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Abstract

Floquet theory plays a ubiquitous role in the analysis and control of time-periodic
systems. Its main result is that any fundamental matrix X(t; 0) of a linear system
with T -periodic coeÆcients will have a (generally complex) Floquet factorization
with one of the two factors being T -periodic. It is also well known that it is always
possible to obtain a real Floquet factorization for the fundamental matrix of a real
T -periodic system by treating the system as having 2T -periodic coeÆcients. The
important work of Yakubovich in 1970 and Yakubovich and Starzhinskii in 1975
exhibited a class of real Floquet factorizations that could be found from information
on [0; T ] alone. Here we give an example illustrating that there are other such
factorizations, and delineate all factorizations of this form and how they are related.
We give a simple extension of the Lyapunov part of the Floquet-Lyapunov theorem
in order to provide one way that the full range of real factorizations may be used
based on information on [0; T ] only. This new information can be useful in the
analysis and control of linear time-periodic systems.
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1 Introduction: Complex Floquet Factors

The Floquet-Lyapunov theorem is a well-known and celebrated result in the
�eld of linear time-periodic (LTP) systems (see e.g., [1{5]). The theorem con-
sists of two main parts: the Floquet representation theorem and the Lyapunov
reducibility theorem. Although the results apply to any fundamental matrix
X(t; 0) of solutions of an LTP system, in what follows we specialize our discus-
sion in terms of the state transition matrix, namely the fundamental matrix
of solutions �(t; 0) satisfying the initial condition �(0; 0) = I. This �(t; 0) is
sometimes called the principal matrix solution.

In this section we brie
y summarize the background theory that we require,
but only consider general, possibly complex Floquet factors of �(t; 0). We also
relate these to a more basic real factorization of �(t; 0).

We consider the homogeneous linear di�erential equation

_x(t) = A(t)x(t); x(t0) given; (1)

where A(t) 2 Rn�n is a continuous 4 matrix, t 2 R, and x(t) 2 Rn . The state
transition matrix of (1) is the solution of

_�(t; t0) = A(t) ��(t; t0); �(t0; t0) = I: (2)

The standard theory shows that �(t; t0) exists, is unique, has a positive de-
terminant, is continuous with a continuous derivative, and satis�es

�(t; t0) = �(t; t1) ��(t1; t0): (3)

The theory also shows that the unique solution of (1) is

x(t) = �(t; t0)x(t0): (4)

Next (see e.g., [1{3]) the LTP system of the form (1) with

A(t+ T ) = A(t) 2 R
n�n ; for all t, and some �xed period T > 0; (5)

has the following form of periodicity in its transition matrix:

�(t+ T; t0 + T ) = �(t; t0) for all t; t0: (6)

4 This assumption is for simplicity only, see for example Hale [6, p.118], who also
points out that the theory is valid for A(t) which is periodic and Lebesgue inte-
grable if the di�erential equation holds almost everywhere. No changes in proofs are
required. For a more formal and general presentation see [7].
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This can be seen by replacing t and t0 in (2) by ~t 4= t + T and ~t0 4= t0 + T ,
and using A(~t) = A(t). Without loss of generality, we take t0 = 0 in the rest
of the paper. Then (3) and (6) combine to show

�(t + T; 0) = �(t; 0) ��(T; 0) for all t: (7)

It is known (see e.g., [7, Chap.II, x2.1], or use (2) and the nonsingularity of
�(t; t0)) that A(t) is T -periodic if and only if (7) holds.

The Floquet representation theorem provides an elegant representation of the
state-transition matrix of a LTP system in terms of continuous and smooth
factors. This requires matrix logarithms, and we will refer to the theory as
required.

