

1

Defining Behaviours for Solids in a Visual Design Environment

Omid Banyasad
Philip T. Cox

Technical Report CS 2002-07

Oct 7, 2002

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

1

Defining Behaviours for Solids in a Visual Design Environment

Omid Banyasad Philip T. Cox
banyasad@cs.dal.ca pcox@cs.dal.ca

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, Canada

Abstract

The design of structured objects is frequently accomplished
with the use of Computer-Aided Design (

CAD

) systems, some of
which allow for parametrised designs, which represent families of
objects. Some existing

CAD

 systems permit parametrisation by
providing interfaces to programming languages, leading to a
sharp division between the visual and programming aspects of
building complex designs. In previous work, a design language

LSD

was proposed, which used visual logic programming to over-
come this separation and

provides “assembly semantics” for build-
ing an instance of a parametrised design corresponding to specific
parameter values.

Also of interest to designers, however, is the behaviour of the
objects they design. For example, the point of building a mechan-
ical device such as an internal combustion engine is to obtain a
particular mechanical behaviour. Here we extend the formal
model for solid objects on which

LSD

 relies in order to support the
definition of particular kinds of behaviours.

1 Introduction

In today’s competitive market, most manufacturing com-
panies are hard pressed to deliver their products more cheaply
and quickly. This forces them to seek more cost-effective and
efficient design and production techniques. The need for bet-
ter and faster design, in turn, requires new tools for design as
well as new design methodologies [11]. Such new tools and
design methodologies are primarily focused on reducing the
design cycle time by allowing faster synthesis, early detection
of flaws, rapid prototyping, and quick analysis. Integration of
suitable design tools and new methodologies in a design envi-
ronment is a key point in faster and better design if the inte-
gration facilitates a smooth and seamless transition of the
design from one stage to the next.

One of the major objectives of integrating design tools in
a Computer-Aided Design (

CAD

) system is to provide sup-
port for parametric design, whereby families of structured
objects can be specified, such as an

n

-bit multiplexor, or
internal combustion engine with

n

 cylinders. We believe that
there are also other significant advantages in integrating
appropriate design tools in a

CAD

 system. For example, a
parametrised design environment for mechanical devices with

capabilities for simulating physical behaviours of design parts
would be a valuable tool for proving the viability of a design,
detecting design flaws, or creating early demos for customers.

To allow for parametric design, commercial

CAD

 systems
typically either include a textual programming language or
provide an interface to one. For example, Auto

CAD

 includes
AutoL

ISP

 [2], and Archi

CAD

 includes

GDL

 as well as support
for other textual programming languages [7].

Unfortunately, achieving parametric design capability by
attaching a textual programming language, creates a system
which requires the designer to switch view between two very
different representations of the design. Or since the program-
ming and design activities are so different, users with differ-
ent skills may be required.

In an attempt to create an integrated programming/design
environment for parametric design which does not suffer
from this problem, a Language for Structured Design (

LSD

)
was proposed in [6].

LSD

, having its roots in logic, provides a
homogeneous view of design objects and the operations that
transform them.

LSD

 captures the notion of solids as high-
level programming constructs in a programming/design envi-
ronment, both semantically and syntactically, however, it
does not deal with the low-level computations required for
characterising the geometry of the solids. This issue was
addressed in [5], which proposed a formal model for design
spaces, solids and operations on solids, and the link estab-
lished between this model and

LSD

.

 One of the most significant features of

LSD

 is its declara-
tive problem-solving capabilities for solving problems related
to parametric design. The integration of programming capa-
bilities directly into the design space provides a homogeneous
view of design components along with algorithms applied on
them for parametrising, constraining, and simulation. In [4]
we have reported on this aspect of

LSD

 through a detailed
example.

As noted in [6] an important aspect of the design of struc-
tured solids is the simulation of the

behaviour

 of solids. Con-
ventional programming languages are used for designing
algorithms, the behaviour of which is specified by their struc-
ture. In general, however, the relationship between the behav-

2

iour of an object and its structure is not so obvious. In fact,
an object may have several different behaviours of interest.
For example, a mechanical engineer may be interested in both
the rotational behaviour of the gears in a transmission, as well
as their reaction to heat.

