure 2). The intensity and duration of the RF pulse control the amount

by which the magnetization vector tilts away from the z-axis.

After deactivation of the RF pulse, the net magnetization vector gradually (over a period of

200 − 2, 000 msec for biological substances) returns to the state of being parallel with the

main field. The time that this takes is referred to as the T1 relaxation time (longitudinal

relaxation or spin-lattice relaxation; Figure 2). In addition, the average precession angle of

the nuclei returns to its normal low value over a shorter period of 30 − 200 msec, referred

to as the T2 relaxation time (transverse relaxation or spin-spin relaxation; Figure 2). The

rate at which this proceeds differs from tissue to tissue ([17]; Figure 2).

As the nuclei relax with respect to T1 and T2, each becomes a miniature radio transmitter,

providing a characteristic resonance signal that changes over time. Based on the Larmor

relationship, when nuclei relax, the frequency that they transmit is positively correlated

with the strength of the surrounding magnetic field (Appendix C). Different nuclei resonate

at different frequencies and similar atoms in different environments have different resonance

frequencies [35]. For example, a hydrogen attached to an oxygen and a hydrogen attached to

a carbon, or a hydrogen in lipids and a hydrogen in water have different microenvironments,

and thus transmit different signals. Different tissues give characteristic resonance signals

due to the different water-to-fat ratios [9, 35]. These signals are acquired as raw resonance

signals and are the basis for determining the chemical composition of the target brain tissues

(i.e. MRS; Figure 3) and/or for forming anatomical images of the brain (i.e. MRI; Figure

4).
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Figure 2: Tilt of the axes of the nuclei precessing when a radio frequency pulse is applied

In the spin-echo (SE) method that is usually applied in MRI/MRS measurements, a magnetic

field gradient system consisting of gradients in x, y, and z dimensions is employed to perform

three-dimensional signal localisation [35]. Information from various dimensions is extracted

and transformed by means of Fourier transformation (Appendix D).

The SE technique applies a 90o RF pulse followed by a series of 180o RF pulses (i.e., a pulse

sequence). The entire sequence must be repeated and averaged multiple times in order to

get stable enough resonance signals with a good enough signal-to-noise ratio (SNR)[35]. The

repetition time (TR) refers to the time between repetitions of the RF pulse sequence [17].

The echo time (TE) refers to the time between the 90o pulse and the maximum magnetization

in the echo in a spin-echo sequence [17].

2.2 MRI Signal Acquisition Problem

A typical MRI system consists of the following components (Figure 5).

1. A large and extremely strong magnet (1.5 - 4 T), in which a patient is placed.

2. Gradient systems to determine 3-D scanning localization.
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Figure 3: 1H brain spectrum for some neural compounds. ml: myo-Inositol; Cho: Choline;
Pcr: phosphocreatine; Cr: Creatine; Glu: Glutamate; NAA: N-Acetyl aspartate; Gln: Glu-
tamine; Lac: Lactate; Lip: Lipid.
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Figure 4: MRI brain images from 3-D views. Top: Coronal; Middle: Sagittal; Bottom:
Transverse
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3. A radio frequency transmitting and receiving system that sends RF signals (104 − 108

Hz) to the patient being measured and then gets resonance signals back.

4. A viewing console. The raw resonance signals are transformed and converted into

information about the MR images and spectra (and often further quantified as neuro-

chemical concentration) using analytic software on a computer system.

5. A scan controller, that is usually located in the same computer as the viewing console.

It is the component that directs all the actions in the MRI/MRS measurements to

acquire and process the data. It controls the variables that determine when to turn

on and off the gradient system and the RF transmitter to obtain the proper pulse

sequence. It also controls the RF receiver amplifier and the A-D converter to digitize

the signal. Through these, it determines which characteristic resonance signals will be

generated.

Since the MRI/MRS characteristics depend on many factors, including proton density, T1

and T2 relaxation effects, and effects of flow, diffusion and acquisition time etc, there are

several types of control information.

1. Localization and orientation factors, including regions of interest and volume of ele-

ments.

2. Tissue contrast and SNR factors such as T1-weighted or T2-weighted, timing and RF

pulse sequence.

3. Proton resonance characteristics, such as composition and properties of neural metabo-

lites of interest (Appendix E).

4. Spatial resolution and spectral dispersion, such as number of slices and averages, etc.

This information is conveyed to the controller by entering the values of a number of parame-

ters that ultimately determine the characteristics of the signals recorded. It is necessary that

the set of parameter values used be properly determined for a required MRI/MRS protocol

before the scanning process can start [23].
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Figure 5: Major MRI system components
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The parameters that need to be determined for a typical single voxel MRI/MRS study

with a system such as the one being used in the QEII Health Sciences Centre in Halifax

[19] are listed in Appendix D. The variable domains for these parameters from which the

values of each parameter may be chosen are also listed (Appendix F). The MRI/MRS signal

acquisition parameters are of different types. Some of them can be determined easily from

the requirements of given scanning tasks. Examples of this kind of parameter include the

neurochemicals and region of interest. Other parameters, however, have to be derived by

dealing with the complex relationships among the parameters that are related to the physics

involved or to basic features of the physiology of the targeted brain tissue. Examples of these

kinds of parameter include the total number of acquisitions that are feasible, the gradient

orders and RF pulse sequence.

Various combinations of the parameter values allow researchers to tailor their signal acquisi-

tion to particular research questions, varying localization strategies and evaluating different

features of neuronal function. Because the effects of these parameters on MRI/MRS sig-

nal characteristics are interrelated, changing the value of one parameter often influences the

others. Adjustment of many of these parameters involves tradeoffs, depending on which neu-

ronal processes, neurotransmitters or other neural metabolic processes are more important

to examine [18]. The tradeoff table for selecting parameter values is given in appendix G.

Furthermore, there are MRI system constraints as well as scanning task-related constraints

that restrict the choice of values for each parameter. For a MRI/MRS system to accept a

certain parameter setting for a scanning protocol and generate meaningful results, all the

constraints have to be satisfied. This requires not only identifying the variety of signal

acquisition parameters that need to be set appropriately, but also resolving conflicts arising

from the complex interrelations among these parameter values.

For instance, to be able to obtain spectra of certain neurochemicals and metabolites with

clearly displayed chemical shift dispersion (Fig. 3) as well as a good spatial resolution (Fig.

4), a TR value has to be properly chosen which should be three to five times the T1 value

for those neurochemicals. The proper choice of a value for TR is influenced, however, by the

assigned TE value. The choice of TE is also dependent on what the neurochemical targets of

interest are, which part(s) of the brain is/are the target to be examined, and what kinds of
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metabolites

weighting issues

brain region

TE

TR

sequence

& gradient

Figure 6: An example of MRI parameter value determination

imaging features (i.e., T1-weighted or T2-weighted) are of most interest. Generally speaking,

with increasing TE, the spectra of those compounds with the shorter T2 become less clear,

while those with longer T2 become more prominent. Similarly, with decreasing TR, the

spectra of compounds with a shorter T1 will appear more prominent [9, 37]. In addition to

resolving all of these issues, the gradient order and RF sequence may also need to change,

depending on the combinations of values selected for TE, TR etc. The relation among these

parameters is illustrated in Fig. 6.

