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Abstract

Bloom filters use superimposed hash transforms to provide a prob-
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1 INTRODUCTION

1 Introduction

The Bloom filter a way of using hash transforms to determine set member-

ship [1]. Bloom filters find application wherever fast set membership tests on

large data sets are required. Such applications include spell checking, differ-

ential file updating, distributed network caches, and textual analysis. It is a

probabilistic method with a set error rate. Errors can only occur on the side

of inclusion — a true member will never be reported as not belonging to a set,

but some non-members may be reported as members.

We describe Bloom filters, elucidate some of their properties, and present a

survey of their uses. The survey in this paper concentrated on research findings

published between 1996 and 2002 and abstracted or cited in the following pe-

riodical indexes: 1) INSPEC1, 2) NEC Research Institute ResearchIndex2, and

3) ACM Digital Library3.

The rest of the article is organized as follows: Section 2 outlines novel uses of

Bloom filters. Section 3 describes the implementation of Bloom filters and the

operations conducted. Section 4 is the analysis of Bloom filters and we present

a summary in Section 5.

1.1 Definition

Bloom filters use hash transforms to compute a vector (the filter) that is rep-

resentative of the data set. Membership is tested by comparing the results of

hashing on the potential members to the vector. In its simplest form the vector

is composed of N elements, each a bit. An element is set if and only if some

hash transform hashes to that location for some key. Figure 2 shows such a

filter with m = 4 hash transforms and N = 8 bits.

1〈URL:http://www.iee.org/Publish/INSPEC/〉
2〈URL:http://citeseer.nj.nec.com/〉
3〈URL:http://portal.acm.org/〉
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1 INTRODUCTION 1.1 Definition

h(K)hK

Table

Table[ ]K

Figure 1: A typical hash transform in action

m hash
transforms




h1(K) = 2
h2(K) = 5
h3(K) = 7
h4(K) = 4

bit #
0 1 2 3 4 5 6 7

0 0 1 0 1 1 0 1︸ ︷︷ ︸
The filter of N bits

Figure 2: A simple Bloom filter

Bloom filters can be combined with other methods, such as signatures [1, 2].

Figure 3 depicts a case in which the filter contains references to information

related to records rather than only the records. In that case the hash transforms

will hash to N/(b + 1) cells, where b is the size of the signature and the extra

bit is used to flag cells containing signatures [1]. The analysis of such a filter is

equivalent to that for the simple case, which this paper discusses.
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2 NOVEL USES 1.2 What Is An Error

Signature

or Other Data
Cell in table

Nil Pointer

Legend

Non-nil pointer

Figure 3: A Bloom filter with signature information

1.2 What Is An Error

Errors can occur when two or more transforms map to the same element. The

membership test for a key K works by checking the elements that would have

been updated if the key had been inserted into the vector. If all the appropriate

flag bits have been set by hashes then k will be reported as a member of the

set. If the elements have been updated by hashes on other keys — and not

K — then the membership test will incorrectly report K as a member. For

example, if the set Vegetables contains potato and cabbage but not tomato, then

the Bloom filter illustrated in Figure 4 would incorrectly identify tomato as a

Vegetable. Such an error could occur because all the bits that would be set if

tomato were hashed on would already be set in the filter.

2 Novel Uses

This section reviews some of the most interesting applications of Bloom filters.

It is perhaps surprising that what is essentially a set-membership test is of use

in so many important applications.

3



2 NOVEL USES 2.1 Rule-based systems

A portion of the filter
· · · P C P P C — C · · ·
· · · — T — T T — — · · ·

Results of hashing tomato

Key Meaning
P updated by potato
C updated by cabbage
T would be set by tomato
— unset

Figure 4: tomato is erroneously identified as a member

2.1 Rule-based systems

Burton H. Bloom originally proposed filter hashing as part of a program to

automatically hyphenate words. He wanted to separate words that could be

hyphenated by the application of simple rules from the minority that required

extensive analysis. He proposed using his filter method to separate the 10% of

difficult words from the rest [1].