Simulating the behaviour of solids in a design environ-
ment calls for appropriate support both in

LSD

 and in the
solid modeler. In this paper, we will show how the formal
model for solids presented in [5] can be extended to charac-
terise behaviours.

In the following, if x and y are sequences, we denote the
concatenation of x an y by

x

­

y. For example, if x is x

1

,x

2

,...,x

n

and y is y

1

,y

2

,...,y

m

, then

x

­

y means x

1

,x

2

,...,x

n

,y

1

,y

2

,...,y

m

. If
x is a sequence and y is not a sequence, for consistency, by

x

­

y
we mean x

1

,x

2

,...,x

n

,y

and by

y

­

x we mean y,x

1

,x

2

,...,x

n

.

If x is a sequence of length

n

 and 1

≤

i

≤

n

, we denote by x

i

the sequence of length

n

-1 obtained by removing the

i

th

 ele-
ment from x.

2 Solid Modeling

At the heart of a visual design environment with program-
ming capabilities must lie a solid modeler. Solid modeling
deals with the creation, manipulation and interaction of sol-
ids in a design space. A solid is a mathematical representation
of a 3

D

 object which includes its geometrical specifications
and may also include other properties such as mass, material,
centre of gravity, elasticity, and electromagnetic characteris-
tics.

 While most solid modelers are capable of performing
complex geometrical computations on solids, they do not
support the computations necessary for specifying behav-
iours. Since our solution to this problem involves an exten-
sion to the definitions given in [5], we will briefly summarise
the core concepts presented there. The reader is encouraged
to consult [5] for a thorough discussion.

Solids are modeled in a

design space

. The design space is a
normal 3

D

 space augmented with an arbitrary but finite fixed
number of real-valued

properties

. A solid is a function that
maps a list of

parameter values

 to a set of points in the design
space constituting the volume of the solid. Therefore, each
solid in the design space represents a family of solids, each of
which realised by a particular choice of parameter values.
Note that a solid in the design space cannot exist until all of
its parameter values are set to specific values within their
respective ranges. Following is a more precise definition of a
design space and a solid, not restricted to three dimensions.

Definition 2.1:

A

design space in m dimensions over r properties

for some integers

m

≥

 0 and

r

≥

 0 is the set of all subsets of

R

m

×

R

r

.

Definition 2.2:

A

solid

in a design space

D

in

n variables

 for

some

n

≥

 0 is a function

Φ

:

R

n

→

D

 such that, if

D

 is in |

v

|

dimensions and (

v

,

p

) and (

v,

q

)

∈

Φ

(

y

) for some

y

∈

R

n

, then

p

 =

q

.
A variable of

Φ

 is an integer

i

 such that 1

≤

i

≤

n

.

The intuition behind this definition is that something we
normally think of as a solid can be characterised by a set of
points in space, where each point has unique values for all
properties associated with it.

This definition also provides parametrisation by defining a
solid as a function. A completely specified object in the
design space is obtained by applying the function to a partic-
ular list of values. Hence a solid represents a family of objects.

Definition 2.3:

If

Φ

 and

Ψ

 are solids in n and k variables
respectively, Φ and Ψ are said to be equivalent, denoted

Φ ≡ Ψ, iff {S | S = Φ(y), S ≠ ∅ , y ∈ Rn} = {S | S = Ψ(y),

S ≠ ∅ , y ∈ Rk}.
This definition recognises that

an object in a design space may
have more than one representation
as a solid (function). For example,
consider a two dimensional design
space over the three properties tem-
perature, colour, and material where
temperature is determined by colour
and material, and colour is deter-
mined by temperature and material. A square solid in this
space can be defined be a function Φ of variables (b,c,l.α,tem-
perature,colour) or by another function Ψ of variables
(b,c,d,e,material,colour) as illustrated in Figure 1. While both
Φ and Ψ define the same family of objects, they expose two
different sets of parameters of the solid.

Example 2.4: To further illustrate the definition of a solid, let
D be a design space in 2 dimensions over zero properties:
then the function Disk is a solid in three variables which
characterises the family of disks with radius r and centre at

(b,c), where Disk(b,c,r)={(x,y) | x,y ∈ R and (x-b)2+(y-c)2≤
r2}.

