
Channel assignment for digital networks: a bound and an
algorithm

Jeannette Janssen

Mark MacIsaac

Kyle Schmeisser

Technical Report CS-2002-03

May, 2002

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

1

Channel assignment for digital broadcasting:
a bound and an algorithm

Jeannette Janssen Mark MacIsaac Kyle Schmeisser

May 27, 2002

Abstract

The problem of channel assignment in digital networks can be
formulated as follows. Services to be broadcast at a transmitter must
be packed into blocks, and each block must be assigned a frequency
channel. This assignment must satisfy bandwidth and interference
constraints. The objective is to minimize spectrum use.

Mathematically, the problem corresponds to a generalized graph
colouring problem with a flavour of bin packing. In this paper, we
give a new lower bound on spectrum use for this problem, derived
from intersecting cliques. We also give a near-optimal, efficient algo-
rithm to assign frequency channels to blocks for the case where the
interference graph is a cycle.

1 Introduction

A new generation of audio and video broadcasting networks, using digital
technology, is currently being implemented in many countries. Like other
wireless networks, digital networks are subject to severe restrictions on the
amount of spectrum available for transmission. Consequently, it is impor-
tant to find assignments of frequency channels to transmitted services which
minimize the total amount of spectrum used. Mathematically, this amounts
to an optimization problem which incorporates aspects of graph colouring
and bin packing.

1

The graph theoretic aspect of the assignment problem arises due to the
possibility of interference between transmitters. Two transmitters in areas
close enough to cause interference cannot use the same frequency channel
(an exception can be made when two identical signals are transmitted, as
will be explained later). The interference constraints can be modelled by
an interference graph. The vertices of the interference graph correspond to
the transmitters, and two vertices are adjacent precisely when the corre-
sponding transmitters can interfere.

The problem as described thus far falls into the class of frequency as-
signment problems as seen in other wireless networks (for example, cellular
telephone networks). In such networks, a frequency assignment corresponds
to a colouring or multicolouring of the interference graph. However, the
technology used in digital broadcasting networks has two features which
cause the frequency assignment problem to be different.

One distinguishing feature of digital broadcast networks is that a chan-
nel can be used to transmit more than one signal. For example, in a Euro-
pean network soon to become operational, up to six radio stations can be
transmitted on one channel. This has opened the possibility to transmit ad-
ditional data services, such as stock market information or weather reports,
over the same channel. Such services all may have different bandwidth, and
hence occupy a different portion of the bandwidth of the channel. This
adds an aspect of bin packing to the channel assignment problem.

The other distinguishing feature of digital broadcasting is the use of so-
called single frequency networks. If the same set of services is transmitted
at two interfering transmitters, then the same channel may be used at both
transmitters. This is not true in traditional networks: the same FM radio
station must have different frequencies in adjacent regions, for example. In
digital networks, a set of services be allotted the same frequency channel
in a cluster of adjacent areas; the term ‘single frequency network’ refers to
such a cluster. Note that optimal packing of services and optimal use of
single frequency networks may be contradictory goals: if many services are
packed together to be transmitted on one channel, then this same set may
not occur in many other areas, so the use of single frequency networks will
be restricted.

The first mathematical formulation of the channel assignment problem
for digital networks was given by Gräf in [4]. This paper also gives some

2

initial bounds and heuristics for the problem. An account of more sophis-
ticated heuristics and experiments can be found in [5] and [7]. The related
problem of channel assignment in cellular networks has been well studied.
An overview of recent work can be found in [8].

In this paper, we will first give a new lower bound on the minimum
number of frequency channels needed for a given digital broadcasting (DB)
problem. The lower bound is based on a subgraph of the interference graph
consisting of a number of cliques with a common intersection. This bound
will be discussed in Section 2.

In Section 3, we will focus on the special case of the DB channel assign-
ment problem where each service needs a bandwidth equal to the bandwidth
of a channel. Since the objective in this case is to assign “colour” (frequency
channels) to the services at the vertices of a graph, we refer to this as the
service colouring problem. The reasons for our focus on this problem are
twofold. Firstly, the service colouring problem is equivalent to the prob-
lem of finding a frequency assignment for a given block assignment. Most
known DB channel assignment algorithms take a two step approach. First
a block assignment is found. In the next step frequencies are assigned to
the blocks, in other words, a service colouring is found. Secondly, a focus
on service colouring gives insight in the general problem since it enables us
to isolate which difficulties of the DB channel assignment problem are due
to the bin packing aspect, and which to the graph colouring aspect and the
possibility to use single frequency networks.