2.2 Spell Checkers

Bloom filters have been successfully applied in spell checking programs such as

cspell [3–5]. They are employed to determine if candidate words are members

of the set of words in a dictionary. In the case of cspell, suggested corrections

are generated by making all single substitutions in rejected words and then

checking if the results are members of the set [3]. Bloom filters perform very

well in such cases [3]. The filter size was chosen to be large enough to allow the

inclusion of additional words added by the user.
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2 NOVEL USES 2.3 Estimating Join Sizes

2.3 Estimating Join Sizes

Mullin [6, 7] suggested using Bloom filters to estimate the size of joins in

databases. This is of particular advantage in the case of distributed databases

where communications costs are to be kept to a minimum. He presented a

method by which filters that are too large to fit in memory can be used [7]. The

method is essentially to use a representative sample of a filter for testing and

ignore all hashes outside the range of the sample. Since hash transforms are

pseudo-random, any significantly large portion of a filter can act as a sample.

2.4 Differential Files

A major area of interest in the application of Bloom filters has been their use

in differential file access [4, 5, 8]. A differential file is essentially a separate file

which contains records that are modified in the main file [4]. Differential files

are used as caches in large databases: when a change is made to a record in the

main database the differential file is updated; when all the changes have been

made to the database then the differential file is used to update the database.

When the differential file is much smaller than the database, changes to it can

be made without the overhead needed to search the main file. Of course, it

would be best to keep the entire set of records in memory at once, but this

is not feasible for large data sets and so the probabilistic approach offered by

Bloom filters is used. Bloom filters in core memory are used to predict if a

record will be found in the differential file.

Benefits and Drawbacks

A common assumption in such analyses is that if a record (e.g., a store’s credit

card account) has been updated recently then it is likely to be updated again

soon [5]. If this assumption does not hold, then Bloom filters may not be a

5



2 NOVEL USES 2.5 Network Applications

suitable for this application. Another important consideration is how often the

differential file should reset. The differential file must not be allowed to grow

too large to fit in memory or much of the advantage is lost [5].

The benefits of using this technique includes improvements in performance,

greater database reliability and reduced backup and recovery costs. However the

technique is effective only within certain parameters. Implementors must decide

on trade-offs between on the one hand the size of the filter and the number of

hash transforms to use, and on the other hand the filter error rate. Those values

will depend in turn on the given transaction volume, the number of keys to be

accessed and updated, and the characteristics of the key set. We provide an

analysis of those trade-offs in Section 4.

2.5 Network Applications

Bloom filters have recently found many applications in networks [9]. Networks

rely on some form of routing to transfer messages between hosts. Routers are

special-purpose network devices that must operate with high efficiency in real-

time. Data can be delayed or lost when routers are overwhelmed with traffic.

An interesting solution to the problem of enforcing fairness in routing is by Feng

et al.’s Stochastic Fair Blue (SFB) algorithm [10]. When routers implementing

SFB get near their capacity they begin to drop packets from the various hosts

that are connecting to them. The routers use Bloom filters and labels to prob-

abilistically determine which hosts continue to send more than their share of

traffic even when some of their data are dropped by the router. Hosts which

continue to operate in this non-cooperative fashion have more of their packets

dropped. But traffic from hosts which reduce their demands on the router are

not dropped. Bloom filters are used as a space- and time-efficient method to

keep track of which hosts are sending too much traffic.

6



2 NOVEL USES 2.5 Network Applications

An important aspect of network applications is that they are not indepen-

dent. The cost of transactions that rely on network traffic is generally higher

than computations made in a single host. To minimize the time needed to com-

pute and deliver correct results, distributed applications are designed to avoid

using the network as much as possible and to send messages to the right host

when they must rely on the network. This is a similar concept to the differential

file paradigm we discussed in Section 2.4.

We give an example that is characteristic of the class. Bloom filters are used

in caching proxy servers on the World Wide Web (WWW). The WWW can

be viewed as a distributed system for delivering documents which are sent by

servers to clients only upon request. Caching improves performance when clients

obtain copies of files from neighbouring servers instead of from the originating

server (which may be several slow network links away). Proxy servers intercept

requests from clients and either fulfill the requests themselves or re-issue them

to servers [11].