The matrix equation eX =M 2 C n�n has in�nitely many solutions X 2 C n�n

if and only if M is nonsingular, see e.g., [8, Thm.2.6h], [9, x6.4.15]. We call
any such solution X a logarithm of M, and write X = logM. We will denote
the set of all such solutions by LogM 4

= fX : eX =Mg, and the subset of all
real solutions by RLogM, which can be nonempty for some M 2 Rn�n . Since
�(T; 0) is nonsingular, for any log�(T; 0) we can take F 2 C n�n to be

F =
1

T
log�(T; 0);

so that
eTF = �(T; 0): (8)

We can use this F to de�ne the nonsingular matrix function

LF (t; 0) 4= �(t; 0) � e�tF 2 C
n�n : (9)

Here the subscript F denotes the particular solution TF of (8) that we have
chosen. Recalling that LF (t; 0) may be complex, we see

�(t; 0)=LF (t; 0) � e
tF; (10)

LF (T; 0)=�(T; 0) � e�TF = I = LF (0; 0); (11)

LF (t+ T; 0)=�(t+ T; 0) � e�(t+T )F

=�(t; 0) ��(T; 0) � e�TF � e�tF = LF (t; 0): (12)

Thus (10) is a factorization of �(t; 0) into a (possibly complex) T -periodic
function LF (t; 0) which is continuous with a continuous derivative, and a ma-
trix exponential etF. This is a Floquet factorization, and the Floquet repre-
sentation theorem states the existence of these factors. For that reason (10)
is also called a Floquet representation. Although the actual factors of �(t; 0)
are LF (t; 0) and etF, it is common to refer to LF (t; 0) and F as the factors,
and we will follow this usage.
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For practical applications we want to know what real factorizations exist.
Previous results in this area have been mainly constructive, and have neither
shown exactly what real factorizations exist, nor delineated the relationships
between the possible real factorizations. In Section 3 we will �ll in this gap by
giving general results for real Floquet factorizations of the form (10).

Finally, the Lyapunov reducibility theorem states that the time-dependent
change of variables

x(t) = LF (t; 0)z(t) (13)

transforms (1), with t0 = 0 and (5), into the linear time-invariant system,

_z(t) = Fz(t); z(0) = x(0); and so z(t) = etFx(0): (14)

This is easy to see from (4) and (10), and shows the original system may be
solved by �nding an F in (8), and the corresponding LF (t; 0), and solving (14).

We will use the following concepts of periodicity.

De�nition 1.1 A function f(t) is periodic with period T if there exists T > 0
such that f(t+ T ) = f(t) for all t, and we will say f(t) is T -periodic. In this
case it has primary period T if T is the smallest such value, and then we will
say it is primarily T -periodic.

A function f(t) is T -antiperiodic if there exists T > 0 such that f(t + T ) =
�f(t) for all t. In this case we will say it is primarily T -antiperiodic if T is
the smallest such value.

It is obvious that a T -antiperiodic function is 2T -periodic, and a primarily T -
antiperiodic function is primarily 2T -periodic. For example sin �t is primarily
2-periodic and primarily 1-antiperiodic, while for k = 1; 2; : : : ; it is 2k-periodic
and (2k � 1)-antiperiodic. The terminology \antiperiodic" was used in [7].

In the rest of the paper it should be kept in mind that if A(t) is primarily
T -periodic then we would like to base all our computations on information
obtained on [0; T ], rather than on a larger time interval.

2 Popular Real Floquet Factorizations

In general the state transition matrix of a real T -periodic matrix A(t) may
have unavoidably complex Floquet factors in (10); see for example Section 5.
We see from (9) that if F is real, the factors in (10) are real, so we would like
to know when there are real solutions to (8). Culver [10] proved the following
result (see also [9, Thm.6.4.15.c, p.475]).
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Theorem 2.1 [10, Thm.1]. Let M be a real square matrix. Then there exists
a real solution � to the equation e� = M if and only if M is nonsingular
and each Jordan block of M belonging to a negative eigenvalue occurs an even
number of times.

It follows from (7) that �(2T; 0) = �(T; 0)2 always has a real logarithm,
since its only negative eigenvalues (if any) must come from purely imaginary
eigenvalues of �(T; 0), and these must come in complex conjugate pairs of
Jordan blocks because �(T; 0) is real. This leads to the most popular method
of avoiding complex quantities using Floquet factorizations

Corollary 2.2 It is always possible to obtain a real Floquet factorization of
the state transition matrix of (1) with (5) by taking a 2T -periodic factor via a
real logarithm. Take any F2T satisfying

2TF2T 2 RLog�(2T; 0); so that �(T; 0)2 = e2TF2T : (15)

Then LF2T
(t; 0) 4= �(t; 0) � e�tF2T is real and 2T -periodic (but not necessarily

T -periodic) with LF2T
(0; 0) = I. The disadvantage of this approach is that, at

least with the analysis so far, two periods must always be used: for example
LF2T

(t; 0) must be obtained for 0 � t � 2T in order to be used in (13){(14).
We will show how to avoid this disadvantage in Section 3.