3 Behaviour
The word behaviour usually means the actions performed

by some entity that we can observe: that is, a behaviour is a
sequence of the states an object goes through over some
period of time. For example, as a wheel rolls along the ground
we observe its changing position.

The behaviour of an object need not be related to the pas-
sage of time, nor to the object’s geometry. For example, the
way an object reacts to heat is dependent on temperature and
is not necessarily manifested by a change in position or size.

(b,c)

(d,e)

α
l

Figure 1: A Square
in the design space

3

In general, therefore, behaviour involves the change of state
that results from a change in some variable.

As noted above, a solid function actually represents a fam-
ily of objects in a design space. Our definition of behaviour
exploits this fact by taking the view that the family of objects
represents all the states of one object, that can be observed as
the value of a parameter is varied.

Definition 3.1: Let D be a design space, Φ be a solid in D in
n variables and p be a variable of Φ. The behaviour of Φ with

respect to p is the function φp: R → (Rn-1 → D) such that ∀ y

∈ Rn, φp(yp)(yp) = Φ(y). Here (Rn-1 → D) denotes the set of

all functions from Rn-1 to D. p is called the controlling vari-
able of the behaviour.

Just as the definition of solid is a generalisation of the
ordinary notion of solid, providing for parametrisation, our
definition of behaviour is a generalisation of the ordinary
notion of behaviour discussed above in that is applies to
parametrised solids. In fact, given a particular value for the
controlling variable, the behaviour picks out the family of
objects that represent the states of the original family of
objects corresponding to the chosen value for the controlling
variable.

Example 3.2: Consider the Disk solid of Example 2.4. The
behaviour of Disk with respect to its first variable is the func-

tion φ1:R → (R2 → D) such that ∀ b ∈ R, φ1(b)(c,r)={(x,y) |

x,y ∈ R and (x-b)2+(y-c)2 ≤ r2} ∀ c,r ∈ R. The controlling
variable of this behaviour is the horizontal position of the
centre of the disk. As this value varies, the state of the disk,
that is, the particular selection of points that it consists of,
moves horizontally. It is, of course, difficult to reconcile this
notion of behaviour with our normal understanding of the
term because we are dealing with a parametrised object. If we
fix the values of all the variables except the controlling one,
then we see that the behaviour in this example corresponds to
the set of all possible positions of a disk of fixed radius, con-
strained to lie on a fixed horizontal line.

In the real world the behaviour of a solid may be defined
with respect to parameters that are apparently not part of the
definition of the solid itself. However, as we have noted
above, there may be many different but equivalent solids cor-
responding to a particular family of objects in a design space.
Each such solid may have variables which are not directly
related to its geometry or properties, but are used by the
function to determine them. We illustrate this as follows.

Example 3.3: Suppose that we would like the horizontal posi-
tion of the centre of our disk in Example 2.4 to be computed
from time t, horizontal speed v, and starting position b0, so b
= b0 + vt. We can therefore represent our disk by the function

Disk’ where Disk’(v,t,b0,c,r)={(x,y) | x,y ∈ R and (x-b0-

vt)2+(y-c)2≤ r2}. Note that Disk and Disk’ are equivalent.
Clearly, we can now define a behaviour for the disk with
respect to time, the first variable of Disk’.

As this example illustrates, to allow the definition of a
behaviour for a solid to be defined with respect to a variable
other than those over which the solid is defined, we need to
be able to inject new variables into a solid, such as time in the
disk example. This can be done by applying an operation to a
solid that introduces new variables together with appropriate
constraints. It is important to notice that injecting extra
parameters into a solid does not change the fundamental
nature of the family of objects the solid defines. The extra
parameters just allow us to define relationships between vari-
ables that can be exploited to define a new behaviour by con-
straining the family to one of its subsets.

There are two possible ways for injecting new variables
into a solid, both of which rely on the concept of operation
defined in [5]. The first is to apply to the solid a unary opera-
tion that provides the necessary extra variables and constraint.
The second method is to apply a binary operation to the tar-
get solid and a special solid which provides the required new
variables.

Although the definition of operation in [5] allows us to
introduce new variables to a solid using the second method
above by using special solids, it cannot be used to directly
inject new variables into a solid, as required by the first
method. Accordingly, we provide a modified definition of an
operation that accommodates the direct injection of new
variables to a solid.

