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Abstract

Given a graph and an assignment of lists to its nodes, a list colouring is an
assignment of colours to the nodes of the graph, so that adjacent nodes receive
different colours and each colour receives a colour from its list. The question is: given
a particular graph and list assignment, does a list colouring exist? An algorithm is
presented here that answers this question for series-parallel graphs. The algorithm
has complexity O(md2), where m is the number of edges, and d is the maximum
degree of the graph. A necessary and sufficient condition for the existence of a list
colouring is given, which is based on a recursively defined function. The analysis of
the necessity of this condition leads to a set of valid inequalities for the list colouring
polytope.

1 Introduction

Graph colouring is a theoretical problem which is at the heart of a great number of diverse
applications. Examples are: frequency assignment in cellular networks [11], timetabling,
[2], and routing in optical networks [9]. A graph colouring problem arises whenever
a limited number of resources (frequency channels, time slots) must be assigned to a
number of entities, subject to constraints on the simultaneous assignment of a resource
to certain pairs of entities. A graph model can be used to model these constraints.

In a situation as just described, it often happens that the list of resources available to a
particular entity is restricted. For example, in a cellular network certain frequencies may
be forbidden from use at certain transmitters, due to interference with, say, a military
base. Also, in any situation where an existing assignment is being expanded, the resources
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available to an entity will be limited by possible conflict with the existing assignment.
This leads to a list colouring problem.

A list colouring problem is defined by a graph and an assignment of sets of allowed
colours to the nodes of the graph. The sets of allowed colours are called the lists. The
goal is to find an assignment of colours to the nodes of the graph, so that each node
receives a colour from its list, and adjacent nodes receive different colours. Most work on
list colourings has focused on determining the list-chromatic number of a graph, which is
the minimal list size so that a list colouring is guaranteed to exist for any assignment of
lists of that size. An overview of results in this direction can be found in [13].

However, the existence of a list colouring does not only depend on size of the lists, but
also on their content. Even if a particular list assignment does not adhere to the minimal
list size prescribed by the list-chromatic number of the graph, then a list colouring for
that particular assignment may still exist. Moreover, in practical situations the size of
the lists may be beyond a planner’s control. Therefore, this paper addresses the following
decision problem:

Given a graph and a particular list assignment for that graph, does a list colouring
exist?

It has been shown in [8] that this problem is NP-complete even under quite restrictive
conditions on the lists. In [10] a simple condition for the existence of a list edge colouring is
given, and it is shown that this condition is sufficient only for trees and for a limited class
of related graphs called multiforests. In [3], an elegant algorithm to find a list colouring
for trees is given. The equivalent condition for node list colourings is discussed in [1],
where it is referred to as the Hall condition.

This paper gives a necessary and sufficient condition for the existence of a list colouring
of a series-parallel graph. The condition is based on a recursively defined function that
can be computed in polynomial time. The function essentially encodes the effect of a
colour used at a node on colours available to other nodes. If the condition holds, then the
same function can be used to find a list colouring, again in polynomial time. The necessity
of the condition depends on the analysis of the list colouring polytope: the convex hull of
the 0/1 vectors that represent list colourings of the graph or an induced subgraph.

Series-parallel graphs are well-studied in terms of colourings. In [12] results on edge
colouring and a simple algorithm for node colouring of series-paralllel graphs are given,
while [14] contains an edge colouring algorithm. Juvan et al. in [5] establish the minimum
list size required for list colourings of the edges of a series-parallel graph, and give a linear
time algorithm to find such colourings for lists of the prescribed size.

2



2 Series-Parallel Graphs

A series-parallel graph is a graph that can be obtained by a sequence of edge operations,
series and parallel, from a graph consisting of only one edge. A parallel operation on an
edge e replaces e by two (parallel) edges with the same endpoints as e. A series operation
on an edge e replaces the edge by a path of length two. The two endpoints of the original
edge are called the terminals of the series-parallel graph. Note that the edge operations
do not affect existing nodes, and that all nodes except the terminals are created through
series operations.