In practice it is important to obtain real factorizations with information from
a single period. Yakubovich [11] and Yakubovich and Starzhinskii [7] address
this problem, and in [7, Ch.2 x2.3] prove the following result (stated almost
word for word here, but in the notation of the present paper). Notice that
they use the more general assumptions of integrable and piecewise continuous
A(t) etc., and that our theory extends to such cases too, see Hale [6, p.118].

Theorem 2.3 In the equation

_x(t) = A(t)x(t); (16)

let A(t) be a real matrix function, where A(t) is integrable and piecewise con-
tinuous on (0; T ), and A(t+ T ) = A(t) almost everywhere. An arbitrary real
matrix X(t; 0) that is a fundamental solution of (16) may be expressed as

X(t; 0) = L(t; 0) � etF; (17)

where F is a real constant matrix, L(t; 0) is a real matrix function such that

L(t + T; 0) = L(t; 0) �Y; (18)

and Y some real matrix such that

Y2 = I; FY = YF: (19)
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In particular,
L(t+ 2T; 0) = L(t; 0) for all t:

The function L(t; 0) is continuous with an integrable piecewise-continuous
derivative.

Conversely, let L(t; 0); F, and Y be arbitrary real matrices satisfying con-
ditions (18) and (19), detL(t; 0) 6= 0; and let L(t; 0) have an integrable
piecewise-continuous derivative. Then (17) is a fundamental matrix for some
equation of the form (16) with a real T -periodic matrix A(t):

We will prove a more general result later, but both proofs use an instructive
lemma [7, Ch.I, x2.7, Lemma II], for which we give a simple proof.

Lemma 2.4 For any real nonsingular matrix X there exist real matrices F
and Y such that

eF = XY = YX; FY = YF; Y2 = I:

Proof: Consider a real similarity transformation

S�1XS =

2
64
J1 0

0 J2

3
75 = J

where J2 contains all the negative real eigenvalues of X and no others (J could
be the real Jordan canonical form). With this partitioning de�ne

K 4
=

2
64
I 0

0 �I

3
75 ; Y 4

= SKS�1;

so that Y2 = I. We see JK = KJ has no negative real eigenvalues, so by
Theorem 2.1 there exists real F such that

XY = XSKS�1 = SJKS�1 = SKJS�1 = YX = eF:

Finally eS
�1FS = S�1eFS = JK, so S�1FSmust have the same block structure,

showing KS�1FS = S�1FSK, and so FY = YF.

The point of the approach of Yakubovich and Starzhinskii in [7] is that if X =
X(T; 0) (�(T; 0) for us) does not have a real logarithm, it is straightforward
to �nd Y (as shown for example above) so YX does; X(2T; 0) is not required.
Theorem 2.3 shows their factor L(t; 0) is a 2T -periodic Floquet factor just as
in Corollary 2.2. But their contribution is that L(t; 0) obeys (18) | a variant
of T -periodicity | and the factors, and so any solutions, may thus be found
from information in a single period. This theorem marks a signi�cant step in
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the characterization of real Floquet factorizations. It allows for a more concise
representation of the real factors and eÆciency gains in their computation.

However, the development so far here, and apparently in the literature in
general, has been essentially constructive, and has said nothing about what
other real factorizations of the form (10) exist, nor about the relationships
between them. In the next section we will complete this part of the theory by
giving necessary and suÆcient conditions for such factorizations. This work
will allow us to answer the following questions (among others):

(1) Under exactly what circumstances will Corollary 2.2 or Theorem 2.3 pro-
duce T -periodic LF2T

(t; 0) or L(t; 0)? (These are if and only if �(T; 0)
has a real logarithm; see Theorem 3.1.)