If the proxy can obtain a copy of the document from a cache (either its own

or that of a nearby co-operating proxy) then the document is retrieved from the

cache and a cache hit is registered. The hit rate of a cache the a measure of a

cache’s effectiveness. Proxies are typically deployed as hierarchies (which mimic

logical network architectures) or as a series of co-operating proxies (without

regard to network architecture) [11]. The performance of a Web cache scheme

depends on the size of its client community; the bigger the user community, the

higher the probability that a cached document will soon be requested again.

Bloom filters are used in Web caches to efficiently determine the existence

of an object in a cache [10] and they can be used for Web cache sharing too.

Web caches are shared to reduce message traffic. Caching proxies may be im-

plemented so as not to transfer the exact content of their caches (i.e., lists of

7



2 NOVEL USES 2.6 Attenuated Bloom filters

URLs) but instead to broadcast much smaller Bloom filters that represent the

contents of the cache. If a proxy wants to determine if another proxy has a page

in its cache, it checks the appropriate Bloom filter.

Bloom filters are also used in cache digests. A cache digest is essentially a

lossy compression of all cache keys with a lookup capability. Digests are made

available via HTTP (the main network protocol of the WWW), and a cache

downloads its neighbors digest at startup. By checking a neighbor’s digest, a

cache can determine with certainty if a neighbouring cache does not hold a

given object. Their use in cache digest allows caches to efficiently inform each

other about their contents without any per-request delays. The main goal is to

reduce ‘cache directory’ size while keeping the number of collisions low. Bloom

filters are an efficient way of serving those purposes. The small chance of a false

positive is greatly outweighed by the significant reduction in network traffic

achieved by using the succinct Bloom filter instead of sending the full list of

cache contents [12].

2.6 Attenuated Bloom filters

The caches we have seen so far do not replicate data. Where cached data

might be replicated, attenuated Bloom filters (ABFs) may be useful. Rhea and

Kubiatowicz developed such ‘a lossy distributed index’ technique using Bloom

filters for networks with nodes that communicate network topology with each

other [13, p. 1248].

ABFs are composed of arrays of Bloom filters. Each node for the network

stores an ABF for each outgoing link. An ABF is an array of n Bloom filters

which together represent the contents of the data cached at neighbouring nodes

that can be reached within n network links.

An example will make the application clearer. Consider the outgoing link

8



2 NOVEL USES 2.7 Text Analysis

from node A to node B in the network depicted in Figure 5. The nth Bloom

filter in the ABF from A to B is the union of all the Bloom filters in all nodes

on a path of length n beginning with B.

A basic Bloom filter could represent the probability that a specific datum

is available from a node on a path beginning with B. Attenuated Bloom filters

(ABFs) provide that information and also information about how many links

away that datum is presumed to be. ABFs can be used to speed up searches in

peer-to-peer networks since the searches resemble depth first traversals of the

network as guided by the probabilistic information in the ABFs. Such searches

are biased in favour of nodes that are most likely to contain the data and are

closest to the current root node. The search algorithms apply penalties to Bloom

filters that are along longer paths (because there is a greater cost associated with

traversing more network links, and the longer the path the greater the possibility

of searching many nodes). The exact penalties applied and details of the search

algorithms are experimental. The methods are being used in conjunction with

OceanStore [14], an extremely large global persistent data store.

2.7 Text Analysis

Bernstein [15, 16] produced an interactive program that uses Bloom filters to

find related passages in a monograph. It works by constructing a Bloom filter of

all the words in each passage of a monograph and then computing the normalized

dot product of all pairs of them. The result of every dot product is a similarity

measure — the higher the value the more likely the passages are to have related

content. This can be a valuable tool for scholars, if as Bernstein claims it

often finds connections that would otherwise go unnoticed [15]. Mylonas and

Bernstein [17] have adapted it to work with Latin as well as English texts. They

claim that this tool

9



2 NOVEL USES 2.7 Text Analysis

A

h0; 0; 0; 0; 1; 0; 1; 1i

B

h0; 1; 0; 1; 0; 1; 0; 0i

C

h1; 0; 1; 0; 1; 0; 0; 0i

D

h1; 0; 0; 0; 0; 1; 0; 1i

E

h1; 0; 1; 0; 1; 0; 0; 0i
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(a) A network with Bloom fil-
ters in each node

bit # nodes
0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 0 B
1 0 1 0 1 0 0 1 C, D
1 0 1 0 1 0 0 0 E