Service colouring is a special case of graph colouring. Any service colour-
ing of a graph with services assigned to its vertices can be transformed into a
standard vertex colouring of a larger graph where vertices represent vertex-
service pairs. However, nothing is to be gained from this process, since
graph colouring for graphs in general is hard, while the transformation will
obscure any special structure that the original graph may have. This is
especially relevant since interference graphs of broadcasting networks typ-
ically do fall into special graph classes such as planar graphs or unit disk
graphs.

We present algorithms to solve the service colouring problem for the
cases where the interference graph is a tree or a cycle. It follows easily
that a greedy algorithm is optimal for trees. For cycles, we give a more
complicated, quadratic algorithm which has performance ratio at most 1 +

3

2
n−1

(i.e. which uses at most (1+
n−1

) times the optimal number of colours),
where n is the length of the cycle.

2 Problem definition and lower bounds

Before we can describe our lower bound, we must first define the problem
formally.

Definition 2.1 A DB channel assignment problem (G,R, µ) consists of
the following:

• An interference graph G = (V, E),

• A collection R = {Rv | v ∈ V }, where Rv is the set of services required
at v,

• A function µ :
⋃
v∈V

Rv → [0, 1] giving the bandwidth, relative to the

bandwidth of a channel, required for each service.

The notation SR will be used to denote the total set of services, so SR =⋃
v∈V Rv. For any set W ⊆ V of vertices, the set of services required on

any vertex of W will be denoted as RW =
⋃

v∈W Rv. For a service s, µ(s)
will be referred to as the size of s.

A channel assignment of (G,R, µ) is a pair (B, f), where B is a block
assignment and f is a frequency assignment.

A block assignment is a collection of sets B = {Bv | v ∈ V }, so that for
each v ∈ V , Bv ⊆ 2SR and the following properties hold:

(i) Rv ⊆
⋃

B∈Bv
B, and

(ii) for all B ∈ Bv,
∑
s∈B

µ(s) ≤ 1.

Any set B ∈ Bv (for some vertex v) is called a block.

A frequency assignment is a function f : {(v, B) | v ∈ V, B ∈ Bv} → N

so that for all vertices v, w ∈ V so that v = w or v is adjacent to w, and

4

for all blocks B ∈ Bv, B′ ∈ Bw, if B 6= B′ then f(v, B) 6= f(w, B′) . The
value of f(v, B) denotes the frequency channel used to transmit all services
in B at the transmitter corresponding to v.

Given a channel assignment (B, f) for (G,R, µ), the number of fre-
quency channels used, namely |{f(v, B) | v ∈ V, B ∈ Bv}|, will be denoted
by |(B, f)|.

The minimum number of frequency channels needed for any channel
assignment of (G,R, µ) will be denoted by χdb(G,R, µ). So

χdb(G,R, µ) = min{|(B, f)| : (B, f) is a channel assignment for (G,R, µ)}.

If (G,R, µ) is a DB channel assignment problem, and C is a clique in
G (a clique is a set of mutually adjacent vertices), then no frequencies can
be reused on C, so in any channel assignment, all blocks assigned to the
vertices of C must receive different frequencies. Therefore, the number of
frequency channels needed is at least the minimum number of blocks needed
to pack the services on all vertices of C. This leads to a lower bound on
χdb(G,R, µ), which was first formulated in [4].

Since the services all have different sizes, the minimum amount of blocks
needed to pack all services is non-trivial to calculate. The calculation cor-
responds to a bin packing problem, which is known to be NP-hard [3].
However, good lower bounds and approximation algorithms exist (see for
example [1, 2]). Moreover, the number of different service sizes encountered
in typical channel assignment problems may be small enough to make an
exhaustive computation of the optimal bin packing possible. We will give
all bounds in this section relative to the optimal bin packing.

Some notation is needed. A bin packing problem can be characterized by
a pair (A, µ), where A is a set, and µ : A → [0, 1] is a function which assigns
a size to each element of A. The optimal bin packing number p(A, µ) is the
minimal number of unit-sized bins needed to pack all items of A. Obviously,
p(A, µ) ≥ d∑s∈A µ(s)e. Using this notation, we can state the clique bound
discussed above.