(2) What is the relationship between the factorizations in Corollary 2.2 and
those in Theorem 2.3? (Those in Theorem 2.3 are a subset of those in
Corollary 2.2.)

(3) Are there other real 2T -periodic Floquet factorizations besides those in
Corollary 2.2? (No, and one contribution of this work is to show there
are no others. Other contributions are to show how all of these factor-
izations may be obtained from information on just [0; T ], and to provide
knowledge that Corollary 2.2 does not give.)

(4) Are there other useful real 2T -periodic Floquet factorizations that can be
obtained from information on just [0; T ] besides those in Theorem 2.3?
(There are, making this paper useful in a practical sense, and not just of
academic interest.)

As part of this exercise we will characterize all real 2T -periodic Floquet fac-
torizations, show that Corollary 2.2 gives these, and show how those from
Theorem 2.3 �t into this set.

3 General Real Floquet Factorizations

We wish to characterize all real Floquet factorizations �(t; 0) = L(t; 0)etF

with T -periodic or 2T -periodic L(t; 0). To do this we will ignore the constraint
(18). Then we will show that a constraint of this form leads to the subset of
real 2T -periodic factorizations given by Theorem 2.3.

Theorem 3.1 In the equation _x(t) = A(t)x(t) with x(0) given, let A(t) be a
real matrix function, where A(t) is continuous on (0; T ), T > 0, and A(t +
T ) = A(t) for all t. Let �(t; 0) be the corresponding (real, nonsingular) state
transition matrix, and write � 4

= �(T; 0). Let real Y be such that Y� has a
real logarithm (such a Y always exists, see for example Lemma 2.4), and take
any FY satisfying
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TFY 2 RLog(Y�); so Y� = eTFY ; (20)

LFY
(t; 0) 4= �(t; 0) � e�tFY ; so LFY

(0; 0) = I: (21)

Then in the real factorization �(t; 0) = LFY
(t; 0) � etFY , LFY

(t; 0) has a con-
tinuous derivative and

LFY
(t+ T; 0)= LFY

(t; 0) � etFY � LFY
(T; 0) � e�tFY ; (22)

the equivalent of (7) for LFY
(t; 0). The choice of Y a�ects LFY

(t; 0) as follows:

LFY
(T; 0)= Y�1; (23)

LFY
(t; 0) is T -periodic if and only if Y = I; (24)

LFY
(t; 0) is T -antiperiodic if and only if Y = �I; (25)

LFY
(t; 0) is 2T -periodic if and only if �2 = (Y�)2; (26)

where such a Y always exists, giving LFY
(t + 2T; 0) = LFY

(t; 0) for all t.
Finally this condition on Y has some useful equivalences:

�2 = (Y�)2, �2 = (�Y)2 , � = Y�Y: (27)

Proof: The expression for �(t; 0) with (7) shows that

LFY
(t+ T; 0)=�(t+ T; 0) � e�(t+T )FY = �(t; 0) �� � e�(t+T )FY

=LFY
(t; 0) � etFY � LFY

(T; 0) � eTFY � e�(t+T )FY ;

proving (22). Next LFY
(T; 0) = � � e�TFY = Y�1 from (20), proving (23). But

from (23), (22) is equal to LFY
(t; 0) if and only if Y = I, proving (24), and

equal to �LFY
(t; 0) if and only if Y = �I, proving (25). The equivalences in

(27) are obvious. Repeated use of (22) gives

LFY
(t+ 2T; 0) = LFY

(t+ T; 0) � e(t+T )FY � LFY
(T; 0) � e�(t+T )FY

= LFY
(t; 0) � etFY � LFY

(T; 0) � eTFY � LFY
(T; 0) � e�(t+T )FY ;

which is equal to LFY
(t; 0) if and only if LFY

(T; 0) �eTFY �LFY
(T; 0) = eTFY , or

from (23) and (20), if and only if Y�1Y�Y�1 = Y�. This with (27) proves
(26). That such a Y exists follows from Lemma 2.4 with X = � because
�Y = Y� and Y2 = I imply (Y�)2 = �YY� = �2.