(b) The attenuated Bloom filter for A → B

for the network in Figure 5(a)

Figure 5: Attenuated Bloom Filters

. . . provide[s] impressionistic information that can open the text

in new and valuable directions under the reader’s guidance.. . . [It is]

inexact and error-prone, seeking to provide intriguing suggestions for

the scholar’s consideration rather than objective data. [17, p. 182]

Bloom filters are used in many areas including updating databases, estimat-

ing the size of database joins, aiding scholarly research, and in spell checking

programs.

10



3 IMPLEMENTATION

3 Implementation

Having now shown some of what Bloom filters can do and where they are used

we will examine how they operate.

3.1 Hashing

Hashing transforms are typically pseudo-random mathematical transforms used

to compute addresses for lookup [18, 19]. Figure 1 shows the use of the hash

transform h, to find an item with a key K, stored at address h(K). The time

complexity of searches by hashing can be as low as O(1) or as high as O(N),

for a hash table with N elements. The worst-case behaviour occurs when two

or more distinct keys Ki 6= Kj collide, i.e., h(Ki) = h(Kj), and the entire table

must be searched to find the correct entry [18, pp. 507 – 508]. Bloom filters are a

fast method in which the hash transforms always have constant time complexity

— there is no attempt at collision resolution. Knuth [18] described Bloom filters

as a type of superimposed coding because all of the hash transforms map to the

same table.

3.2 Basic Implementation

Bloom filters have three operations: A membership test (Procedure 1), Initial-

ization (Procedure 5), and Update (Procedure 6). Procedures 2 – 6 are listed in

Appendix A. Initialize clears all the elements in the vector. Insert computes

the values of the m hash transforms for a key and updates the appropriate el-

ements. In the simplest case the update sets the element’s flag bit. It requires

time proportional to the number of hash transforms. In more complicated cases,

additional information would also be placed in the element. The time complex-

ities are summarized in Table 1.

In the example shown in Figure 2, hash transform h1 updates the value of

11



3 IMPLEMENTATION 3.2 Basic Implementation

Procedure Parameters Time complexity
Initialize Table of N cells O(N)
Set Cell in Table O(1)
Clear Cell in Table O(1)
IsSet Cell in Table O(1)
Insert Table, Key, and m hash transforms O(m)
IsMember Table, Key, and m hash transforms O(m)

Table 1: Time Complexities of Filter Steps

element 2 for key K and transform h2 updates the value of element 5 using the

same key. IsMember computes the same hash values as Insert but instead

of updating the elements it checks if they have been set. By definition, only

members have their keys inserted into the vector. If any of the hash transforms,

hi(K), compute a vector element that has not been set, then the key K could

not have been inserted into the vector and therefore cannot be a member of the

set. Note that the worst time complexity for IsMember occurs for members

(and non-members that are erroneously reported as members). As we show in

the sections named ‘Rejection Time’ below, the complexity can be considerably

less for non-members.

3.2.1 Operations on Cells

For the purposes of the analysis, we are presenting only the essentials of Bloom

filters — the algorithms are for single bit elements. The analysis of filters with

more complicated cells is essentially the same as for the simple case [1].

Blustein has shown how to efficiently implement these operations using

C [20]. IsMember is presented immediately below. The other algorithms are

presented in Appendix A. Their essential characteristics are presented in Ta-

ble 1.

12



3 IMPLEMENTATION 3.3 Compressed Bloom filters

3.2.2 Operations on Bloom filters

Procedure 1 (IsMember)

IsMember(Table,Key)→ Boolean

1. i← 0

2. repeat

3. i← i + 1

. hi is the ith hash transform, where 1 < i ≤ m

4. until ((i = m) ∨ ¬(IsSet(Table[hi(Key)])))

5. if i = m then

6. return(IsSet(Table[hi(Key)]))

7. else

8. return(False)

end.

3.3 Compressed Bloom filters

Space efficiency is particularly important for applications, such as distributed

caches, that send Bloom filters as messages over networks. Mitzenmacher [21]

proposed a method based on information entropy measures for compressing

such filters to improve transmission rates at the cost of more computing time.