The construction of a series-parallel graph G can be represented by a set of ur-edges
U and a parse tree T . The ur-edges are the edges used in the construction of G. The
set U can be partioned into three sets, P , S and E. The edges in P are the edges that
were replaced by a parallel operation, the edges in S are the ones that were replaced by
a series operation, and E contains the final edges, the edges that are still present in G.
The parse tree T is a binary rooted tree with node set U . The root of T corresponds
to the root edge e0, the original edge between the terminals s and t from which G was
constructed. The edges in E correspond to the leaves of T . For every ur-edge e ∈ P or
e ∈ S, its children represent the two edges by which it was replaced after a parallel or
series operation, respectively.

A parse tree of a given series-parallel graph, implying a possible construction sequence,
can be obtained in linear time. An algorithm to do so is described in [6], and can be derived
with minor modifications from the algorithm given in [4]. Several parallel algorithms have
also been described; see [7] for a recent example.

Our list colouring algorithm uses an orientation of the series-parallel graph that is
consistent with an orientation of the root edge from s to t. An edge e directed from u to
v will have v as its head, denoted by v = h(e), and u as its tail, denoted by t(e).

Given a series-parallel graph G with parse tree T , and an ur-edge e of G, the graph
Ge is the series-parallel graph represented by the subtree of the parse tree of G with root
e. Obviously, Ge is a subgraph of G. The expressions V (G) and E(G) will be used to
denote the node set and the edge set of of a graph G, respectively.

3 List-Colouring

A list assignment for a graph G is a collection of sets L = {Lv | v ∈ V (G)}. The list Lv

can be interpreted as the set of colours that may be used to colour node v. The colour
set of a list assignment L is the set

⋃
Lv∈L Lv. A list colouring of a graph G with list

assignment L is an assignment of colours to the nodes of G so that each node v receives
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a colour from Lv, and adjacent nodes receive different colours.
In order to estimate the complexity of the algorithm presented in this paper, we need

an upper bound on the size of the lists of a list assignment. Suppose that a node v is
assigned a list Lv of size larger than its degree d(v). Then, for any list colouring, Lv always
contains at least one colour that is not used to colour any of its neighbours. Hence, if Lv

is replaced by a list containing just one colour which is not present in any of the other
lists, then any list colouring obtained with this new list for v could be transformed into
a list colouring for the original lists by replacing v’s colour by a colour from Lv not used
at v’s neighbours. This is stated formally in the following claim.

Claim 3.1 Let G be a series-parallel graph, and L a list assignment for G. Let {∞v|v ∈
V (G)} be a set of colours disjoint from the colour set of L, and let L′ be the list assignment
obtained from L by replacing Lv by L′

v = {∞v} for every node v ∈ V (G) for which
|Lv| > d(v). Then (G,L) has a list colouring if and only if (G,L′) has a list colouring.

The claim implies that we may assume without loss of generality that |Lv| ≤ d(v) for
all nodes v ∈ V (G) in any list colouring problem (G,L).

A list colouring can be represented by a 0-1 vector indexed by the nodes and colours.
Specifically, given a list assignment L for a graph G, let VL = {(v, γ) | v ∈ V (G), γ ∈ Lv}.
Then any list colouring of (G,L) can be represented by a vector x ∈ {0, 1}VL in the
following manner: xv,γ = 1 iff node v receives colour γ.

From the definition it follows that a vector x ∈ Z
VL representing a list colouring is a

feasible solution to the following integer linear Inequality System (IS):

IS for List Colouring

∑

γ∈Lv

xv,γ ≤ 1 for all v ∈ V (G) (1)

xu,γ + xv,γ ≤ 1 for all adjacent pairs u, v ∈ V (G), all γ ∈ Lu ∩ Lv (2)

xv,γ ∈ {0, 1} for all v ∈ V (G), γ ∈ Lv (3)

In fact, any feasible solution to the IS represents a list colouring if and only if equality is
achieved in (1) for all v ∈ V (G). Any feasible solution to the IS which does not necessarily
achieve inequality in (1) represents a partial list colouring. A partial list colouring of a
graph G with list assignment L is a list colouring of (H,LH), where H is an induced
subgraph of G, and LH is the list assignment {Lv | v ∈ V (H)} induced by L on H .