It is easy to appreciate that manually resolving the relations among these parameters to

determine the appropriate value for each of the many parameters involved can be quite

difficult. As a result, MRI researchers may devote a great deal of time to working out

a single setting when developing a new MRI research protocol. Nevertheless, the array of

settings selected may be found to be unacceptable by the system, that is, unresolved conflicts

among experimental or system constraints can arise. Alternatively, the system may accept

the derived settings, but the output signals may not produce meaningful MRI/MRS results

because of emerging constraints that have not been addressed.

The above difficulties associated with the identification of customized, manual setting of

resonance signal acquisition parameters, provide a requirement for the development of com-
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puterized tools to determine valid parameter settings for various scanning tasks. This would

help MR researchers and benefit the development of new MRI/MRS application protocols.

Such a parameter setting tool should therefore provide the following functions:

1. Determine valid MRI system parameter settings for any given scanning task. After

getting a list of input parameters that specify the measurement task, the program

should output all the valid MRI system parameter settings that may be used.

2. Optimise the valid MRI system parameter settings. If there is more than one set of

valid parameter settings for a certain task, the program should indicate those that best

meet the task requirements.

3. Provide setting suggestions. If there is no valid set of MRI system parameter settings

for the input values provided by the user, the program should detect the critical con-

flicts. In addition, if possible, it should provide suggestions for how to modify input

parameters to make the task feasible.

3 Constraint Satisfaction Problems and Constraint Pro-

gramming

In this section we review the main ideas in the literature of constraint satisfaction and

constraint programming. In the following section we apply these ideas to the MRI parameter

setting problem.

3.1 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP); P = (X,D,C) consists of:

1. A finite set of variables; X = {x1, x2, ...xn}.

2. A finite set of domains; D = {D(x1), D(x2), ...D(xn)}. Set D(xi) represents a finite

set of possible values for variable xi. All of the variables have a corresponding finite

domain of values.
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3. A set of constraints associated with the variables; C = {c1, c2, ...cm}. Each of the

constraints Ci expresses a logical relation among some of the variables in X. An entire

set of constraints of a CSP thus represents complete information about the relations

among the variables, and restricts the number of acceptable combinations of values

that can be assigned to the variables [41].

Typically, constraints in a CSP share the following properties [2].

1. Declarative: Constraints specify what relation must hold without clarifying a procedure

to enforce that relation.

2. Non-directional: A constraint implies a particular value for the variable X, given a

particular condition being applied to variable Y and vice versa.

3. Representative: Constraints may specify only a partial relation and need not uniquely

specify all the values in the variable domains.

4. Additive: While the conjunction of constraints at the end of enforcement does de-

termine the correctness of the solution, the order of constraint imposition does not

matter.

5. Dependent: Limits to a given constraint set often share variables in the relations that

they define.

3.2 Constraint Programming

Specification of constraints is a natural mechanism to describe problems in human activities,

and satisfaction of multiple, sometimes conflicting, constraints represents one of the most

common problems in the real world that require efficient software strategies to address [41,

42]. Constraint programming (CP) emerged to meet this need. The objective of CP is to

study computational systems based on constraints [20].

Research on CP started in the 1970s, and the systematic use of CP began in the ¡ 1980s [20].

CP has already become a popular and powerful technique that declaratively describes and
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effectively solves many practical constraint satisfaction problems, especially large combina-

torial problems in areas such as planning and scheduling [2].

A typical CP process may be described as follows. The user provides requirements (i.e.,

constraints) and the program generates solutions to the CSP by providing a set of values

for all the variables, which do not violate any of the constraints. Alternatively, CP may

find that there is no solution to the CSP, if no such values can be found. Thus, in fact, the

task of CP is a combinatorial search problem in finding one or all value assignments to the

variables satisfying all the constraints [2].

A straightforward but expensive algorithm to accomplish the search task is that of system-

atically generating and testing (GT) all value combinations. The approach is prohibitively

expensive for all but the smallest problems. Therefore, developing strategies that accom-

plish the task more efficiently, at least for a subset of problems, has been one of the most

important aspects of modern CP research [29].

While recent research on CP concentrates on generating novel models and faster algorithms,

classic CP approaches have provided, and continue to provide, the most reliable and complete

strategies [1, 15]. Hence, classic CP technologies are widely and successfully applied in solving

practical CSPs in the real world [42, 29]. Some of the most important CP techniques are

introduced in the next subsection.

3.3 Classic Constraint Programming Techniques

Classic CP algorithms that are often employed to tackle typical CSPs in practice include the

following [1, 2, 22, 29].

1. Look back (LB). The validity of the constraints is tested immediately after the vari-

ables relevant to the constraints are added into the assignment list. This algorithm

solves a CSP by incrementally extending a partial solution that specifies consistent

values for some of the variables towards a complete, consistent solution. If a partial

solution violates any of the constraints, backtracking is performed to the most recently

instantiated variables. As extensions of backtracking-type algorithms of LB, the back-

jumping method has been introduced to avoid repeated failures caused by a single class
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of violation [10], and the backmarking method has been employed to avoid redundant

discoveries of unmarked conflict values [12].

2. Look ahead (LA). Algorithms of LA also overcome the shortcomings of late discovery

of inconsistency by preventing future conflicts before assigning values for variables.

They perform the consistency checks for the not-yet-assigned variables against the

consistent assignments. When a value is assigned to the current variable, any value

in the domain of a future variable and/or its associations, which conflicts with this

assignment is temporarily removed from the domain. LA can often further suppress

the space on a subsolution basis.

3. Consistency Technique (CTQ). This technique removes inconsistent values from the

domains of the variables based on the clues derived from the constraint specifications.

The algorithms of this technique generate the complete value assignments by avoiding

conflicts before they occur [34].

Because we employ CTQ extensively in our research in solving this MRI problem to

prune the search space by using constraints actively, it is discussed in a little more

detail here. A CSP can be represented as a constraint graph network (CGN) where

nodes correspond to variables and edges are labelled by constraints [32, 24]. If (and

only if) for every value x in the current domain of Vi, there is some value y in the

domain of Vj such that Vi = x and Vj = y is permitted by the constraint between

Vi and Vj (Figure 7), the arc (Vi, Vj) has arc consistency (AC). The Path consistency

(PC) technique of CGN further ensures that for every pair of values of two variables

X and Y , there exists a value for each variable along some path between X and Y

such that all constraints in the path are satisfied. The critical point of CTQ is that the

values that would result in inconsistency have been removed from the variable value

domains before the values are assigned. The most popular CTQ algorithms, such

as AC-3, AC-4, PC-1, PC-2, and their extensions re-revise affected nodes/arcs/paths

from previous node/arc/path revision, individual pairs of values, or values of multiple

variables [32, 24, 2].
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Vi Vj

value domains

Vi: I2, I3

Vj: J1, J2, J3

remove I1 from

the value domain

of Vi first

I1 J1

I2 J2

I3 J3

Figure 7: Consistency technique. Local inconsistencies have been removed from value do-
mains before assigning consistent pairs of values.