Definition 3.4: If D is a design space and n is a positive inte-
ger, an n-ary operation in D is a triple (F, L, C) where

• F is a function from Dn to D.
• L = (L1(y1­z1),…,Ln(yn­zn)) is a sequence of formulae,

called selectors, such that for each i (1 ≤ i ≤ n) yi is a vari-
able, zi is a sequence of variables and {yi­zi} is the set of free
variables of Li(yi­zi). The integer |zi| is called the size of Li.

• C(u­x1­…­xn) is an open formula, called the constraint of
the operation, such that {u­x1­…­xn} is the set of free vari-
ables of C(u­x1­…­xn), and for each i (1 ≤ i ≤ n) xi is a
sequence of variables and |xi| is size of Li. The variables in u
are called the extra variables of the operation.
This definition of operation differs from that in [5] only

in that it includes the extra variables. This allows an operation
to inject new variables into its operands. This modification
calls for minor changes to some other definitions from [5].
For example, the new variables need to be accounted for in
the definition of the application of an operation to its oper-
ands.

4

Definition 3.5: If D ∈ D then ↓D = ∅ if ∃ (v, p), (v, q) ∈ D
such that p ≠ q, otherwise ↓D = D.
Definition 3.6: Let ⊗ = (F, L, C) be an n-ary operation;
where L = (L1,…,Ln), and for each i (1 ≤ i ≤ n) let Φi be a
solid in ni variables, and φi be an Li-interface to Φi for ⊗ . We

define a solid Ψ in t = e+ variables, where e is the

number of extra variables, called the application of ⊗ to

Φ1,…,Φn via φ1,…,φn as follows. If y ∈ Rt denote by ye the
first e elements of y, denote by y1 the next n1 elements of y,
denote by y2 the next n2 elements of y and so forth, then we
define

Ψ(y) = {z | z ∈ ↓F(Φ1(y1),…,Φn(yn))
and C(ye,φ1(y1),…, φn(yn)) is valid}

Again, this definition differs from that in [5] only in that
it accounts for the extra variables, including them as variables
of the solid computed by the operation.

Example 3.7: Let D and Disk be as defined in Example 2.4.
An operation that defines a horizontal move behaviour for
Disk can be defined by H-Move = (I, L, C) where I is the
identity operator, L = (L1) where L1(a,b,c) is valid iff a is a
solid with a reference point (b,c), and C(v,t,b0,b,c) =
[b=b0+vt]. Here, v, t, and b0 are the three extra variables of
the operation representing horizontal speed, time and starting
position respectively. By “reference point” we mean some
point in a solid to which all other points can be related, such
as the centre of a disk, or the left upper corner of a square.
Applying H-Move to Disk creates a solid Ψ such that for all
v,t,b0,b,c, and r, Ψ(v,t,b0,b,c,r) = {z | z ∈ ↓Disk(b,c,r) and b =
b0+vt}. Substituting for Disk, we obtain Ψ(v,t,b0,b,c,r) =

{(x,y) | x,y ∈ R and (x-b0-vt)2+ (y-c)2 ≤ r2 }. Since b no longer
appears on the right hand side, this function can be reduced
to Disk’, where Disk’(v,t,b0,c,r)= {(x,y) | x,y ∈ R and (x- b0-

vt)2+(y-c)2≤ r2}. As noted in Example 3.3, Disk’ has a behav-
iour with respect to variable t. When the other variables of
the solid Disk’ are fixed, this behaviour with respect to t is the
set of disks with a fixed radius r anchored on a horizontal line
y=c. This can be pictured as a disk that moves with speed v on
a horizontal line y = c where b0 is the initial horizontal posi-
tion of the centre of the disk at time t=0.

An operation may be sufficiently generic to be applicable
to more than one kind of solid. For example, the H-Move
operation in Example 3.7 can be applied to any solid that has
a reference point, as illustrated below.