Interestingly he found that ‘the number of hash functions that minimizes the

false positive [error] rate without compression in fact maximizes the false pos-

itive [error] rate with compression.’ [21, p. 146] The method has not yet been

implemented or tested.

13



4 ANALYSIS

4 Analysis

We now analyse the performance of Bloom filters. First we show the worst-

case times for the algorithms, then we determine the various trade-offs that are

necessary in any practical implementation.

4.1 Time Complexity

Initialize The näıve implementation requires O(N) time, however if N is the

size of a native data type then it can be done in constant time.

Insert Insertion requires the computation of m hash transforms, each of which

requires O(1) time. (Since collision detection is not necessary all the hash

transforms have to do is compute values.) Insert therefore takes O(m)

time per key or O(mk) for all k keys.

Note that the filter, or substantial portions of it, can be computed in

advance. In the case of a spell checking program for instance, a filter of

the standard dictionary can be built prior to running the program. If the

program allows a user to add words to the dictionary on-the-fly, then keys

based on those words would need to be inserted at run-time.

IsMember The loop in Procedure 1 may require the computation of as many

as m transforms. Below we prove that, in the optimal case, on average

only two transforms will be required to reject any non-member. In the

worst case, when the key is a member of the set, the time complexity is

O(m).

4.2 Relationship Between Parameters

The behaviour of Bloom filters is determined by four parameters:

14



4 ANALYSIS 4.2 Relationship Between Parameters

N The number of elements (or cells) in the filter

m The number of hash transforms to be used

k The number of set members

f The fraction of elements (or cells) that are set in the filter
Here we derive equations that describe the relationship between these factors

for the general and optimal cases. The general case is applicable to growing and

static sets but the optimal case occurs when the error rate is minimal. As we

show in Section 4.2.2 optimal performance is predicted for only static sets in

which half of the elements have been updated.

The governing equation provides a way to predict the amount of space a

particular filter will require. The expected fraction of false positive results

given the parameter values is the error rate. The rejection time is the expected

number of hashes that will be required to determine that a key is not a member

of the set. These analytic results are summarized in Table 2 (on page 19).

4.2.1 The General Case

Since hash transforms are pseudo-random, the probability of a particular filter

element being addressed by a hash transform is 1/N . Therefore the probability

of a particular element not being updated is 1 − 1/N . If we assume that the

keys are randomly distributed then the probability of a particular element not

being updated after after all k keys have been hashed is (1− 1/N)k.

The Governing Equation The probability that a particular element not

being updated by any of the m transforms, after all k keys have been entered

is Punset.

Punset = (1− 1/N)mk (1)

15



4 ANALYSIS 4.2 Relationship Between Parameters

Equation 1 is based on the assumption that the hashes are equally likely to set

any bits.

The probability that an element is set is Pset.

Pset = 1− Punset

Error Rate The analytic probability that an element is hashed to by all m

hash transforms is Pallset.

Pallset = (Pset)m

=
(
1− (1− 1/N)mk

)m

(2)

Both of these computations are based on the standard assumption that the

hash transforms are independent.

Rejection Time If f is the fraction of the bits that are set in a Bloom fil-

ter then a single hash has a probability 1 − f of not rejecting a non-member.

Assuming that the hash transforms are independent, the hth hash also has a

probability 1−f of not rejecting the non-member. In general then the probabil-

ity of h hashes being required to reject a non-member is
∑m

h=1 h×fh−1×(1−f).

We can simplify the sum by recognizing that
∑m

h=1 h× fh−1 as the integral of

the sum of the (finite) geometric series with a0 = 1 [22]. A detailed derivation

is in Appendix B. If m is infinite then the sum converges when |f | < 1. Clearly

0 ≤ f < 1, since a Bloom filter with all of its bits set cannot be used to de-

tect non-members and f will be zero only if no keys have been hashed. Thus

Equation 3 represents the relationship between the predicted number of hashes

needed to reject a non-member and the number of elements set in the filter.

16



4 ANALYSIS 4.2 Relationship Between Parameters

m∑
h=1

h× fh−1 × (1 − f) ≤ 1
1− f

(3)

Note that although non-members can be rejected with fewer than m hashes,

member keys will require all of the hashes to verify their status.