4. Complete and heuristic techniques. These techniques include local search strategies of

greedy algorithms equipped with various randomizing heuristics to search the space of

complete labellings. Among these techniques, the hill climbing algorithm starts with

a randomly generated labelling of variables and, at each step, it changes a value of

some variables in such a way that the resulting labelling satisfies more constraints,

until a global satisfaction is reached. To avoid cycling or getting trapped in local

minimization, many heuristic methods have been developed [22, 11, 31].

In addition to the classic CP techniques, modern algorithms have been recently proposed,

including the following:

1. Binary constraint techniques. One recent development of CP research has been centred

on solving binary constraint satisfaction problems (BCSP) using evolutionary compu-

tation techniques. Nevertheless, this strategy has been found especially interesting in

the field of constraint optimisation (CO) rather than CSP, to reduce the large number

of constraint tests associated with a systematic search.

BCSP is a more abstract research model that only allows constraints over a maximum

of two variables. General CSPs may be dealt with using this model by first converting

an arbitrary CSP into a binary form and then applying BCSP techniques [7, 14, 15, 41].

2. Evolutionary algorithms. These algorithms generally start with a random population

of value assignments, and genetically evolve the population, based on fitness functions
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that count the number of constraints violated. Breakout mechanisms are used to reduce

the chance of getting stuck in local optima. Genetic algorithms generally do not know

when to quit, and thus lack the ability to detect if a CSP in fact has no solution

[15]. Some of the most popular evolutionary algorithms include microgenetic iterative

descent and stepwise adaptation of weights, although some hybrid evolutionary and

systematic search methods have started to become available [3, 36, 14].

Combinations of CTQ and systematic search techniques have been applied extensively in

this research, together with the application of LB, LA, and heuristics in order to achieve

completeness in constraint propagation and a good tradeoff between effectiveness and com-

plexity.

4 Solving the MRI Problem with Constraint Program-

ming

The MRI problem is a typical CSP. It can be properly formulated in terms of a set of

variables, each having a value domain, and a set of constraints on the variables. The number

of variables and their domains and the constraints are based on MRI physics and brain

imaging and/or spectroscopy characteristics, and are specified by the user. The search space

consists of all possible combinations of the values for each and every variable in the variable

set.

4.1 The Enumeration Nature of the Original Problem

The computational complexity of complete enumeration of the search space is an exponential

function of the number of variables. If it is possible for a variable to be assigned a set of

values, instead of a single value, then the computation required for enumeration would be

even more expensive.

In Figure 8 we illustrate the complexity of enumeration through an example. Assume that

the MRI system had two variables a and b, with the domain of each being {a1, a2, a3} and
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a1 b1 ... … n1

a2 b2 ... … n2

a3 b3 ... … n3

… … … … … n: number of variables

am bm ... … nm m: number of possible values

Figure 8: Enumeration nature of the problem

{b1, b2, b3} respectively. The complete set of value combinations includes a1b1, a1b2, a1b3,

a2b1, a2b2, a2b3, a3b1, a3b2, a3b3, i.e. a total of 32 = 9 value computations.

In general, if there are n variables, with m values each, the total number of value combinations

is mn, if each variable can be assigned a single value only. The problem becomes more

complicated if variables can be assigned sets of values, instead of single values.

In the above 2-variable system, if multiple values are allowed for a, the possible values for a

are: {}, a1, a2, a3, a1a2, a1a3, a2a3, a1a2a3. The number of value assignments for variable a

is 23, including the empty set of values. When these are combined with the 3 value choices

for b, the total number of value combinations would be 23 × 3. When multiple values are

allowed for both variables a and b, the number of value combinations would be 23×2. In

general, the total number of value combinations for a system consisting of n variables with

m values each thus would be 2m ×mn−1 if one variable were allowed sets of values, and it

would be as big as: 2m×n, if all variables were allowed to have sets of values.

For a typical MRI parameter-setting CSP in the real world, it is realistic to assume there

could be as many as 12 variables, each with 10 values. Thus the search space for this

MRI/MRS CSP would be 1012, if variables take on a single value, and (210)12 ' 1036 value

combinations, if all variables are allowed to have sets of values.
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Figure 9: A solution to the MRI parameter setting problem.

4.2 Design of a Constraint Satisfaction Program for MRI Parameter-

Setting

In addition to solving the CSP, a program should be easy for the practitioner to use. There-

fore, a particular MRI parameter-setting CSP should be specified in declarative form in a

language that is easy for someone who is an expert in the operation of MRI equipment

but not necessarily a computer programmer. The proposed design consists of a generic

constraint-resolving engine, that reads an input file specifying the variables, their domains

and the associated constraints, and enumerates all feasible value combinations (Figure 9).

The input file contains textual constraint specifications prepared by the user according to

the rules of a grammar. The grammar ensures the constraint specifications can be recognized

and parsed by the program.

The constraint resolving engine consists of a case-independent part and a case-specific part.

The former consists of hard coded parameters and formulas which are independent of the

constraint set provided by users and do not differ among executions of the program. The

latter is dependent upon the content of the constraint set and may vary from one execution

of the program to another. We discuss them in the next subsection.
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4.3 Case-Independent Parts of the Constraint Resolving Engine

Some of the software components represent characteristics of the MRI/MRS brain research

applications. These aspects thus should be pre-defined and coded in the software. Usually,

their values are determined by either physical principles related to MRI or task-specific

features.

Parameters determined by physics of a MRI device may include the following:

1. The parameters used to calculate the strength of a magnetic field and derived resonance

are based on the Larmor equation (as listed in Appendix C). They were coded in the

solution as constants.

2. Time of a single scanning cycle (duration to complete a single sequence) is a constant

tied to the MRI equipment, ranging from 2 to 10 seconds. The exact value of time

per scan is a constant factor at any given value combination of TE and TR. The

relationships generating correct time of any single scan were pre-specified in a machine

dependent way.

3. Equations derived from mathematical expressions and operations were coded in certain

program functions.

Parameters determined by biological features of the imaging task may include the following:

1. Value type for the various entities (i.e., whether a certain entity takes values taht are

discrete numbers, strings or continuous numbers).

2. Constraint type. Based on the interpretation of the possible relations among the

parameters in the real world application, several different constraint types were defined.

4.4 Case-Specific Parts of the Constraint-Resolving Engine

As a generic solution that has the potential to be applied to a wide range of tasks, many

components of the software were not fixed but viewed as case-specific. These portions may

change from one execution of the program to another, depending on what set of constraint
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specifications the program is executing. These portions are determined after the constraints

are parsed. They include:

1. Values of all entities. While the identifiers and types of the entities are hard-coded

in the program, the value domains of the entities may vary. For example, entity

“measurement” may include any neuronal compound(s) of interest.