Example 3.8: Let Box be the solid over the design space of
Example 3.7 defined as Box(b,c,w,h)={(x,y) | b ≤ x ≤ b+w and
c ≤ y ≤ c+h}. Applying H-Move to Box creates the solid Ψ
defined by Ψ(v,t,b0,b,c,w,h) = {z | z ∈ ↓Box(b,c,w,h) and b=

b0+vt }. Inserting the definition of Box we obtain
Ψ(v,t,b0,b,c,w,h) = {(x,y) | x,y ∈ R and b ≤ x ≤ b+w and c ≤ y
≤ c+h and b = b0+vt}, which can be reduced to the equivalent
solid Sliding-window defined by Sliding-win-
dow(v,t,b0,c,w,h)= {(x,y) | x,y ∈ R and b0+vt ≤ x ≤b0+vt+w
and c ≤ y ≤ c+h}.

Although most behaviours of solids in the real world are
with respect to time, the definition of a behaviour as pre-
sented here is sufficiently general to capture non-temporal
behaviours.

Example 3.9: Let Cylinder(b, c, d, v, h) = {(x,y,z) | x,y,z ∈ R

and (x- b)2+(y- c)2 ≤ (v / h)π and d ≤ z ≤ d+h }, then Cylinder
defines a vertical cylindrical solid in a 3D design space D over
zero properties where (b,c,d) is the centre of the base of a cyl-
inder with volume v and height h. The behaviour of this solid

with respect to its volume v is the function φ4:R → (R4 → D)

such that φ4(b,c,d,h)={(x,y,z) | x,y,z ∈ R and (x- b)2+(y- c)2 ≤
(v / h)π and d ≤ z ≤ d+h}. Note that changing the volume v
will make a cylinder become thinner or thicker while its
height and position remains intact.

As we mentioned earlier, there are two different ways for
defining a new behaviour. We have presented one of them,
namely, applying a unary operation that imposes new con-
straints on the parameters of a solid and possibly introduces
new parameters if necessary.

In the second method, the new variables required for a
behaviour, time for example, could be introduced by some
special solid, and an associated special operation could extract
the appropriate variables from the solid to which the behav-
iour is being attached and constrain them to variables sup-
plied by the special solid. In fact, the special solid, rather than
being just a technical device for accomplishing the result,
could represent a physical controller, for example a slider like
that in the QuickTime movie player, that varies time over an
interval. The binary operation that modifies the target solid
so that a required behaviour can be defined for it, provides
the means for attaching such a slider to the target solid. The
operation extracts an appropriate variable from the target
solid, for example “angle to horizontal axis”, and constrains it
to the time variable from the slider in an appropriate way.
Hence applying the operation to the special solid and target
solid is analogous to wiring a slider to an interface element, as
is done in some graphical user interface builders.

Example 3.10: Let D be a design space in 2 dimensions over
zero properties. For simplicity, we represent points in D in
clockwise polar coordinates, where the angle component is
measured in degrees. Let Beam(a,l) = {(α,r) | α,r ∈ R, α = a
and 0 ≤ r ≤ l } be a solid in D, a straight line at angle from the
vertical a and length l with one end at the origin. Let Arc be a
solid in D defined by Arc(d,t) = {(α,1) | α ∈ R and 0 ≤ α ≤

nii 1=

n

∑

5

dt}, also in polar coordinates. Note that Arc defines an arc on
the unit circle centred at the origin. We use this second solid
to inject time (t) and a coefficient (d) into other solids. Now
let Add-time = (a1, {L1(a1,b), L2(a2,d,t)}, [b = dt]) be an
operation with two operands a1 and a2, where L1(a, b) is
valid iff a is a beam with angle b (the first parameter of
Beam) and L2(a,d,t) is valid iff a is the arc Arc(d,t). Applying
Add-time to the two operands Beam and Arc results in the
solid Hand(l,d,t) ={(α,r) |α,r ∈ R,α=dt,0 ≤ r ≤ l }. Applying
Add-time to Beam’ and Arc’, where Beam’(a) = Beam(a,1)
for all a, and Arc’(t) = Arc(6,t) for all t, will create a solid
Hand’ such that Hand’(t) = Hand(1,6,t), representing a
clock hand with unit length. When t represents time in sec-
onds, Hand’ exhibits a behaviour analogous to the behaviour
of a clock’s second hand. When t is in minutes, Hand’ will
behave in a fashion similar to clock’s minute hand. Similarly,
an application of Add-time to Beam’ and Arc” where
Arc”(t) = Arc(30,t) for all t, will create a solid Hand” such
that Hand’(t) = Hand(1,30,t), which behaves like a clock’s
hour hand when t is in hours.