The vector representations derived here will be used in Section 5 to derive a condition
for non-existence of a list colouring.
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4 The List Colouring Algorithm

In this section we present our list colouring algorithm for series-parallel graphs. The idea
behind the algorithm is to compute which colours can be used on terminal t if a particular
colour is used on terminal s. The computation is done in an iterative fashion starting from
the leaves of the parse tree. A set-valued function A is created, where A(e, γ) represents
the set of colours allowed at t(e) if colour γ is used at h(e). We give a recursive definition
of A below, and will prove later that this formal definition coincides with the intuitive
one.

Definition 4.1 Let G be a series-parallel graph represented by a set of ur-edges U =
(P, S, E) and a parse tree T , and let L be a list assignment for G with colour set Γ. The
function AG : {(e, γ) : e ∈ U, γ ∈ Lt(e)} → 2Γ is defined as follows:

• For any e ∈ E, and any γ ∈ Lt(e), AG(e, γ) = Lh(e) − {γ},
• For any e ∈ P with children e1 and e2, and any γ ∈ Lt(e),

AG(e, γ) = AG(e1, γ) ∩ AG(e2, γ),

• For any e ∈ S with children e1 and e2, and any γ ∈ Lt(e),

AG(e, γ) =
⋃

β∈AG(e1,γ)

AG(e2, β).

For brevity, A(e, γ) is used to denote AG(e, γ) whenever it is clear from the context
which graph G the function AG refers to.

The computation of AG is at the heart of list colouring algorithm. Moreover, as
the following theorem shows, by computing AG it can be determined whether or not a
list-colouring exists.

Theorem 4.2 Given are a series-parallel graph G with terminals s and t and root edge
e0, represented by a set of ur-edges U = (P, S, E) and a parse tree T , and a list assignment
L for G. Let the function AG be as defined above. Then a list colouring of (G,L) exists
precisely when ⋃

γ∈Ls

AG(e0, γ) 6= ∅.
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The proof of this theorem will follow from the results in the remainder of this paper,
and will be based on the following algorithm for List Colouring Series-Parallel graphs
(LCSP).

LCSP Algorithm

Input: A series-parallel graph G with terminals s and t and root-edge
e0, represented by a set of ur-edges U = (P, S, E) and a parse tree T ,
and a list assignment L for G.
Output: A valid list-colouring of G, if it exists.

1. Recursively compute A(e, γ) for all e ∈ U , γ ∈ Lt(e).

2. If
⋃

γ∈Ls
A(e0, γ) = ∅ then report that the graph is not list

colourable and exit.

3. Choose γ ∈ Ls and β ∈ A(e0, γ). Assign colour γ to node s, and
colour β to node t.

4. Consider all ur-edges in S, in an order consistent with their dis-
tance from the root in T . For every e ∈ S:

4a. Let γ and β be the colours of t(e) and h(e), respectively. Let
e1 and e2 be the children of e, and let w = h(e1) = t(e2)
be the node created by the subdivision of e. Find a colour
α ∈ A(e1, γ) so that β ∈ A(e2, α). Assign colour α to node
w.

Because of the order in which the ur-edges in S are considered in Step 4 of the LCSP
algoritm, each edge when considered will have both its endpoints already coloured. More-
over, every node except s and t results from a series operation on an ur-edge in S, so
when all edges in S have been considered then all nodes will be coloured. It remains to
be shown that a colour α as required in Step 4a will can always be found; this will follow
from Claims 4.3 and 4.4 to follow. Claim 4.5 will show that the resulting colouring is
indeed a valid list colouring.

Claim 4.3 If both endpoints of the ur-edge e ∈ U are coloured by the LCSP Algorithm,
and γ and β are the colours assigned to h(e) and t(e), respectively, then γ ∈ Lt(e), and
β ∈ A(e, γ).
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Proof. We prove the claim by induction on the distance of e from the root in the parse
tree. If e = e0, the root edge, then the claim follows directly from the first step of the
LCSP Algorithm.