Growing Sets In applications where the membership set is allowed to grow,

e.g., in spell checkers with user dictionaries, the number of keys should be the

total number of keys expected. For example, if a spell checker is constructed

with an initial dictionary of 30 000 words and it is predicted that another 5000

will be added as the applications runs then the value of k should be 35 000.

4.2.2 The Optimal Case

Analysis of the optimal case is based on the standard assumption of parallel

hash functions each of which covers half of the N elements in the table. The

optimal case is the one where the error rate is minimized for a given filter size

N , i.e.
dPallset

dm
= 0.

It follows immediately that [23]:

dPallset

dm
=

d

dm
em ln(1−(1−1/N)mk

)

= ((ln(1− (1− 1/N)mk) +
m

1− (1 − 1/N)mk

×(− d

dm
(1− 1/N)mk)))× em ln(1−(1−1/N)mk)

where

d

dm
(1− 1/N)mk =

d

dm
emk ln(1−1/N)

= k ln(1− 1/N)× emk ln(1−1/N)

17



4 ANALYSIS 4.2 Relationship Between Parameters

so that

dPallset

dm
=


 ln(1− (1 − 1/N)mk) −

mk ln(1−1/N)×(1−1/N)mk

1−(1−1/N)mk


× (1 − (1− 1/N)mk)m

= 0

By dividing by Equation 2, which cannot be zero (unless no keys have been

hashed), and moving the coefficient we obtain

ln(1− (1− 1/N)mk)

= (ln(1−1/N)mk)×((1−1/N)mk)
1−(1−1/N)mk

By substituting x for (1 − 1/N)mk and multiplying both sides by (1 − x)

we obtain (1 − x) ln(1 − x) = xlnx, which is the same as (1 − x)(1−x) = xx.

Therefore x = 1−x, so the error rate will be minimal when (1−1/N)mk = 1/2.

Therefore optimal filters have half their flag bits set; i.e., the set is composed

of N/2 elements. In an optimal filter Pset = Punset = 1/2.

Error Rate Combining this with Equation 2 we find that the error rate, for

optimal Bloom filters, is Popt.

Popt =
(

1
2

)m

(4)

Rejection Time In the optimal case a good hash transform will exclude half

the elements of the vector for any key. One hash will eliminate half the elements;

all subsequent hashes will eliminate half the remaining elements. If one hash

eliminates half of the elements then two hashes will eliminate 1
2 + 1

4 elements,

etc. Since the pattern is a geometric series which converges to 2 as the number

of hashes grows, on average only 2 hashes are needed to reject candidates [3].

This prediction is consistent with the general case shown in Equation 3.

18



4 ANALYSIS 4.3 Performance issues

Governing Equation The general governing equation (Equation 1, above)

is Punset = (1− 1/N)mk. In the optimal case this becomes 1/2 = (1− 1/N)mk.

From this is trivial to derive Equation 5.

− ln 2 = mk ln (1− 1/N) (5)

The Taylor expansion of ln(1 + x) is

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
· · · (6)

In the case of Equation 5, x = −1/N . For N � 1, x2 ≈ 0 and ln(1 −
1/N) ≈ −1/N . It follows that, in the optimal case, described by Equation 7,

the relationship holds.

N ≈ mk/ ln 2 (7)

≈ mk/0.69

The analytic results are summarized in Table 2.

General Case Optimal Case∗

Governing equation Punset = (1− 1/N)mk Punset = 1/2
N ≈ mk/ ln 2

False positive rate
(
1− (1− 1/N)mk

)m

2−m

Rejection time ≤ 1/(1− f) 2

Table 2: Summary of Analytic Results
∗The optimal case holds for static sets with f = 1/2.

4.3 Performance issues

Of course, the choice of hash transforms will have a major impact on the perfor-

mance of the Bloom filter. To be useful Bloom filters require hashing transforms
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4 ANALYSIS 4.4 Variation on Standard Bloom Filters

that will not hash to the same set of addresses. Gremillion [8] and Mullin [5]

found that, when applied to differential files, the error rate was much higher

than the analysis predicted.