In order to create a clock with three hands, let Pin = (as ∪ am
∪ ah, {L1(as,ts), L1(am,tm), L1(ah,th)}, [ts = 60tm, tm = 60th])
be an in D with three operands as, am, and ah, where L1(a,t) is
valid iff a is a hand solid and t is its time variable. Applying
Pin to three solids Hand’, Hand’ and Hand” corresponding
to the second, minute, and hour hands of a clock respectively,
will create a solid Clock over D such that Clock(ls,lm,lh,t) =
{(α,r) | α,r ∈ R and [(α=6t,0 ≤ r ≤ ls) or (α=t/10,0 ≤ r ≤ lm)
or (α=t/120,0 ≤ r ≤ lh)] }

4 Defining Behaviours in a Design Envi-
ronment

Having defined behaviours formally, we will now consider
how they might be implemented in a design environment.
Defining a new behaviour for a solid could be achieved in
three possible ways.

First a programming language, such as the language
underlying a solid modeler, could be employed to directly
define a behaviour for a family of solids. We are at present
investigating the viability of Lograph, the visual logic pro-
gramming language on which LSD is based, as an underlying
language for our proposed solid modeler and also for defining
operations and behaviours on solids [3]. This calls for extend-
ing Lograph to support constraint specification and numeri-
cal computation beyond the scope of pure Lograph.

A second approach is to apply predefined operations to
solids to obtain a desired behaviour. In this case, the design
environment would be equipped with a set of icons, each rep-
resenting a separate operation with its own selectors and con-
straint. Dragging and dropping such an icon on to a solid in
the design space would trigger the application of the opera-

tion to the target solid, extracting the appropriate variables
from the solid, adding necessary variables as described above,
and applying the operation’s constraint. This scheme relies on
the extended definition of operation which adds necessary
variables to a solid. A variation of this would rely on the other
means for adding variables, by using special solids to supply
them. In this case, the environment would provide sliders and
other such controller solids which would be connected to the
target solids by an appropriate wiring operation.

In the third, more direct approach, the designer explicitly
adds new variables to a solid, then creates new relationships
between the variables of the solid. Creating these new rela-
tionships between variables might be achieved by either using
predefined generic constraints, or directly defining con-
straints by demonstrational techniques.

In the remainder of this paper we will discuss the third
approach. In contrast to preceding sections, we will present
the concepts informally, to provide a more intuitive descrip-
tion of how the formal notion behaviour might be imple-
mented in a design environment. First, we will describe some
basic requirements in a design space that are necessary for our
discussion.

4.1 Solid Palette
A design environment is typically a 3 dimensional space in

which a designer can create solid models by using a set of
graphical tools and user interfaces. We aim to add features
and capabilities to enable the creation of behaviours by dem-
onstration.

Creating a new behaviour for a solid calls for access to the
variables of the solid and also support for adding extra vari-
ables. To deal with these issues, we propose a solid palette that
enables a designer to access variables, as well as other compo-
nents that are significant during the process of programming
solids.

A solid palette in the design environment contains infor-
mation about a solid that can help a designer create new
behaviours or allow the designer to observe how a solid per-
forms in response to changes in its controlling variables. A
solid palette contains a list of the solids variables, an Add Var
button for adding new variables, a Training button for defin-
ing a new constraint on the variables of the solid by demon-
stration, and a Sample button.

The process of creating a new behaviour for a solid starts
with defining a new set of variables for the solid, including
the variable with respect to which the behaviour is to be
defined. Adding a variable is achieved by double-clicking the
solid to open its solid palette, then pressing the Add Var but-
ton on the palette. This opens another palette from which an
appropriate control component for the parameter can be
selected. This will add the new control component to the
solid palette, as shown in Figure 2. The designer can name

6

the parameter, and set certain other characteristics such as its
size and shape, or its scale if it is a numerical selector such as a
knob as shown in the figure. Note that adding a new variable
will not have any effect on the solid until the parameter is
bound to other parameters of the solid through some con-
straints. Figure 2 illustrates the solid palette of the Beam
solid of Example 3.10.