Suppose then that the claim holds for ur-edge e. We will show that the claim also
holds for its children e1 and e2. Let u = t(e), v = h(e), and let γ, β be the colours
assigned to u and v, respectively. Suppose first that e ∈ P . Then t(e1) = t(e2) = u and
h(e1) = h(e2) = v, and, by induction, γ ∈ Lu. By definition, A(e, γ) ⊆ A(e1, γ), and by
induction, β ∈ A(e, γ), so β ∈ A(e1, γ). The same holds for e2.

Suppose that e ∈ S. Let w be the node created by subdivision of e, where w =
h(e1) = t(e2), and let α be the colour assigned to w. It follows directly from Step 4 that
α ∈ A(e1, γ) and β ∈ A(e2, α), as required. From Definition 4.1 it follows easily that
A(e, γ) ⊆ Lh(e) for all e ∈ U , γ ∈ Lt(e), so α ∈ Lt(e1) and β ∈ Lt(e2

. 2

Claim 4.4 If
⋃

γ∈Ls
A(e0, γ) 6= ∅, then upon termination of the LCSP algorithm all nodes

have been coloured.

Proof. We show that, in Step 4a of the algorithm, a colour α satisfying the requirements
can always be found. Let e ∈ S be an ur-edge with t(e) = u, h(e) = v, where u and v
are coloured by the LCSP algorithm with colours γ and β, respectively. By claim 4.3,
β ∈ A(e, γ). Let e1, e2 be the children of e, and w = h(e1) = t(e2). By definition,
A(e, γ) =

⋃
α∈A(e1,γ) A(e2, α). So there exists a colour α ∈ A(e1, γ) so that β ∈ A(e2, α).2

Claim 4.5 If
⋃

γ A(e0, γ) 6= ∅, then the colours assigned to the nodes by the LCSP algo-
rithm form a valid list colouring.

Proof. By Claim 4.3, each node v receives a colour from its list Lv. To show that the
colouring is valid, consider any edge e ∈ E with u = t(e), v = h(e), assigned colours γ
and β, respectively. By Claim 4.3, β ∈ A(e, γ), and by Definition 4.1, A(e, γ) = Lv−{γ}.
Hence β 6= γ, and thus the colouring is valid. 2

Lemma 4.6 Let G be a series-parallel graph with terminals s and t and root edge e0,
represented by a set of ur-edges U = (P, S, E) and a parse tree T , and let L be a list
assignment for G. If

⋃
γ∈Ls

AG(e0, γ) 6= ∅, then the LCSP algorithm finds a valid list

colouring of (G,L) in O(md2) steps, where m is the number of edges, and d is the maxi-
mum degree of G.

Proof. Let (G,L) be as in the statement of the lemma, and let U be the set of ur-edges
of G. Let m = |E(G)| and n = |V (G)|. Given that the parse tree is a binary tree with node
set U , and that the edges in E correspond to its leaves, we have that |U | < 2|E| = 2m.
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Also, since every node except s and t is the result of a series operation, we have that
|S| = |V (G)| − 2 = n − 2. By Claim 3.1, we may assume without loss of generality that
|Lv| ≤ d for all v ∈ V . To compute AG, every ur-edge e ∈ U , and every colour γ ∈ Lt(e)

is considered once. The number of operations required for the computation of A(e, γ) is
greatest when e ∈ S. In this case, the union of at most d sets, each of size at most d,
must be computed. This takes O(d2) operations. Since A(γ, e) must be computed for
each ur-edge e and each colour γ ∈ Lt(e), O(nd3) operations are required in total for the
computation that involves ur-edges from S. Since 2m ≤ dn, O(nd3) = O(md2). For all
other ur-edges, at most O(d) operations are required to compute AG(e, γ), resulting in an
additional O(d2m) operations.