2. Values of all constraints. While the form of the constraints must be predefined in

the software, the value domains of the constraints can be specified by the user; i.e., a

constraint may involve any values of any entity.

3. Relations among entities. New relations among entities may be derived with any type

of constraint. For example, some values of entity “measurement” may be involved in

various types of constraints with entity “location”.

4. Constraint-resolving program. The program is generated automatically based on the

input specified.

4.5 System Structure and Data Flow

The system consists of three major parts: the Parser, the Compiler and the Resolver. The

Parser reads the constraint specifications and checks their syntactical correctness. The Com-

piler program interprets the specifications, and constructs the Resolver program dynamically.

Interpretation involves the extraction of the variable identifiers and value domains as well

as constraint identifiers and associated values. The Resolver iterates on the variable values

and enforces the constraints to produce the settings that form the output.

4.6 Constraint Resolving Procedure

With all the required data structures and other information on entities and constraints

prepared by the Parser, the Resolver resolves the constraints, i.e. it assigns values for all the

entities consistent with the constraints. As shown in Figure 10, this is essentially a search

procedure applying CT, heuristics, and systematic search CP techniques.
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1. Constraint resolving begins by selecting an initial entity that has the lowest number

of value choices that are independent of any other entity values.

2. The Resolver selects a value for the initial entity randomly from its value domain and

stores this value as a member of the accumulated local solution.

3. From the constraints involving this value, it finds one other entity that has constraint

relations with the value.

4. It determines all values of the entity satisfying the constraint and stores each of these

values in the accumulated value group, together with the value of the previous local

solution.

5. For each partial solution, it repeats steps 3 and 4 until a global solution is obtained,

which assigns a value to each entity. The global solution is stored.

6. It repeats steps 2 to 6 to get more global solutions.

7. When all the values of the initial entity have been processed, the search space is

complete, and all the global solutions have been found.

Constraints of a relatively simple form and those that bind fewer variables/values are enforced

prior to those of more complicated types. Continuous numerical data are discretized by

means of thresholds that are associated with distinguishable results.

5 Algorithms and Implementation

This section presents the details of the constraint resolution algorithms and data structures.

5.1 Definitions of Entities and Their Value Domains

Entities are of two different types, depending on whether they can assume a single value or

multiple values from their domain.

Definition 5.1 (Single-Value Entity) An entity that can only take single values from its

domain is called a single-value entity.
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Figure 10: The value enumeration process. The entity value domains obtained after con-

straint enforcement are jointly enumerated to generate complete parameter settings. All

complete parameter settings form the final output of the system and are written to disk.
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An example of a single-value entity is “avg′′, the number of acquisitions to average (Table 1

and Appendix F).

Definition 5.2 (Multiple-Value Entity) An entity that can take more than one value

from its domain simultaneously is called a multiple-value entity.

An example of a multiple-value entity is mea, the neural compounds of interest (Table 1

and Appendix F). In subsection 4.1 we demonstrated that the size of the search space is

an exponential function of the sizes of the entity value domains. However, for the practical

cases of the MRI parameter setting problem, it turns out that the size of the search space is

not prohibitively large, after constraints have been applied to prune it.

Definition 5.3 (Value Combinations) A value combination is an assignment of values

to a set of entities, that is consistent with the constraints of the problem. Entities can be

either single-value or multiple-value.

Definition 5.4 (Partial Value Combinations) A partial value combination is a value

combination that involves only a subset of the entities. It cannot be used in MRI parameter

setting yet, because it is a partial solution.

Definition 5.5 (Complete Value Combinations) A complete value combination is a value

combination that involves all of the entities. It can be used in MRI parameter setting, because

it is a complete solution. The output of our system is the full set of all possible complete

value combinations.

An example of a value combination for the set of entities (mea, loc, te, tr) is ((naa cre),

(tem)), (30), (3000)). In this example, mea is a multiple-value entity, while loc, te, tr are

single-value entities. The assigned values of a single entity are represented as a list. If the

list is a singleton (i.e. it has one element), then a single value has been assigned. The next

subsection describes the constraints that must be satisfied by acceptable value assignments

to individual multiple-value entities, and to acceptable value combinations.
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Entities Variable Identifiers Examples of values
Measurement mea choline, naa, gaba
Region loc temporal cortex, orbital
Echo time (TE) tev 10, 30, 68
Repetition time (TR) trv 1500, 2000, 4000
Total time (TT) time 1 .. 100, increment by 1
Voxel size vox 1 .. 50, increment by 0.1
Sequence sqz PRESS, STEAM
Data point (DP) dat 512, 1024, 2048
Gradient order ord y-x-z, z-y-x
Filter type fil double,no filter
Average (AVG) avg 32, 128, 512
Single scan sgl 2, 3, 10

Table 1: Entities handled by constraint parser

Type Class Name
One Incompatible value groups of a single entity
Two Value incompatibility between two entities
Three Single-single value dependency between two entities
Four Multiple-single dependency between multiple entities
Five Multiple-multiple dependency between multiple entities

Table 2: MRI/MRS constraint classification

5.2 Constraint Formulation

The constraints are imposed on 12 entities, that represent the 12 MRI/MRS parameters

determining signal features. Table 1 lists the 12 entities, together with their identifiers and

examples of typical values.

The types of constraints correspond to the types of relations among the entities. Constraints

belong to the types shown in Table 2. Definitions and examples of these types of constraints

are given next.

5.2.1 Constraint Type One

Type 1 constraint applies to multiple-value entities only. Its effect is to constrain the value

sets that the entity can take. In order to formulate a type one constraint, the notion of value

group is introduced.
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Definition 5.6 (Value group) A subset of values of a multiple-value entity is called a

value group.

Definition 5.7 (Partition of value domain) A partition of a value domain of a multiple-

value entity is a set of value groups that are mutually exclusive and their union is the value

domain.

A partition of a value domain is specified by the user in the constraint file.

Definition 5.8 (Constraint type one) A constraint of type one applies to a value group

G together with a set of other value groups {Gi}, all of the same multiple-value entity. Value

sets from G can appear together with value sets from zero, one or more of the value groups.

Value sets from one or more of the value groups cannot appear by themselves without the

presence of one or more values from G.

Example 5.1 The multiple-value entity “measurement” (mea) has six value groups G1−G6.

When assigning values, values in groups G3, G4, or G5 may be used together with other

values of the same group only. Values in G2 and G6 may be assigned also with values of G1.

Values in G1 may be assigned with values in G1, G2 and/or G6. In this case, we have six

constraints of type 1. The first five of them apply to value groups G2, G3, G4, G5, G6 where

the corresponding sets {Gi} are empty sets. These five constraints give us the powersets of

these value groups as acceptable value sets of the entity. The last constraint involves value

group G1 and the set of value groups {G2, G6}. Therefore, the acceptable value sets from this

constraint is the union of the following powersets:

P (G1),

P (G12) = P (G1 ∪G2)− (P (G1) ∪ P (G2)),

P (G16) = P (G1 ∪G6)− (P (G1) ∪ P (G6)),

P (G126) = P (G1∪G2∪G6)−(P (G1)∪P (G2)∪P (G6)∪P (G1∪G2)∪P (G1∪G6)∪P (G2∪G6).