4.2 Predefined Con-
straints

Constraints play a key
role in the creation of
new behaviours. A con-
straint imposes specific
restrictions on the values
that the variables of a
solid can assume. New
constraints can be added
to a solid using a set of
parametrised constraint
tools in the design space.

Constraint tools are
graphic icons that a
designer can select and
apply to solids. While
some constraints may impose specific restrictions on the val-
ues that some of the variables of a solid can assume, others
may well be parametrised. For example, an Anchor con-
straint may anchor a point to a specific coordinate location in
the design space, while an Anchor-along-line constraint may
constrain a point to lie on a parametrised line. The parame-
ters of such a constraint can be set by a designer.

4.3 Defining Constraints by Demonstration
Programming by Demonstration (PBD) is viewed by many

as an elegant way to create agents with behaviour by direct
manipulation of representations of domain entities. PBD

entails the use of concrete examples to teach an agent how to
behave under various situations when there is an analogy
between the current circumstances and those of the examples.
A PBD system records the actions of the programmer and uses
various generalisation techniques to infer the behaviours of
the agent [1,8,9,10].

We believe that PBD can have two possible applications in
a design environment; creating new operations on solids and
creating new behaviours.

One major difference between PBD for creating automated
agents and creating behaviours for solids is that in the former,
an agent responds to some environmental changes while in
the latter case, a solid does not have the notion of perceiving
its surrounding environment. The behaviour of a solid is
defined with respect to some of its own variables.

4.3.1 Inferring Constraints
In the case of agent behaviours, inferred behaviour is often

represented as a set of rules, finite automata, or a grammar. In
the case of solids, we aim to infer constraints that realise a
behaviour. While there are different types of constraints, for
simplicity we will focus our attention on linear constraints in
order to demonstrate how constraint tools might operate in a
design environment.

4.3.2 Inferring Linear Constraints
A linear constraint over n variables x0,x1,...,xn-1 is an equa-

tion of the form

x0 + a1x1 +... + an-1xn-1 + an= 0

Given n solutions to this equation, we can solve the result-
ing set of n linear equations to obtain the coefficients a1,a2,...,
an.

A tool that uses PBD to define constraints would employ
an appropriate constraint solver, such as a simple linear equa-
tion solver in the case of a linear constraint. In order to create
a linear constraint that realises a behaviour, the PBD tool
needs to know which variables of a solid are also the variables
of the constraint. The variables it can choose from are those
new variables introduced by the designer as described above,
and the current variables of the solid.

The constraint inference mechanism maintains a pool of
variables to be included in the constraint, and in training
mode, monitors all variables, both in the pool and not,
checking for those the values of which have changed. If there
is a difference between the current and the previous values of
any variable, that variable will be added to the variable pool.
At any point, the inference mechanism may deduce the con-
straint from the gathered data, if the data is sufficient. We
now briefly describe how a tool implementing such a mecha-
nism might operate.

In Example 3.10 we showed how special solids can be
used to inject new variables into other solids and then con-
strained those solids with respect to the injected variables.
Here we will show how a design space with PBD features can
be used to define the same behaviour for Hand solids.

Example 4.4: In order to define a new behaviour for the
Beam solid of Example 3.10 to obtain the solid Hand, we
first introduce a new variable corresponding to time (t). A
double click on the Beam solid in the design space opens the
corresponding solid palette as shown in Figure 2, which
already contains the variable a. Pressing the Add Var button
opens another palette from which we choose a slider to repre-
sent the new variable. We name this new parameter t and
adjust its limits to 0 and 60 as shown in Figure 3(b).

Clicking the Training button starts the definition of a new
linear constraint for the solid, changes the name of the Train-
ing button to Solve, and enables Sample button. We set t to

Figure 2: A Solid Palette.

7

30 and in the design space, turn the Beam solid 90° clock-
wise to point towards the bottom of screen as shown in Fig-
ure 3(a), and click the Sample button. This adds both the t
and a variables of Beam to the pool of variables maintained
by the constraint engine, since the values of both are different
from their values before the sampling. Figure 3(b) shows the
solid palette at this point.