This theorem shows that a real Floquet factorization exists with T -periodic
LFY

(t; 0) if and only if � 4
= �(T; 0) has a real logarithm; see (24). A real

Floquet factorization exists with T -antiperiodic LFY
(t; 0) if and only if ��
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has a real logarithm; see (25). Whether either of these exists or not, a real
Floquet factorization necessarily exists with 2T -periodic LFY

(t; 0), and the
only conditions on Y, which we call the Yakubovich matrix, are that it is
real, that Y� has a real logarithm, and that �2 = (Y�)2. In practice, the
construction of a Yakubovich matrix Y can be based on the stem function

f(x) =

8><
>:
�1; x 2 R

�

1; otherwise.

We also note that not all matrices FY will always contain the classical stability
information of the original system; i.e., the system (1) is stable if and only
if the eigenvalues of F satisfying (8) have a negative real part. Nonetheless,
a full generalization of the converse in the last paragraph of Theorem 2.3 is
useful for designing feedback systems [12,13], so we give this here.

Corollary 3.2 Let L(t; 0) and F be arbitrary real matrices satisfying (see
(22)),

L(t+ T; 0) = L(t; 0) � etF � L(T; 0) � e�tF (28)

with detL(t; 0) 6= 0, and let L(t; 0) have a continuous derivative, then

X(t; 0) 4= L(t; 0) � etF (29)

is a fundamental matrix for some equation of the form (1) with a real T -
periodic matrix A(t).

Proof: Putting t = 0 in (28) shows L(0; 0) = I, and (29) shows X(t; 0) is
nonsingular with a continuous derivative and X(0; 0) = I. De�ne

A(t) 4=
_X(t; 0)X�1(t; 0) = [L(t; 0)F + _L(t; 0)]L�1(t; 0):

Replacing t by t + T in this and using (28) shows, after some cancellation,
that A(t+ T ) = A(t). Since _X(t; 0) = A(t)X(t; 0) the result is proven.

We now show how Corollary 2.2 �ts in with the general result of Theorem 3.1
by showing the equivalence of the set RLog�2 with the set RLog(Y�) for
such Y. The use of T is unnecessary in this | it is included for consistency.

Corollary 3.3 For any nonsingular � 2 Rn�n and 0 < T 2 R,

RLog�2 � f2TFY : 9 real Y with TFY 2 RLog(Y�) and �2 = (Y�)2g:
(30)

Proof: Any element 2TFY of the set on the right side of the equivalence is real
and satis�es Y� = eTFY , e2TFY = Y�Y� = �2, showing it belongs to the
left set. Now consider any 2TF 2 RLog�2, then 2TF is real and �2 = e2TF.

9



De�ne YF
4
= eTF��1, so YF� = eTF is real and (YF�)

2 = e2TF = �2,
showing 2TF belongs to the right set.

This shows that the set of F2T in (15) of Corollary 2.2 is identical to the set
of FY satisfying (20) with �2 = (Y�)2 in Theorem 3.1. That is, Corollary 2.2
provides all possible 2T -periodic L(t; 0), just by choosing the di�erent possible
real logarithms. However Corollary 2.2 still has a few shortcomings. First, it
does not provide the corresponding Y. We now see from (20) and (23), or the
proof of Corollary 3.3, that this is

Y = LF2T
(T; 0)�1 = eTF2T ��(T; 0)�1: (31)

Another way of viewing this is that Corollary 2.2 does not give the periodicity
of L(t; 0) a priori. Hence there is no means of determining beforehand if in
fact a T -periodic factor exists. Second, if it is possible to specify Y, then the
periodicity of L(t; 0) can in fact be assigned. This can be useful if a speci�c
periodicity is required, for example in the design of a stabilizing feedback
[12,13]. Finally, the use of the matrix Y �ts nicely with the general approach
of analysing LTP systems by focusing on the state transition matrix after one
period �(T; 0), rather than after some other number of periods.

4 Near T -periodic Floquet Factorizations

The Yakubovich and Starzhinskii results in Theorem 2.3 here require (18),
but our new results have not insisted on this so far. The near T -periodicity of
the form (18) is both elegant and important, so we examine exactly when it
occurs.