Hence, it would generate a conflict if values in incompatible groups (e. g. “choline” from G1

and “gaba” from G5) were to be assigned simultaneously.
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5.2.2 Constraint Type Two

Type two constraints refer to value incompatibility between entities. This type of constraint

indicates the situation when particular values of two different entities cannot be assigned

simultaneously.

As an example, consider two multiple value entities, “measurement” and “region”. Certain

values of the first entity (e.g. “myo-inositol”) are not compatible with certain values of the

second entity (e.g. “orbital”).

Definition 5.9 (Constraint type two) A constraint of type two applies to two different

entities E1 and E2, and values v1i and v2j from their respective value domains. It states that

v1i and v2j, or value groups containing them, cannot be assigned to E1 and E2 respectively

in the same setting.

5.2.3 Constraint Type Three

A constraint of type three refers to a dependency of single values between different entities.

This type of constraint relates to the situation in which, if a certain value has been assigned

to an entity, then particular value(s) must then be assigned to another entity.

An example of this constraint type is the following: When value “gaba” is used for entity

“measurement”, the value for entity “TE” must be 68.

Definition 5.10 (Constraint type three) A constraint of type three applies to two dif-

ferent single or multiple value entities E1 and E2, and values v1i and v2j from their respective

value domains. It states that if v1i has been assigned to E1 alone or as a member of a value

group if applicable, then v2j must be assigned to E2 alone or as a member of a value group

if applicable.

5.2.4 Constraint Type Four

Type four constraints are similar to type three constraints, but they involve more than two

entities. For example, consider multiple value entity “measurement”, and single value entities

“region”, and “TE”. The value choice of “TE” depends on the value combinations of the
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other two; e.g., if “measurement” takes value “choline” and “region” takes value “parietal”,

then “TE” must take value either “10” or “275”.

Definition 5.11 (Constraint type four) A constraint of type four applies to three or

more single or multiple value entities E1, E2, E3, ..., En−1, En and values v1, v2, ...,vn−1

and vn from their respective value domains. It states that if v1, v2, ..., vn−1 have been been

assigned to E1, E2,...,En−1 respectively alone or as a member of a value group, then vn must

be assigned to En alone or as a member of a value group. Entities E1, E2,...,En−1 are the

independent entities of the constraint, while entity En is the dependent entity.

5.2.5 Constraint Type Five

A type five constraint refers to multiple-multiple dependency. This constraint type occurs

when value combinations of certain entities depend on value combinations of other entities.

As an example, consider the following 6 different entities: “measurement”, “region”, “TT’,

“TE”, “TR”, , and “AVG”. Choices of “TE”, “TR”, and “AVG” depend on what values

have been assigned to the first three entities. If, for instance, “measurement” is “choline”

and “region” is “parietal”, and “TT” is “70”, then “TE” must be “135” and “TR” must

“1500”, and “AVG” must be “512”.

Definition 5.12 (Constraint type five) A constraint of type five applies to more than

three single or multiple value entities E1, E2, ...,Ek, Ek+1,...,En and values v1, v2,...,vk,vk+1,...,vn

from their respective value domains. It states that if v1, v2,...,vk have been assigned to E1,

E2, ...,Ek respectively, then vk+1,...,vn must be assigned to Ek+1,...,En respectively. Entities

E1, E2, ...,Ek are the independent entities of the constraint, while entities Ek+1,...,En are

the dependent entities of the constraint.

5.3 Constraint Representation

A simple context-free language [27] is defined to represent the constraints in a form that can

be easily parsed. A grammar G = (V, Σ, R, S) was defined for this purpose, where V repre-

sents the vocabulary, Σ represents the terminal symbols, V −Σ represents the non-terminal
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symbols, R represents the production rules, and S is the starting state. The alphabet is as

follows:

Σ = { ent, grp, con,

type1, type2, type3, type4, type5, (, ), SPACE } ∪
{set of integers } ∪
{user-defined symbols representing names and values of entities}

V − Σ = { NAME, NAMES, CONSTRAINTTYPE,

ENTITYLIST, ENTITYLISTPAIR, ENTITYVALUEPAIRS, ENTITYVALUEPAIRS1,

VALUES, VALUEGROUP, VALUEGROUPPAIR, VALUEGROUPPAIRS }

where e is the empty string, and “.” is the string concatenation operation. The production

rules are the following:

S -> ( (ent NAME) VALUES ) |

( (grp NAME) VALUEGROUPPAIRS) |

( (con CONSTRAINTTYPE) ENTITYLISTPAIR ENTITYVALUEPAIRS )

NAME -> an entity name

VALUES -> a list of entity values

VALUEGROUPPAIRS -> VALUEGROUPPAIR | VALUEGROUPPAIRS . VALUEGROUPPAIR

VALUEGROUPPAIR -> (VALUEGROUP VALUEGROUP)

VALUEGROUP -> a list of entity values (indexed)

CONSTRAINTTYPE -> type1 | type2 | type3 | type4 | type5

ENTITYLISTPAIR -> (ENTITYLIST ENTITYLIST)

ENTITYLIST -> (NAME NAMES)

NAMES -> NAME . NAMES | e
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ENTITYVALUEPAIRS -> VALUEGROUPPAIRS | ENTITYVALUEPAIRS1

ENTITYVALUEPAIRS1 ->

VALUEGROUPPAIRS | VALUEGROUPPAIRLIST . ENTITYVALUEPAIRS1 | e

In addition to the above context free grammar, there are semantic constraints that must

be satisfied, that cannot be represented in the context-free grammar formalism. In the

constraint specification, the number of entity name pairs should be the same as the number

of value list pairs. Furthermore, the type of constraint should be consistent with the number

of entities.

5.3.1 Generating Constraints

We now present some sample strings generated by the grammar defined above.

Example 5.2 (Strings generated by the grammar) The strings generated by the gram-

mar are of two kinds.

1. Entity identifiers, for example:

(ent mea), representing entity “measurement”

(ent vox), representing entity “voxel size”.

2. Constraint identifiers, for example:

((con type2) (((loc) (mea)) ((list of loc values) (list of mea values)))), represent-

ing a type 2 constraint relating variables loc and mea, i.e., incompatible values between

entities “measurement” and “region”.

((con type4) (((tev)(mea loc)) ((list of tev values) ((list of mea values) (list of

loc values))))) representing a type 4 constraint stating that combined values of entities

mea (measurement) and loc (location) determine the values of entity tev (TE).

5.3.2 Recognizing Constraints

For the program to extract the constraints from the constraint files, the format of the file

should follow some rules. Table 3 shows a portion of a typical constraint file. A nested list

notation for the constraints makes parsing of the constraints straightforward.
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5.4 Generation of Partial Value Combinations by Enforcing Con-

straints

The goal of this system is to generate all feasible complete value combinations. This is done

in two phases. Phase 1 enforces all the constraints to generate partial value combinations.