Next we set t to 45, turn the solid 180° to the left as in
Figure 3(c) and click the Sample button again. At this point,
the inference engine has collected two sample points (90°,30)
and (180°,45) for the a and t variables. We now click Solve,
initiating the solution of the linear constraint a + a1t + a2 = 0
where a corresponds to the angle of the Beam and t corre-
sponds to time. Solving the system will give a + 6t - 90 = 0.
Note that the constant -90 here corresponds to the phase dif-
ference between the base of the angles in a clock and that of
the polar coordinate system that we have employed (clock-
wise). If we had pressed the Solve button after the first sam-
pling, the system would have given us an insufficient data
error message and would have asked us for more data sam-
ples.

The inferred constraint a + 6t - 90 = 0 is added to the def-
inition of the Beam solid, creating a new solid that exhibits a

behaviour similar to that of a clock’s second hand. A similar
approach can be taken to defining two more solids that corre-
spond to the minute and hour hands of a clock.

5 Summary and Future Work
A formal definition for the behaviour of solids in a solid

modeler has been presented. The definitions are consistent
with the earlier proposal for solid modeling provided in [5]
and are intended to provide support for simulation in design
environments. We have also provide some informal insights
into how a design environment might incorporate tools for
building behaviours into structured objects.

We are currently investigating the viability of the visual
logic programming language Lograph as the basis for a logic-
based solid modeler, consistent with our definitions of design
space, solid and behaviour. Such a solid modeler will provide
the necessary modeling capabilities for our implementation
of LSD.

The definition of behaviour we have presented above char-
acterises a behaviour as variations in state resulting from
changes in a single variable. This is probably sufficient for
many practical design applications. However, it is important
to note that behaviours with respect to two or more variables
cannot be defined by the obvious generalisation of our defini-
tion. For example, if we consider a wheel rolling along the
ground at a fixed speed (dependent on time) and shrinking
and expanding (dependent on radius), then the horizontal
position of the wheel will be determined notonly be the cur-
rent values of time and radius, but by the sequence of states
of the wheel during the observation of its behaviour.
Although such behaviours (i.e. dependent on more than one
variable) may seem to be pathelogically unimportant, they
may be significant in certain design domains.

6 Acknowledgements
This research was supported Natural Sciences and

Research Council of Canada Individual Research Grant
OGP0000124.

7 References
[1] R. St. Amant, H. Lieberman, R. Potter, and L. Zet-

tlemoyer. Visual Generalization in Programming by
Example, Communications of the ACM, March 2000/
Vol. 43, No. 3, pp. 107-114

[2] Autodesk Inc. (1992) AutoLISP Release 12 Programmers
Reference Manual.

[3] O. Banyasad, P. T. Cox, Logic-Based Solid Modeling in
a Visual Logic Programming Language, Report CS-
2002-?, Faculty of Computer Science, Dalhousie Uni-
versity, (2002).

[4] O. Banyasad, P. T. Cox, Solving design problems in a
logic-based visual design environment, Report CS-2001-

Figure 3: Creating a constraint
(a)

(b)

(c)

8

04, Faculty of Computer Science, Dalhousie Univer-
sity, (2001).

[5] P.T. Cox, T. Smedley, A Formal Model for Parame-
trised Solids in a Visual Design Language, Journal of
Visual Languages and Computing, 6(6), Academic Press
(2000), 687-710.

[6] P.T. Cox, T. Smedley, LSD: A Logic Based Visual Lan-
guage for Designing Structured Objects, Journal of
Visual Languages and Computing, v9, Academic Press
(1998), 509-534.

[7] Graphisoft R&D Rt. (1996) ArchiCAD 5.0: GDL Refer-
ence Manual.

[8] T. Lau. Programming by Demonstration: a Machine
Learning Approach, PhD thesis, University of Washing-
ton, 2001.

[9] A. Michail. Imitation: An Alternative to generalization in
Programming by Demonstration Systems, University of
Washington, Technical Report UW-CSE-98-08-06.

[10] B. Myers and R. McDaniel. Demonstrational Inter-
faces: Sometimes You Need a Little Intelligence; Some-
times You Need a Lot. Your Wish is My Command.
Henry Lieberman, Ed. San Francisco: Morgan Kauf-
mann, 2001. pp. 45-60.

[11] K. J. Waldron, Drafting a New Plan for Design,
Mechanical Engineering, Design Supplement, November
1999, 37-38.