To execute Step 4 of the LCSP algorithm, at most d sets, each of size at most d, must
be searched for the presence of colour β. This takes at most d2 operations. Step 4 is
executed n times, so in total this step takes O(nd2) operations. 2

Note also that at most md sets A(e, γ), each of size at most d, must be stored. So the
algorithm utilizes O(md2) units of storage space.

5 The List Colouring Polytope

The previous section gave the first part of the proof of Theorem 4.2. We will now proceed
to show that if the LCSP algorithm halts without returning a colouring, then no valid list
colouring exists. This will be done by the establishment of a set of inequalities that are
valid for the list colouring polytope.

Definition 5.1 Given a graph G = (V, E) and a list assignment L for G, the list colour-
ing polytope P(G,L) is the convex hull of all 0/1 vectors representing partial list colour-
ings of (G,L).

An inequality ax ≤ b is valid for P(G,L) if it holds for every vector x ∈ P(G,L). For
example, the defining inequalities xu,γ +xv,γ ≤ 1, where u, v ∈ V , u ∼ v, and γ ∈ Lu∩Lv,
are valid for P(G,L).

The following linear functions will form the left-hand sides of our inequalities.

Definition 5.2 Let G be a series-parallel graph represented by a set of ur-edges U =
(P, S, E) and a parse tree T , and let L be a list assignment for G. Let the function AG be
as defined in Definition 4.1. For every ur-edge e ∈ U , the linear function `e,γ : R

VL → R

is defined as follows:

`e,γ(x) = xt(e),γ +
∑

w∈V ∗
e

∑

α∈Lw

xw,α +
∑

α∈F (e,γ)

xh(e),α,
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where V ∗
e = V (Ge)− {h(e), t(e)}, and F (e, γ) = Lh(e) − AG(e, γ).

The expression F (e, γ), as introduced in the preceeding definition will be used in
the rest of this section for convenience. So for every e ∈ U and γ ∈ Lt(e), F (e, γ) =
Lh(e) −A(e, γ). Since A(e, γ) is the set of colours allowed at node h(e) when γ is used at
t(e), so F (e, γ) is the set of colours forbidden at h(e) when γ is used at t(e).

Lemma 5.3 Let G be a series-parallel graph represented by a set of ur-edges U = (P, S, E)
and a parse tree T , and let L be a list assignment for G. Then for every e ∈ U and for
every γ ∈ Lt(e), the inequality

`e,γ(x) ≤ |Ve| − 1

is valid for P(G,L).

The proof of this lemma can be found in the appendix.

The definition of `e,γ can be extended from single colours to subsets of colours in the
following way:

For every ur-edge e ∈ U , and every set S ⊆ Lt(e), the linear function `e,S : R
VL → R is

defined as follows:

`e,S(x) =
∑

γ∈S

xt(e),γ +
∑

w∈V ∗
e

∑

α∈Lw

xw,α +
∑

α∈F (e,S)

xh(e),α,

where V ∗
e = V (Ge)− {h(e), t(e)}, and F (e, S) =

⋂
α∈S F (e, α).

Lemma 5.4 Let G be a series-parallel graph represented by a set of ur-edges U = (P, S, E)
and a parse tree T , and let L be a list assignment for G. Then for every e ∈ U and for
every S ⊆ Lt(e), the inequality

`e,S(x) ≤ |Ve| − 1

is valid for P(G,L).

Proof. Let (G,L), ur-edge e and set S be as in the statement of the lemma. Now

`e,S(x) =
1

|S|
∑

γ∈S

`e,γ(x) +
|S| − 1

|S|
∑

γ∈S

xt(e),γ − ε(x),

where ε(x) is a linear function with positive coefficients.
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By Lemma 5.3, `e,γ(x) ≤ |Ve| − 1 is a valid inequality for P(G,L), for each γ ∈ S.
Also,

∑
γ∈Ls

xt(e),γ ≤ 1 is valid for P(G,L). Using this as well as the fact that all vectors
in P(G,L) are non-negative, we obtain that the inequality

`e,S(x) ≤ |Ve| − 1 +
|S|

|S| − 1

is valid for P(G,L)
Since all vertices of P(G,L), as well as the coefficients of `e,S, are integers, we may

round down the right-hand side of this inequality and it will remain valid. The result
follows. 2

The remaining part of the proof of Theorem 4.2 now follows easily from the preceeding
lemmas.