Phase 2 uses the partial value combinations generated by phase 1 to construct complete

value combinations. Constraints of type one are enforced first, then constraints of type two

and type three, and finally constraints of type four and five.

5.5 Enforcement of Type One Constraints: Generating Multiple

Value Sets of an Entity

For multiple-value entities all subsets of values that satisfy constraints of type one must

be enumerated. This involves a powerset computation, which has exponential complexity.

However, because the cardinality of the sets of values is relatively low in our problem,

computing a solution is feasible.

Example 5.3 (Pruning of a Power set of a value set based on type 1 constraints)

Consider an entity E with a value domain equal to {1, 2, 3, 4, 5, 6} and potentially incom-

patible groups g1 = {1, 2, 3}, g2 = {4, 5}, g3 = {6}, then their power sets contain

the following subsets: P (g1) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, P (g2) =

{{}, {4}, {5}, {4, 5}}, P (g3) = {{}, {6}}
If there exists a type one constraint prohibiting the mixing of values from g1 and g2 as well

as from g2 and g3, then the actual value domain of entity E would consist of the union of the

powersets P (g1), P (g2), P (g3) with the following mixed value sets permitted by the type one

constraint: {{1, 6}, {2, 6}, {3, 6}, {1, 2, 6}, {1, 3, 6}, {2, 3, 6}, {1, 2, 3, 6}}.

The algorithm generates the power set of a set of n values. It parses the entity values

together with the associated grouping information. It prunes based on type one constraints

by producing and storing all the value combinations of an entity that may be used in a single

setting.
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;; general form
;; (title values)
;; title: (type name)
;; values: a list of values if type is ent (entity)
;; a list of pairs of value groups if type is grp (grouping information)
;; if type is con (constraint),
;; first value is a pair of entity lists
;; rest values are pairs of entity value groups
;;

;; ----- entity value specification
((ent mea) ;; entity name
(naa cho cre glx myo lip lac wat glu gab)) ;; list of entity values
((ent loc)
(pre orb tem par occ bra sub cer))
((ent tev)
(10 20 30 68 135 275))

....

;; ------ value group specification for multiple value entities
((grp mea) ;; group values for entity
(((naa) (cho cre)) ;; values on left can be grouped with values on the right
((glx) (wat glu))))

....
;; ------ constraint specification
((con type2) ;; constraint and its type
((loc) (mea)) ;; entities: left list: constrained, right list: constraining

;; corresponding value group pairs for entities above
((rob) (glx myo lip wat glu gab)))

((con type4) ;; constraint and its type
((tev) (mea loc)) ;; entities: left list: constrained, right list: constraining

;; corresponding value group pairs for entities above
(((10)) ((glx myo lip wat glu) (pre orb par)))
(((10)) ((naa cho cre) (pre par occ)))
(((20)) ((glx myo lip wat glu) (pre orb tem par occ bra sub cer)))
(((20)) ((naa cho cre) (pre par occ sub))))
...

Table 3: A sample textual constraint specification. Entities, value groups and constraints
are represented as nested lists. Comments are preceded by “;;”.
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5.6 Enforcement of Type Two and Type Three Constraints: Defin-

ing Value Intervals that Can Be Treated as Single Values

Type two and type three constraints help generate consistent value combinations involving

two entities. These value combinations are enumerated and stored.

The input of the algorithm includes the following:

a) An entity E1 with a finely discretized numerical value domain.

b) An entity E2 with a discrete value domain.

c) A set of type two and/or type three constraints, relating E1 with E2.

The output of the algorithm is a set of partial value combinations that involve intervals

defined over the value domain of entity E1 and values of E2. Because partial value combina-

tions are defined over intervals as opposed to over single values, they are represented much

more compactly. The following is an example:

Example 5.4 (Intervals in partial value combinations) Entities “time” and “avg” are

associated via a set of constraints involving time for a single scan, so that inconsistently large

values would not be assigned to “avg” if values of “time” are not sufficiently large. Suppose

each single scan takes 10 seconds and value of “time” is 25 minutes, then the highest consis-

tent value for “avg” is 128 because 25*60/10=150, which is smaller than the next acceptable

value 256. Applying this algorithm, we are able to calculate and store the partial value combi-

nations of “time” interval [22,42], together with “avg”=128; “time” interval [43,86] together

with “avg”=516, etc.

This algorithm computes discretizations of continuous entities. The algorithm then stores

the discretized values in data structures, together with the associated values of the related

entities. The algorithm is shown in Fig. 11.

5.7 Enforcement of Type Four and Type Five Constraints: Ac-

ceptable Value Combinations of Multiple Entities

Hash tables are used to enforce type four and type five constraints. Such constraints involve

the relation of values or value sets of certain entities E1, E2, . . . En with the acceptable value
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let d be the domain of E1 // Input, the continuous entity value domain
let {p1, p2, . . . pn} be the domain of E2

// Output, is a set C of partial value combinations involving
// intervals over d associated with values pi

// C has n elements, one for each pi, i = 1 . . . n
For each pi // Process all values in domain p sequentially

enforce all constraints on pi based on values from d;
identify the lower and upper limits of d, dlo and dhi

construct the partial value combination ((interval dlo dhi)(pi)
add it to the set C

return C

Figure 11: Algorithm for Obtaining Threshold Values

Key (mea loc te tr) value set (avg)
((naa cre) (tem) (30) (3000)) (1024)
((gab) (bra) (68) (4000)) (512)
. . .

Table 4: Data structure for hashed value combinations. Value combinations for entities
mea, loc, te, tr determine value for entity avg. Note that some entities may have multiple
values, for example mea, which has values (naa cre). This is a set of values, but, as a hash
key, the order of the values is important.

of another single value entity En+1. For each combination of entities, a separate hash table

is used. A hash key is, in general, a nested list of values (i.e. a list of lists of values) for each

of the entities E1, E2, . . . En. The hash value is the list of acceptable values of entity En+1.

Sample hash keys and values from the hash table corresponding to entities (mea loc te tr avg)

are shown in table 4. If a key has ((naa cre) (tem) (30) (3000)) for (mea loc te tr), the value

set of (1024) for entity avg is returned.

Implementation with hash tables allows us to compute and store acceptable value sets based

on these constraints once and then look them up multiple times as needed in O(1) time.

The algorithm that computes the entries of the hash table is shown in Fig. 12.
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Input: The value combinations of multiple entities E1, E2, . . . En

Single-value entity En+1.
All constraints of type 4 or type 5 involving E1, E2, . . . En, En+1

Output:Hash table
define hash table H
for each value combination V of E1, E2, . . . En

resolve the constraints involving V to get acceptable value set v for En+1

enter V and v into the hash table as a key/value pair
return H;

Figure 12: Algorithm for building the hash table implementing constraint types four and
five.