Proposition 2.2 (from [4]) For any DB channel assignment problem (G,R, µ),

χdb(G,R, µ) ≥ max{p(RC , µ) |C is a clique of G}.

5

We will refer to this bound as the clique bound of (G,R, µ). A more
complicated bound can be derived from a collection of intersecting cliques.

Theorem 2.3 Let (G,R, µ) be a DB channel assignment problem, and let
W ⊆ V (G) be a collection of k intersecting cliques C1, . . . , Ck. Let A =
C1 ∩ . . . ∩ Ck. Then,

χdb(G,R, µ) ≥ (1− 1

k
)p(RA, µ) +

1

k
p(RW , µ).

Proof. Let (G,R, µ) and C1, . . . , Ck, A be as in the statement of the theo-

rem. Let (B, f) be a DB channel assignment for (G,R, µ). Let BA =
⋃
v∈A

Bv

be the collection of blocks assigned to any vertex in A. This collection must

cover all services required on A, so RA ⊆
⋃

B∈BA

B. This implies that there

must be at least as many blocks as minimally needed to pack all services in
RA, so |BA| ≥ p(RA, µ).

Similarly, let BW−A =
⋃

v∈W−A

Bv be the set of blocks assigned to vertices

of W −A. Obviously, BA and BW−A are disjoint, and together they form a
packing of all services in RW . So |BA|+ |BW−A| ≥ p(RW , µ).

Any frequency channel assigned by f to any block in BA can only be
used once, because vertices in A are adjacent to all vertices in W . On the
other hand, one frequency channel may be assigned to up to k blocks from
BW−A. Namely, it is possible to choose k mutually non-adjacent vertices
from the cliques C1, . . . , Ck, respectively, so blocks assigned to these vertices
may all share the same channel.

Therefore, the minimum number of frequency channels required to ac-
commodate all services on W is |BA| + (1/k)|BW−A| ≥ (1 − 1

k
)p(RA, µ) +

1
k
p(RW , µ). 2

Consider the following example. Let (G,R, µ) be a DB channel assign-
ment problem which contains a set W which is the intersection of k cliques
C1, . . . , Ck, as described in Theorem 2.3. Suppose RA consists of n services,
each service s of size µ(s) = 1/2−ε, for some ε so that 0 < ε < 1/2. For each
clique Ci, let Oi = RCi

−A. For each i, suppose Oi consists of n services of
size 1/2 + ε. Thus, the clique bound indicates that χdb(G,R, µ) ≥ n. The

6

bound given in Theorem 2.3 gives a higher bound. Note that p(RA, µ) = n
2

and p(RW , µ) = kn. The bound then states:

χdb(G,R, µ) ≥ (1− 1

k
)
n

2
+

1

k
(kn) = n +

1

2
(1− 1

k
)n.

An optimal DB channel assignment for (G,R, µ) will pack n
k

services
from each set Oi together with services from RA in blocks containing two
services each, and pack all remaining services in blocks containing only one
service.

Then, n channels are assigned to the blocks containing services from
RA, while (1 − 1

k
)n channels suffice to colour the remaining blocks, since

each of these channels can be reused in every clique. The total number
of channels used equals n + (1− 1

k
)n, exceeds our bound. It is easy to see

that no assignment using less channels is possible. This example thus shows
that the bound from Theorem 2.3 is not optimal, but can be better than
the clique bound.

3 Service colouring

In this section we discuss the DB channel assignment problem in the special
case where each service s has size µ(s) = 1. In other words, channels can be
used only to transmit exactly one service. As discussed in the introduction,
this problem corresponds to the problem of finding a frequency assignment
for a given block assignment.

Since µ is constant, we can define a service colouring problem by a
pair (G,R), where G = (V, E) is a graph, and R is an assignment of
sets of services R = {Rv | v ∈ V } to the vertices of G. A pair (G,R)
will be referred to as a service graph. A service colouring f of (G,S) is an
assignment of a colour f(v, s) to each pair (v, s) where v ∈ V and s ∈ Rv, so
that f(v, s) 6= f(w, t) whenever v = w or v is adjacent to w, and s 6= t. The
objective of the service colouring problem is to use the minimum number
of colours.