Corollary 5.5 Let G be a series-parallel graph with terminals s and t and root edge e0,
represented by a set of ur-edges U = (P, S, E) and a parse tree T , and let L be a list
assignment for G. If

⋃
γ∈Ls

AG(e0, γ) = ∅, then no list colouring of (G,L) exists.

Proof. Let (G,L) be as in the statement of the theorem. Note that Ge0 = G and⋃

γ∈Ls

F (e0, γ) = Lt. By Lemma 5.4, taking e = e0 and S = Ls, it follows that

∑

v∈V (G)

∑

γ∈Lv

xv,γ ≤ |V (G)| − 1

is a valid inequality for P(G,L).
However, it is clear that for any vector x representing a list colouring,

∑

v∈V

∑

γ∈Lv

xv,γ = |V |.

Therefore, a list colouring does not exist. 2

6 Future work

The results presented in Section 5 point to some interesting directions for further study.
Firstly, the question arises whether the inequalities introduced in this section suffice to
describe the polytope P(G,L) completely. If this turns out to be so, then the question
immediately arises whether there are any other graphs for which the list colouring polytope
is completely described by these inequalities. Secondly, it would be worthwhile to derive
an algorithm which, if no complete list colouring can be found, will find a partial list
colouring which optimizes the number of nodes coloured.

10



References

[1] M.M. Cropper, J.L. Goldwasser, A.J.W Hilton, D.G. Hoffman, and Johnson P.D.
Extending the disjoint-representatives theorems of hall, holmos, and vaughan to list-
multicolorings of graphs. J. Graph Th., 33(4):199–219, 2000.

[2] D. de Werra. the combinatorics of timetabling. Eur. J. Oper. Res., 96:504–513, 1997.

[3] D. de Werra, A.J. Hoffman, N.V.R. Mahadev, and U.N. Peled. Restrictions and
preassignments in preemptive open shop scheduling. Discr. Appl. Math., 68:169–188,
1996.

[4] J.E. Hopcroft and R.F. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2:135–158, 1973.

[5] Martin Juvan, Bojan Mohar, and Robin Thomas. List edge-colorings of series-parallel
graphs. Electr. J. Comb., 6, 1999.

[6] Tohru Kikuno, Noriyoshi Yoshida, and Yoshiaki Kakuda. A linear algorithm for the
domination number of a series-parallel graph. Discr. Appl. Math., 5:299–311, 1983.

[7] M. Eduardo Kortright, Arobinda Gupta, and Richard B. Borie. Past parallel al-
gorithms for the balanced decomposition of series-parallel graphs. Congr. Num.,
134:193–218, 1998.

[8] Jan Kratochv́il and Zsolt Tuza. Algorithmic complexity of list colorings.
Discr. Appl. Math., 50:297–302, 1994.

[9] S.R. Kuman, A. Russell, and R. Sundaram. Approximating latin square extensions.
Algorithmica, 24:128–138, 1999.

[10] O. Marcotte and P.D. Seymour. Extending an edge-coloring. J. Graph. Th.,
14(5):565–573, 1990.

[11] L. Narayanan. Channel assignment and graph multicoloring. In Ivan Stojmenovic,
editor, Handbook of Wireless Networks and Mobile Computing. Wiley, 2001.

[12] P.D. Seymour. Colouring series-parallel graphs. Combinatorica, 10:379–392, 1990.

[13] Zsolt Tuza. Graph coloring with local constraints — a survey. Discuss. Math. Graph
Th., 17:161–228, 1997.

11



[14] X. Zhou, H. Suzuki, and T. Nishizeki. A linear algorithm for edge-coloring series-
parallel graphs. J. Algorithms, 20:174–201, 1996.

12



Appendix

In this appendix we give the proof of Lemma 5.3. We first restate the lemma.