Corollary 4.1 With the conditions and notation of Theorem 3.1, if for some
real Y, Y� has a real logarithm TFY and �2 = (Y�)2 (which are the neces-
sary conditions for LFY

(t; 0) in (21) to be 2T -periodic), then

LFY
(t+ T; 0) = LFY

(t; 0) �C for all t and some constant matrix C (32)

if and only if
FYY = YFY : (33)

In this case

etFY �Y = Y � etFY ; etFY � L(T; 0) = L(T; 0) � etFY ; for all t; (34)

�Y = Y�; Y2 = I; C = Y = Y�1 = LFY
(T; 0);

LFY
(t+ T; 0) = LFY

(t; 0) � LFY
(T; 0) for all t; (35)

where this last equation parallels (7), and is a special case of (22).
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Proof: Since Y� = eTFY , Y is nonsingular. If (32) holds, taking t = 0 and
using (21) and (23) shows C = LFY

(T; 0) = Y�1. This with (32) and (22)
gives (34). Taking derivatives of (34) with respect to t and setting t = 0 shows
that FYY = YFY . Conversely, if FYY = YFY then

Y � etFY �Y�1 = etYFYY
�1

= etFY ; (36)

and combining this with (22) and (23) shows

LFY
(t+ T; 0)=LFY

(t; 0) � etFY �Y�1 � e�tFY

=LFY
(t; 0) �Y�1 = LFY

(t; 0) � LFY
(T; 0);

which is (32) with C = Y�1, (and is also (35)). In this case (36) with t = T
and (20) shows Y� = �Y, which with �2 = (Y�)2 shows Y2 = I and
C = Y = Y�1 = LFY

(T; 0).

An important consequence of this is that, for T -periodic A(t), the near T -pe-
riodicity (22) for general 2T -periodic L(t; 0) specializes to our variant (35) of
Yakubovich and Starzhinskii's (18) if and only if FY = YF.

Corollary 4.1 has shown that Yakubovich and Starzhinskii have characterized
exactly that set of real Floquet factorizations with 2T -periodic L(t; 0) satis-
fying the near T -periodicity of the form (18), which we now see is (35). This
is both elegant and useful because only information from [0; T ] is required.
For example, L(t; 0) in the second half of the 2T -period can be formed simply
from the �rst half: L(t + T; 0) = L(t; 0) � L(T; 0).

We would like to obtain similar bene�ts for the more general factorizations of
Theorem 3.1. But instead of (35), we only have (22) in general:

L(t + T; 0) = L(t; 0) � etF � L(T; 0) � e�tF:

In principle this gives L(t; 0) over its whole period of 2T from information on
only the �rst half, but it is not in general computationally simple. However we
can give a simple extension of the Lyapunov reducibility theorem (see (13){
(14)) to obtain x(t) for any t. Suppose we only know L(t; 0) for t 2 [0; T ]. For
any integer k, the solution x(t) for t 2 [2kT; (2k+1)T ] may be found via (13)
and (14) as before:

_z(t) = Fz(t); z(0) = x(0); x(t) = L(t; 0)z(t) = L(t; 0) � etFx(0); (37)

since L(t; 0) = L(t� 2kT; 0). For the second half of this 2T -period we see

x(t + T ) = �(t+ T; 0)x(0) = �(t; 0)�(T; 0)x(0) = L(t; 0)etFx(T ):
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This can be found eÆciently by a di�erent solution, but with the same trans-
formation:

_w(t) = Fw(t); w(0) = x(T ); x(t+ T ) = L(t; 0)w(t); (38)

once x(T ) is known from (37). Thus for �nding x(t) for any t we can still
work with information from only one period no matter which real 2T -periodic
Floquet factorization we choose.

We see from Corollary 4.1 that the Yakubovich and Starzhinskii factoriza-
tions with 2T -periodic L(t; 0) in Theorem 2.3 are the subset of those de�ned
by Theorem 3.1 that are obtained by insisting on either of the equivalent con-
straints (32) or (33) (see (18) and (19)). The question arises as to whether
there are other meaningful factorizations than those in Theorem 2.3. The an-
swer is yes. Section 5 gives a case where (33) does not hold. In that particular
case, �2 = (Y1�)

2, �Y1 = Y1�, Y
2
1 = I, but F1Y1 6= Y1F1. Such new

factorizations may be as useful in practice as the Yakubovich and Starzhinskii
factorizations in Theorem 2.3, see the comment following (38).