As noted in the introduction, a service colouring of (G,R) corresponds
to a standard vertex colouring of a graph whose vertices are vertex-service
pairs of (G,R). This graph will be called GR: the vertices of GR consist of

7

all pairs (v, s) where v ∈ V and s ∈ Rv, and two pairs (v, s) and (w, t) are
adjacent precisely when s 6= t and v = w or v is adjacent to w. This section
presents efficient algorithms for service colouring if G has special structure;
this structure may not be apparent if we only consider GR.

Proposition 3.1 Given a tree T and a service assignment R for T , an
optimal service assignment for (T,R) can be found greedily in linear time.

Proof. Let T and R be as stated. An optimal colouring f of (T,R)
can be found as follows. Order the vertices of T in a manner consistent
with their distance from a root vertex v0. Starting at v0 and following
this ordering, assign colours to services in a greedy manner. Note that each
vertex v, when considered, will have at most one neighbour w whose services
are already coloured. For each service s ∈ Rw ∩ Rv, let f(v, s) = f(w, s).
Each service in Rv − Rw receives the lowest indexed colour not used for
any pair (w, s), s ∈ Rw. Clearly, a colouring thus obtained never uses more
than maxv∼w |Rv ∩Rw| colours, which, by Proposition 2.2, is optimal.

Assuming the service sets are ordered, colouring the services at a vertex
v with coloured neighbour w will take O(|Rv| + |Rw|) operations. The
colouring thus takes O(N) operations, where N =

∑
v |Rv|, the size of the

input. 2

Note that the lower bound maxv∼w |Rv ∩ Rw| equals the clique number
of GR. This proposition thus translates into the following statement about
the expanded graph GR.

Corollary 3.2 If G is a tree, and R is a service assignment for T , then
GR is a perfect graph.

This corollary also follows from the fact (easily verified) that GR is
weakly chordal if G is a tree. The perfection of weakly chordal graphs was
established in [6].

For the remainder of this section, we consider the case where G is a
cycle. A service graph (G,R) where G is a cycle will be referred to as a
service cycle. In the following, n will be used exclusively to denote the
length of the cycle, and the vertices of the cycle are given as v1, . . . vn,
according to their placement around the cycle. Addition of the indices is

8

assumed to be modulo n; for example, if i = n then vi+1 = v1. The range
of an index is also considered modulo n. For example, if i0 = n − 1 then
{i | i0 ≤ i ≤ i0 + 3} = {n− 1, n, 1, 2}. Finally, we will use Ri instead of Rvi

to denote the service set of vi.
Our service colouring algorithm for cycles is based on the construction,

in each iteration, of a set of services which can all receive the same colour.
Such a set will be called an independent service set (ISS). An ISS is a pair
(I, σ) where I ⊆ {1, 2, . . . , n} and σ : I → ⋃

i Ri is a function so that
σ(i) ∈ Ri for all i ∈ I, and if {i, i + 1} ⊆ I then σ(i) = σ(i + 1).

Ideally, in each step of the algorithm an ISS is found so that, when
the services in the ISS are removed, the value of the clique bound for the
remaining service graph is reduced by one. Such an ISS cannot always
be found, but we will show later that steps where the clique bound is not
reduced do not occur too often. The special type of ISS constructed by the
algorithm is defined below.

Definition 3.3 Given a service cycle (G,R) and an index i0 so that 1 ≤
i0 ≤ n, A Reducing Independent Service Set (RISS) starting at i0 is a pair
(I, σ) where I ⊆ {1, 2, . . . , n}, and σ : I → ⋃

i Ri is a function, which
satisfy the following properties:

1. i0 /∈ I.

2. For each i so that i0 < i ≤ i0 + n− 1:

(a) if i − 1 /∈ I then i ∈ I and, if Ri 6⊆ Ri−1 then σi ∈ Ri − Ri−1,
otherwise σ(i) ∈ Ri,

(b) if i− 1 ∈ I and σ(i− 1) /∈ Ri then i /∈ I,

(c) if i− 1 ∈ I and σ(i− 1) ∈ Ri then i ∈ I and σ(i) = σ(i− 1).

Note that properties 2 (a), (b) and (c) guarantee that an RISS is indeed an
ISS.

Some more definitions are introduced to facilitate the reading of the
algorithm and its analysis. Assume a service cycle (G,R) is given. For any
index i (1 ≤ i ≤ n) the edge value of i equals |Ri ∪ Ri+1|, and is denoted
by ν(i). If U = (I, σ) is an ISS, then R − U is the service assignment

9

for G obtained by removing the services in U from the service sets: R −
U = {R′

i | 1 ≤ i ≤ n}, where R′
i = Ri − {σ(i)} if i ∈ I, and R′

i = Ri

otherwise. The edge value of i is said to be reduced by removing U if
|R′

i ∪ R′
i+1| < |Ri ∪ Ri+1|.