6 Evaluation

The system was implemented and tested on a variety of constraint files.

Experiment 1 : Simple constraint files that consist of subsets of specific types of constraint;

e.g., the constraint file may contain extensive numbers of constraints of one or two types

only.

Experiment 2 : Complete constraint files that consist of all of the system and task-specific

constraints for a specific real world MRI system and neuroscience imaging protocol.

Experiment 3 : Constraints included in Experiment 2 plus additional unseen cases that were

added for the purpose of testing the limits of the software system. The constraint files have

been constructed following the rules of the grammar described previously.

6.1 Correctness

System correctness was evaluated by comparing the parameter setting results obtained from

executing the program against the known correct sample settings provided by the manufac-

turer [19] and those obtained from MRI experts [28]. The comparison results in 10 identical

measurement instances demonstrated that the solution always produced correct parameter

settings.
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6.2 Computational Complexity

The hash algorithm, and the algorithm to obtain the threshold values of numerical variables,

were quite fast with a running cost of O(1), or O(n), where n represents the size of the value

domain of the entities. The expensive algorithms, that determine the overall computational

complexity of the solution, are the following.

a) Computation of the powerset to obtain the actual value domains for the multiple value

entities in type one constraint enforcement. The complexity of the powerset is 2n, where n

is the size of the value domain of an entity. However, this complexity remains limited in

practice for two reasons. First, in practical MRI applications, the total number of values for

an entity is typically not more than 10. Second, the value domain of a multiple value entity

is partitioned into subgroups, where values across subgroups are mutually exlusive. Thus

only the powerset of values belonging to the same subgroup needs to be obtained, rarely

exceed 5 in actual MRI/MRS brain research applications. Thus, the complexity in practice

is a constant bounded by 25.

b) The algorithm for enforcing type four and type five constraints has a complexity of O(nk)

where k is the number of independent entities of the constraint and n is the size of the value

domains of the entities. Since many problems solved by Constraint Programming belong

to the area of NP hard problems, the identification of restrictions that make the problem

feasible to solve has always been very important in practice [2]. In our particular problem,

brain MRI imaging/spectroscopy, k rarely exceeds 5, and n rarely exceeds 12.

c) The algorithm for enumerating complete value combinations (solutions to the param-

eter setting problem) based on partial value combinations generated by enforcing all the

constraints has complexity O(nc), where n represents the size of the set of partial value

combinations computed after enforcing all the constraints and c is the number of entity sets

for which partial value combinations have been computed. In practice, n is in the range 20

to 30, and c is less than or equal to 4.

Execution time data were acquired as follows. On a SUN Microsystems 8-processor machine

with 3GB of memory running a UNIX operating system (Solaris 7.0) (the time-shared server

of the Faculty of Computer Science at Dalhousie University), the running time for one
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Constraint set Size of constraint set No of multiple value Maximum No
entities of independent entities

in type 4/5 constraints
1 < 30 0 1
2 < 30 1 2
3 < 30 1 3
4 30 - 60 0 1
5 30 - 60 1 2
6 30 - 60 1 3
7 > 60 0 1
8 > 60 1 2
9 > 60 1 3

Table 5: Constraint sets used in the experiments

complete program execution has never exceeded 20 min in all cases. Moreover, a significant

percentage of this time was spent writing the results into secondary storage.

In order to experimentally estimate the computational complexity of the generic constraint-

resolving engine, experiments were conducted to assess how the running time of the software

changes as a function of input and how the search space is reduced by each filtering step, as

constraints are applied.

Because the degree of complexity of the input of the program is related to both the number

and the nature of the constraints that it contains, the complexity of input data was first

classified using the criteria defined in Table 5. Nine constraint sets of various degrees of

complexity were constructed and then the software was tested using these constraint sets.

Information on the experimental results, including the reduction of search space by each

filtering step and the time taken to accomplish the tasks, is provided in Table 6.

The results show that during the constraint-enforcement phase, the size of search space is

the predominant factor in determining performance, although heuristics from constraints

have served to prune the search space to a certain extent. During the value enumeration

phase which enumerates complete solutions from partial value combinations obtained by

enforcing the constraints, the performance is more closely related to the pruning power of

the constraints involved.

As suggested by the literature, a general shortcoming of CP in solving real-world problem is
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Set of Original size of Constraint enforcement value enumeration Disk write
Constraints search space time (s)

Time(s) Size * Time(s) Size *
1 6.2× 108 26 5.0× 108 3 25050 45
2 6.6× 1010 30 2.1× 109 5 14204 29
3 6.7× 1010 32 1.9× 109 5 7258 15
4 2.8× 109 31 2.2× 109 8 101640 180
5 2.8× 1011 36 1.77× 1010 36 71023 130
6 2.9× 1011 38 1.68× 1010 35 58564 121
7 4.2× 1010 40 2.8× 1010 56 142676 272
8 4.1× 1012 46 3.8× 1010 71 158197 290
9 4.4× 1012 48 2.3× 1010 50 120691 230

Table 6: Complexity results. The original size of the search space, as well as the size of the
reduced search spaces after enforcement of the constraints, and enumeration of the complete
value combinations, and the associated computation times in seconds, are shown.

that the efficiency of software is unpredictable. It is possible for small changes to the input

data to lead to a significant change in performance [2]. The evaluation method applied here

is by necessity ad hoc, since standard methods for assessing computational complexity of

CP solutions have yet to be developed [2].

7 Discussion

The research reported here was a pioneering attempt to solve a complex problem in the

selection of appropriate parameters for signal acquisition in MRI/MRS research and clinical

applications by using algorithms and strategies derived from the field of Constraint Pro-

gramming. We produced a generic program with an automatically constructed constraint

resolving engine. This engine prunes the search space and generates all valid parameter

settings as directed by the constraint specifications. It allows users to specify/modify con-

straints to deal with measurement protocols of interest and at the same time frees them

from burdensome computations. Implementation of the program should make it possible to

develop MRI/MRS applications more quickly and easily.

With its properties of generality and flexibility, the software is potentially applicable to a

variety of MR tasks. It could be especially useful for designing applications for functional

MRI, since there are no commercial software packages available for this purpose and no
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agreed-on, standardized settings for clinical use. Furthermore, the CP approach implemented

in this program may be applicable to the solution of other classes of constraint satisfaction

problems.

The constraint-resolving program is automatically generated by the generic constraint-resolving

engine through its interpretation of the constraint specifications. Thus, the performance

of the program and the quality of its output are heavily dependent on the quality of the

constraint file. Preparing appropriate constraint specifications requires extensive technical

expertise in the field of MRI/MRS brain imaging. It also requires a clear understanding of

and strict adherence to the rules of the grammar and of file format specifications. Therefore,

the use of the program may be limited to those with appropriate expertise in MRI/MRS

technology and proper training in generating constraint files for the program.