To remedy that deficit Ramakrishna [4, 24] developed so-called perfect hash

transforms. Perfect hash transforms are a class of hash function that completely

avoid collisions for the specific key set for which they were generated.

His tests were simulations of Bloom filters on differential files of user IDs, the

Unix
TM

word list (/usr/dict/words), and library call numbers. Simulations

studies of Bloom filters are accepted in the literature as an accurate method

for determining test performance [5]. Ramakrishna reported that all the results

were similar and gave details for the file of user IDs. The results were all within

a standard deviation of what the governing equation predicts. Czech et al. [25]

have since devised a fast algorithm generate minimal perfect hash transforms.

Perfect hash transforms can be used only when the entire membership set

is known a priori. They are therefore not suitable for applications that use

growing sets. For instance, perfect hash transforms are suitable for use with

differential files of bank accounts because all of the possible account numbers

are known in advance. However a spell checker that allowed users to include

arbitrary words could not expect optimal results from a Bloom filter built with

perfect hash transforms for the words in its list of correct spellings.

4.4 Variation on Standard Bloom Filters

If the membership set is known in advance then better performance than with

a standard Bloom filter can be achieved using related techniques. For instance

we can establish an arbitrarily low false positive rate by using perfect hash

functions and limiting the size of the shared hash table. The important step is

to order the elements by their discriminating power and eliminate those with
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5 SUMMARY

the lowest power until the desired tradeoff between the size of the table and the

predicted false positive rate is reached or exceeded.

5 Summary

This paper has described Bloom filters, some of their applications, and provided

an analysis of the general and optimal performance cases. Bloom filters used

purely for probabilistic membership tests accurately identify non-members.

5.1 Optimal Filters

In the optimal case, non-members are detected within two hashes. The optimal

case occurs only to sets in which all of the possible keys are known in advance

and in which half of the elements are set. In practice the optimal case requires

the use of perfect hash transforms (as described in Section 4.3).

5.2 Trade-offs in Filter Performance

The error rate can be decreased by increasing the number of hash transforms

and the space allocated to store the table. The analytic performance of Bloom

filters for growing and static sets is given in Equation 3. Formulae that can be

used to tune filters with respect to error rate, filter size, number of keys, and

hash function are summarized in Table 2.

Bloom filters should be considered for programs where an imperfect set mem-

bership test could be helpfully applied to a large data set of unknown compo-

sition. Such programs include spell checkers and those that use data stored in

differential files. The great advantage of Bloom filters over the use of single

hash transforms is their speed and set error rate. Although the method can be

applied to sets of any size, small sets are better dealt with by trees and heaps
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5 SUMMARY 5.2 Trade-offs in Filter Performance

that can determine for certain if a key belongs to a set. Other methods are

generally more accurate for sets whose composition is known in advance but

they require more space than Bloom Filters.
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A MISCELLANEOUS METHODS

A Miscellaneous Methods

Procedure 2 (Set)

Set(cell)

. essentially a logical or

cell← 1

end.

Procedure 3 (Clear)

Clear(cell)

cell← 0

end.

Procedure 4 (IsSet)

IsSet(cell)→Boolean

return(cell = 1)

end.

Procedure 5 (Initialize)

Initialize(Table)

1. for i← 1 . . . i = N do

2. Clear(Table[i])

3. endfor

end.
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B DERIVATION OF REJECTION TIME INEQUALITY

Procedure 6 (Insert)

Insert(Table,Key)

1. for i← 1 . . . i = m do

2. . hi is the ith hash transform

3. Set(Table[hi(Key)])

4. endfor

end.

B Derivation of Rejection Time Inequality

m∑
h=1

h× fh−1 × (1− f) = (1− f)
m∑

h=1

h× fh−1

≤ (1 − f)
∞∑

h=1

h× fh−1

= (1 − f)
∞∑

h=1

d

df
fh

= (1 − f)
d

df

∞∑
h=1

fh, where |f | < 1

= (1 − f)
d

df

1
1− f

, where |f | < 1

= (1 − f)
1

(1− f)2
, where |f | < 1

=
1

1− f
, where |f | < 1

Note that
∑∞

h=1 fh is the sum of a geometric series.
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