Lemma 5.3. Given are a series-parallel graph G represented by a set of ur-edges U =
(P, S, E) and a parse tree T , and a list assignment L for G. Then for every e ∈ U and for
every γ ∈ Lt(e), the inequality

`e,γ(x) ≤ |Ve| − 1

is valid for P(G,L).

Proof. Let (G,L) be as in the statement of the lemma. The proof will be by induction
from the leaves to the root of the parse tree T . Let e ∈ U be an ur-edge with t(e) = u
and h(e) = v, and let γ be a colour from Lu. If e ∈ E, then by Definition 4.1, A(e, γ) =
Lv − {γ}, so F (e, γ) = {γ}. Since e ∈ E, Ge only has two nodes, so |Ve| = 2 and

`e,γ(x) = xu,γ + xv,γ .

The inequality xu,γ + xv,γ ≤ 1 is obviously valid for P(G,L).
Suppose then that e ∈ P , with children e1 and e2, and assume that the statement of

the lemma holds for e1 and e2. By Definition 4.1, F (e, γ) = Lv−A(e, γ) = Lv−(A(e1, γ)∩
A(e2, γ)) = F (e1, γ) ∪ F (e2, γ). Now

`e,γ(x) =
1

2
`e1,γ(x) +

1

2
`e2,γ(x) +

1

2

∑

w∈V ∗
e

∑

α∈Lw

xw,α +
1

2

∑

α∈F (e1,γ)4F (e2,γ)

xv,α,

where V ∗
e = V (Ge)− {u, v}.

Using the fact that `e1,γ(x) ≤ |Ve1| − 1, `e2,γ(x) ≤ |Ve2| − 1 and
∑

α∈Lw
xw,α ≤ 1 are

valid inequalities (the latter one holding for all w), we obtain that

`e,γ(x) ≤ 1

2
(|Ve1| − 1) +

1

2
(|Ve2| − 1) +

1

2
|V ∗

e |+
1

2

is valid for P(G,L). Since all vertices of P(G,L), as well as the coefficients of `e,γ(x),
are integers, we may round down the right-hand side of this inequality, and it will remain
valid. Therefore the inequality

`e,γ(x) ≤ 1

2
|Ve1|+

1

2
|Ve2|+

1

2
|V ∗

e | − 1

is valid for P(G,L). Since Ge1 and Ge2 overlap only in u and v, we have that

|Ve| = |Ve1|+ |Ve2| − 2.
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Also, |V ∗
e | = |Ve| − 2. This proves that the inequality `e,γ(x) ≤ |Ve| − 1 is valid when

e ∈ P .
Suppose next that e ∈ S, with children e1 and e2, and assume the statement of the

lemma holds for e1 and e2. Let w = h(e1) = t(e2). It follows from Definition 4.1 that
F (e, γ) = Lv − A(e, γ) = Lv −

⋃
α∈A(e1,γ) A(e2, α) =

⋂
α∈A(e1,γ) F (e2, γ). Hence

`e,γ(x) = `e1,γ(x) +
1

nA

∑

α∈A(e1,γ)

`e2,α(x) +
nA − 1

nA

∑

α∈A(e1,γ)

xw,α − ε(x),

where ε(x) is a linear function with positive coefficients, and nA = |A(e1, γ)|.
Using the fact that `e1,γ(x) ≤ |Ve1| − 1 and `e2,α(x) ≤ |Ve2| − 1 are valid inequalities

(the second one holding for all α ∈ Lw), and that
∑

α∈Lw

xw,α ≤ 1, as well as the fact that

all vectors in P(G,L) are non-negative, we obtain that

`e,γ(x) ≤ (|Ve1| − 1) + (|Ve2| − 1) +
nA − 1

nA

is valid for P(G,L). As in the previous case, we may round down the right hand side.
Hence

`e,γ(x) ≤ |Ve1 |+ |Ve2| − 2

is a valid inequality for P(G,L). Since Ge1 and Ge2 overlap only in w,

|Ve| = |Ve1|+ |Ve2| − 1.

Hence the result for e ∈ S follows. 2

14