It is likely that some training would be necessary initially, even for MRI experts, to be able to

develop constraint files in the grammar formalism. For an MRI expert, writing the constraint

file should, however, be relatively easy to manage due to the simplicity of the grammar and

the limited number of terminal symbols defined in the language. Expert MRI users should

quickly become familiar with the small set of grammar rules. Once this is accomplished, a

considerable amount of time and effort would be saved because users would then not need to

expend the time required to resolve the complex interrelations among parameters on their

own, nor to implement a computer program to do so.

A better user interface may prove helpful in assisting the user to efficiently perform the task

of preparing constraint files. A user interface could provide guidance in constraint repre-

sentation and specification and ensure that the constraints were formalized and expressed

correctly in terms of both syntax and semantics.

One limitation of the program is that it does not handle the constraint optimization problem

associated with parameter setting; i.e., it generates an output listing all feasible settings,

but does not prioritize them in terms their optimality. Optimization of MR settings is a

difficult task and resolving this issue will require further input to and modification of the

program. Additional inputs may include heuristics and declarations of priorities for the

entities and values, derived from expert knowledge. Another promising approach to tackle

the prioritization issue imay be by using genetic CP with extensive sets of training data. To
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implement this approach, the large number of parameter setting results generated by the

present CP programming solution may be useful as training data.

A practical problem with assessing this program is that extensive performance testing in

real-world settings will be difficult, in part because of minor safety concerns (although MR

scanning is an inherently safe procedure), and in part because individual scans are very

expensive in terms of personnel and time. It would, therefore, be both time-consuming and

expensive to assess the appropriateness of a full range of output settings derived by the

program. Thus, most of the evaluation criteria we have used to assess output quality have

been indirect. We have compared output settings to standard settings made available by

MR device manufacturers and to settings developed by local MR experts, based on their

individual experience. Real-world evaluations of the full range of settings generated by the

software may not be possible, and future evaluations will probably involve the development

of simulation approaches.
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A Milestones in the History of MRI Technology

1946 NMR phenomenon - Bloch & Purcell

1952 Nobel Prize - Bloch & Purcell

1950 NMR developed as analytical tool in physics and chemistry

1960 Start Computerized Tomography

1970 Computerized Tomography development

1972 Matured Computerized Tomography

1973 Backprojection MRI - Lauterbur

1975 Fourier Imaging - Ernst

1980 MRI demonstrated - Edelstein

1986 Gradient Echo Imaging

1987 NMR Microscope

1988 Angiography - Dumoulin

1989 Echo-Planar Imaging

1991 Nobel Prize - Ernst

1994 Initial techniques of fMRI
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B The Electromagnetic Spectrum

Name Wave Range

Gamma-ray <1 Å

X-ray 1-10 Å

Soft X-ray 10-100 Å

Vacuum UV 100 Å - 200 nm

UV 200-400 nm

Visible light 400-800 nm

Near IR 800 nm - 2.5 µm

Mid IR 2.5-25 µm

Far IR 25-400 µm

Microwaves 400 µm - 25 mm

Radio Waves >25 mm

C The Larmor Relationship

The relationship between the strength of the main magnetic field and the precessional fre-

quency of the magnetic vectors is known as Larmor relationship. Mathematically, it is stated

as follows:

f = γB
2π

where f is the frequency of precession, B is the strength of the net magnetic field, and γ is

the gyro-magnetic ratio which is a constant for a certain nucleus.

D Fourier Transformation

Fourier transformation is a mathematical technique for converting time domain data to

frequency domain data, and vice versa. Mathematically, it is stated as follows:

F (v) =
∫∞
−∞ f(t)e−i2πvtdt

or

f(t) =
∫∞
−∞ 2πF (v)ei2πvtdv
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where t is time and v is frequency.

E Important Neural Compounds Observed by 1H MRS

Compound Abbreviation Biological Role

N-Acetyl aspartate NAA Neuronal marker.

Creatine/phosphocreatine Cr Source of phosphate to convert ADP to ATP.

Choline Cho Element of all derivatives of choline

(acetylcholine neurotransmitter, membrane

phosphatidylcholine, betaine etc).

Reflection of neurodegenerative state.

myo-Inositol mI Glial marker.

Glutamate Glu Neurotransmitter (excitatory).

Glutamine Gln Product of Glu and ammonia reaction.

Regulator of Glu and detoxification.

Spectrum signals from Gln and Glu are

indistinguishable and noted Glx.

Glucose Glc Energy source.

Lactate Lac Final product of anaerobic glycolysis.

g-Amino butyric acid GABA Neurotransmitter (inhibitory).
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F Typical MRI/MRS Parameters

Parameter Low Range High Range Explanation

TR ∼100 ms <20,000 ms repetition time

TE ∼10 ms <300 ms echo time

SE 1 32 spin echo, sequence timing-dependent

TI ∼30 ms <2,000ms inversion time

FAA >0o <360o flip angle alpha, increment by 3̃0o

Slicing >0 << number of slices

VS 1mm 50mm voxel size, incremented by 1mm

AVG >1 << Selectable, number of acquisitions to average

MM measurement size

TT total measurement time

PS >> <2 s preparation time

DP 512 << sequence timing-dependent, powers of 2

Filter filter for noise level, select or default

Region brain tissue of interest

mea Measurements, i.e.neural compounds of interest

Priority chemical-dependent, selectable

ETT feedback feedback expected total time, setting-dependent

RF radio pulse order

Order gradient order, select or default

WS water suppression, select or default

WR water reference, boolean
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G How Changes in Parameters affect MRI/MRS Char-

acteristics

Changes in → SNR Resolution TT Range Slice No

By increasing ↓
Magnet + NC NC NC NC

RF Width - NC NC NC +

TE - NC NC NC -

TR + NC + NC +

Matrix Size - + + NC NC

Thickness + - NC + NC

Gap + - NC + NC

FOV + - NC NC NC

NEX + NC + NC NC

H Sample Results from the Constraint Resolver

For a text file containing a set of MRI/MRS constraint specifications, the constraint-resolver

generated all valid settings for all possible scanning tasks. Here, only those that matched

the requirements as input to the simple resolver were listed. The program also provides the

minimum total time for each measurement choice.

Measurement Region Echo Repeat Voxel Size Seq Ord DataPt Filt Low High Inc Avg

......

cho lac bra 275 1500 1~50 at 0.5 pre acs 1024 nof 60 60 1 512

cho lac bra 275 1500 1~50 at 0.5 pre acs 1024 nof 34 60 1 256

cho lac bra 275 2000 1~50 at 0.5 pre acs 1024 nof 60 60 1 512

cho lac bra 275 2000 1~50 at 0.5 pre acs 1024 nof 39 60 1 256

cho lac bra 275 2500 1~50 at 0.5 pre acs 1024 nof 60 60 1 512

cho lac bra 275 2500 1~50 at 0.5 pre acs 1024 nof 34 60 1 256

cho lac bra 275 3000 1~50 at 0.5 pre acs 1024 nof 60 60 1 512
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cho lac bra 275 3000 1~50 at 0.5 pre acs 1024 nof 43 60 1 256

......