We now describe the Service Colouring for Cycles (SCS) algorithm.

SCS Algorithm

Input: A cycle G, and a service assignment R for G.
Output: A service colouring f for (G,R).

1. Set C = 1, B = maxi |Ri ∪ Ri+1|.
2. For each service s ∈ ⋂n

i=1 Ri:

(a) For all i, 1 ≤ i ≤ n, set f(vi, s) = C,

(b) Remove s from each of the Ri,

(c) Set C := C + 1, B := B − 1.

3. If there exists an index i, 1 ≤ i ≤ n, so that ν(i) = B
and ν(i − 1) < B then set i0 = i, else let i0 be such
that Ri0+1 6⊆ Ri0 .

4. Construct an RISS U starting at i0.

5. Set f(vi, σ(i)) = C for all i ∈ I, and set R := R− U ,
C := C + 1.

6. If ν(i0 − 1) < B then set B := B − 1.

7. If Ri1 = ∅ for some index i1 then proceed to Step 8,
otherwise return to Step 3.

8. Colour (G,R) greedily, starting at vertex vi1+1.

The following lemmas will establish the performance ratio and the com-
plexity of the SCS algorithm.

10

Lemma 3.4 Let (G,R) be a service cycle and i0 an index so that Ri0−1 6⊆
Ri0. Let U be an RISS starting at i0. Let I∗ be the set of indices for which
the edge value is not reduced by removing U . Then I∗ ⊆ {i0 + n − 1} ∪
{j | ν(j − 1) > ν(j)}.

Proof. Let (G,R), i0, U = (I, σ) and I∗ be as stated. For all i, 1 ≤ i ≤ n,
let R′

i denote the service set of vi in R−U . From the definition of an RISS
it follows that, if i 6= i0 +n−1 and i ∈ I, then Ri∪Ri+1 contains σ(i) while
R′

i ∪ R′
i+1 does not. So the edge value of index i is reduced by removing

R. Likewise, if i 6∈ I and Ri+1 6⊆ Ri, then Ri ∪ Ri+1 contains σ(i + 1) and
R′

i ∪ R′
i+1 does not, so the edge value of i is reduced by removing U .

Let j be an index so that j ∈ I∗ and j 6= n + i0 − 1. Then, by the
argument given, j 6∈ I and Rj+1 ⊆ Rj . Therefore, ν(j) = |Rj|. Also, by the
definition of i0 in the statement of the lemma, j 6= i0. Since j 6∈ I and j 6= i0,
by Properties 2(a) and (c) of an RISS, j − 1 ∈ I and σ(j − 1) ∈ Rj−1 −Rj .
Therefore, ν(j − 1) = |Rj−1 ∪ Rj | > |Rj| = ν(j). 2

Lemma 3.5 Let (G,R) be a service cycle, and let B = maxi ν(i) be the
clique bound of (G,R). Suppose there exists an index i, 1 ≤ i ≤ n, so that
ν(i) < B, and let i0 be as defined in Step 3 of the SCS algorithm. Let U be
an RISS starting at i0. Then the clique bound of (G,R− U) equals B − 1.

Proof. Let (G,R), B, i0 and U be as stated. For all i, 1 ≤ i ≤ n, let
ν ′(i) denote the edge value of index i in (G,R− U). Since there exists an
index i so that ν(i) < B, i0 is chosen by the SCS algorithm to be such that
ν(i0) = B and ν(i0−1) ≤ B−1. Therefore, ν ′(i0−1) ≤ B−1. For each index
j with i0 ≤ j < i0 +n−1 and ν(j) = B, it holds that ν(j) ≥ ν(j−1), so by
Lemma 3.4, the edge value of j is reduced by removing U , so ν ′(j) = B−1.
Therefore, the clique bound of (G,R− U) equals B − 1. 2

Definition. Given a service cycle (G,R) and an integer k, a k-path in
(G,R) is a path vi . . . vi+t (0 ≤ t ≤ n) so that, for all j so that i ≤ j < i+ t,
|Rj ∪ Rj+1| = k.

Lemma 3.6 Let (G,R) be a service cycle which consists of exactly one B-
path, and one (B − 1)-path, where the B-path starts at i0 and has length
`, and 1 ≤ ` ≤ n − 1. Let U be an RISS starting at i0. Then (G,R− U)

11

consists of one (B−2) path and one (B−1) path, and the (B−1)-path has
length at most ` + 2.

Proof. Let (G,R), B, i0, ` and U be as stated. Note that the clique bound
of (G,R) equals B. By Lemma 3.4, the only indices whose edge values
may not be reduced by removing U are i0 + n − 1 and i0 + `. Both these
indices have edge value B − 1, so their edge value after removing U may
be B − 1 or B − 2. The edge values of all other indices is reduced, so
all indices j with i0 ≤ j < i0 + ` have an edge value of B − 1, and all j
with i0 + ` + 1 ≤ j ≤ i0 + n − 2 have an edge value of B − 2 after U is
removed. So (G,R−U) consists of a (B−1)-path and a (B−2)-path, and
the (B − 1)-path has length at most ` + 2. 2

Lemma 3.7 In the SCS Algorithm, at the beginning of Step 3, the value of
B always represents the clique bound of (G,R)

Proof. In Step 1, B is initialized as maxi |Ri ∪ Ri+1|, the clique bound of
(G,R). It is easy to see that after Step 2, B again represents the clique
bound of (G,R). So the statement of the lemma holds for the first time that
Step 3 is entered. Suppose then that the statement holds at the beginning
of Step 3 in some iteration, and let B and (G,R) be as they are at the
beginning of this iteration. We will show that the statement holds again in
the next iteration.

If there exists an index so that ν(i) < B, then by Lemma 3.5, and the
choice of i0 in Step 3 and U in Step 4, the clique bound of (G,R−U) equals
B − 1. In particular, after Step 5, ν(i0 + n− 1) will be smaller than B, so
B will be decreased. So after Steps 5 and 6, the statement will hold again.

If ν(i) = B for every index i, 1 ≤ i ≤ n, then by Lemma 3.4, the only
index that may not have been reduced is i0 + n − 1. So the edge value of
i0 + n − 1 in (G,R − U) equals B or B − 1, and that of all other indices
equals B − 1. So after R has been replaced by R− U in Step 5, the clique
bound of (G,R) equals the edge value of i0 + n − 1. So after Step 6, the
statement of the lemma holds again. 2

Lemma 3.8 If, in some iteration of the SCS algorithm, B is not decreased
in Step 6, then B is decreased in the next bn

2
c iterations.

12

Proof. Suppose that B is not decreased in some iteration of the SCS algo-
rithm. Let (G,R) be as it is at the beginning of the next iteration. From
the proof of Lemma 3.7 we know that now ν(i) = B − 1 for all i such that
i0 ≤ i < i0 +n−1, and ν(i0 +n−1) = B. So (G,R) consists of a B-path of
length 1, and a (B−1)-path of length n−1. Hence, there is only one choice
for i0 in Step 3: the index of the beginning of the B-path. By Lemma 3.6,
and with U as chosen in Step 4, (G,R− U) will consist of a (B − 1)-path
and a (B−2)-path, and the (B−1)-path will have length at most three. In
Step 6, B will be decreased, so in the following iteration (G,R) will consist
of a B-path of length at most three, and a (B − 1)-path.

Generalizing the argument, it follows that in the bn
2
c iterations following

an iteration where B is not decreased, (G,R) will consist of a B-path and a
(B−1)-path, and in each iteration the length of the B-path will increase by
at most two. Consequently, B will be decreased in each of these iterations.
2

If, in Step 7 of the SCS algorithm, Ri1 = ∅ for some index i1, then
the remaining graph is a path, and hence is coloured optimally by the
greedy algorithm (see Lemma 3.1). So Step 8 of the SCS algorithm finds
a colouring of the remaining graph (G,R) which uses exactly B colours.
Hence the following corollary follows directly from the previous lemma.

Corollary 3.9 The SCS algorithm uses at most
(
1 + 1

bn/2c

)
maxi |Ri∪Ri+1|

colours for a service colouring of (G,R).

For an analysis of the complexity of the SCS algorithm, note that the
most expensive step in each iteration is Step 4, the construction of an
RISS. This step takes O(N) operations, where N =

∑n
i=1 |Ri|. Hence the

complexity of the SCS algorithm applied to a service cycle (G,R) with
clique bound B is O(B ·N) = O(N2).

This completes the proof of the following theorem.

Theorem 3.10 The SCS algorithm for finding a service colouring of a ser-

vice cycle has a performance ratio of at most
(
1 + 1

bn/2c

)
, and a complexity

of O(N2), where N =
∑n

i=1 |Ri|, the size of the input.

13

Consider the following example. Let G be a cycle of length n, let A =
{a1, . . . , an} be a set of services, and R = {Ri | 1 ≤ i ≤ n} be so that Ri =
A− {ai, ai+1} for each index i. Then Ri ∪Ri+1 = A− {ai+1}, so the clique
bound of (G,R) equals n−1. Given any choice for i0, Ri0+1−Ri0 = {ai0} So
in any RISS U = (I, σ) starting at i0, ai0 is the unique choice for σ(i0 + 1).
Moreover, this RISS is itself unique, with I = {i0 + 1, . . . , i0 + n− 2}, and
σ(j) = ai0 for all j ∈ I. It can be verified that each RISS constructed in
Step 3 of the SCS algorithm applied to (G,R) is unique, and consists of all
n − 2 occurrences of one particular service aj. Hence, the SCS algorithm
uses n = (1 + 1

n−1
) maxi |Ri ∪ Ri+1| colours.

The above seems to give a lower bound on the performance ratio of the
SCS algorithm. This is not the case; the colouring found in the example
is, in fact, optimal. Namely, it is easy to check that in this example the
maximal size of any ISS equals n− 2, so at most n− 2 services can receive
the same colour. In total, there are

∑n
i=1 |Ri| = n(n−2) services that occur

in (G,R), so at least n colours are needed.
It may be, therefore, that the performance ratio is substantially better

than the upper bound given in Theorem 3.10. In fact, we have found
no examples where the SCS algorithm asymptotically exceeds the optimal
number of colours.

4 Further work

The problem of channel assignment in digital broadcasting networks has
emerged only recently, and consequently there are many challenging aspects
of this problem yet waiting to be explored. On the theoretical side, a study
of the service colouring problem, and of other simplifications of the problem,
will give insight into the structure and degree of difficulty of the problem.

For a theoretical exploration of the service colouring problem, we suggest
the development of bounds and algorithms for the case where the service
graph has a structure that corresponds to that found in a typical real-
life network. Suitable graphs would be hexagon graphs (subgraphs of the
triangular lattice), planar graphs, unit disk graphs, and circle intersection
graphs.

One abstraction of the DB channel assignment problem which is worth

14

exploring is that where all services have size 1/k for some integer k. This
means that up to k services fit into a channel. The bin packing aspect has
now become trivial, but unlike service colouring, this problem cannot be
mapped to standard graph colouring. Preliminary work suggests that this
problem is quite complex.

On the practical side, efficient heuristics should be developed which
can find an acceptable solution to real-life problems, and even take into
account additional constraints (such as restrictions on frequency use at
certain transmitters).

References

[1] E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation algo-
rithms for bin packing: a survey. In D. Hochbaum, editor, Approxima-
tion algorithms for NP-hard problems. PWS publishing, 1997.

[2] S.P. Fekete and J. Schepers. New classes of lower bounds for bin packing
problems. Int. Progr. and Comb. Opt., 1412:257–270, 1998.

[3] Michael R. Garey and David S. Johnson. Computers and Intractability:
A guide to the Theory of NP-Completeness. W.H. Freeman and Co.,
1976.

[4] A. Gräf. DAB ensemble planning—problems and techniques. Telecom-
munication Systems, pages 137–154, 2001.

[5] A. Gräf and T. McKenney. Ensemble planning for digital audio broad-
casting. In I. Stojmenović, editor, Handbook of Wireless Networks and
Mobile Computing, pages 267–288. Wiley, 2002.

[6] Ryan B. Hayward. Weakly triangulated graphs. J. Combin. Th. B,
39(2):200–208, 1985.

[7] T. McKenney. Eine Anpassung der Tabu Search Methode an das DAB
Ensemble-Plannungsproblem. Technical report, Musikinformatik und
Medientechnik, Johannes Gutenberg-Universität, Mainz, 2000.

15

[8] L. Narayanan. Channel assignment and graph multicoloring. In Ivan
Stojmenović, editor, Handbook of Wireless Networks and Mobile Com-
puting. Wiley, 2002.

16