The condition �2 = (Y�)2 in Theorem 3.1 was weaker than expected, so here
we examine it more closely.

Lemma 4.2 For nonsingular � and Y, consider the three equations

Y2 = I; �Y = Y�; �2 = (Y�)2: (39)

Any two of these equations imply the third, but we can have any one without
either of the other two.

Proof:

Y2 = I and �Y = Y� ) (Y�)2 = �YY� = �2;

Y2 = I and �2 = (Y�)2 ) Y�2 = �Y�) Y� = �Y;

�Y = Y� and �2 = (Y�)2 ) �2 = �Y2�) Y2 = I:

However, Y =

2
64
1 0

0 �1

3
75, � =

2
64
1 0

1 1

3
75 gives Y2 = I only. Y = 2I gives �Y =

Y� only. Y =

2
64
2�1 0

0 2

3
75, � =

2
64
0 1

1 0

3
75 gives �2 = (Y�)2 only.

12



Now consider the matrices � 4
= �(T; 0) and Y given by

� =

2
666664

1 0 0

0 �1 0

0 0 1

3
777775
; Y =

2
666664

� �� 1 0

� + 1 � 0

0 0 �1

3
777775
:

Then � does not have a real logarithm, and for every � 2 R a real Y exists
so that Y� does have a real logarithm with �2 = (Y�)2 and Y2 6= I, so
�Y 6= Y�. Because of this, the stronger conditions (39) do not hold in
Theorem 3.1.

5 Examples of Real Floquet Factors

Not all real Floquet factors of the state transition matrix of a real system
satisfy the hypotheses of Theorem 2.3. The following gives an example where
Y1F1 6= F1Y1. Consider the T -periodic matrix with � 6= 0 so T = 1=2:

A(t) = 2�

2
666664

�1 + � cos2(2�t) 1� � sin(2�t) cos(2�t) 0

�1� � sin(2�t) cos(2�t) �1 + � sin2(2�t) 0

0 0 �1

3
777775
:

If we de�ne the rotation matrix

R(�) 4=

2
64

cos � sin �

� sin � cos �

3
75 ;

then it can be veri�ed that the state transition matrix of this system is

�(t; 0) =

2
64
R(2�t) 0

0 1

3
75 diag fe2� (��1)t; e�2� t; e�2�tg:

Note that � 4
= �(T; 0) = diag

n
�e�(��1);�e��; e��

o
does not have a real log-

arithm. One suitable choice for Y is Y = diag f�1;�1; 1g, giving a logarithm
such that

F =
1

T
log(Y�) = diag f2�(�� 1);�2�;�2�g ;

where since etF = diag fe2� (��1)t; e�2� t; e�2�tg,

L(t; 0) 4= �(t; 0)e�tF =

2
64
R(2�t) 0

0 1

3
75 :
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In this case, it is easy to check that all the aspects of Theorem 2.3 are satis�ed,
notably FY = YF because both F and Y are diagonal.

If we now take Y1 = diag f�1; 1;�1g, then

F1=
1

T
log(Y1�) =

1

T
log(diag

n
e�(��1);�e��;�e��

o
)

=F + F2; F2
4
=

2
666664

0 0 0

0 0 2 �

0 �2 � 0

3
777775
; etF2 =

2
64
1 0

0 R(2�t)

3
75 ;

so L1(t; 0) 4= �(t; 0)e�tF1 = �(t; 0)e�tFe�tF2 = L(t; 0)e�tF2 . Then

L1(t; 0) =

2
666664

cos(2�t) sin(2�t) cos(2�t) � sin2(2�t)

� sin(2�t) cos2(2�t) � sin(2�t) cos(2�t)

0 sin(2�t) cos(2�t)

3
777775
;

which again has period T = 1=2. We see that L1(t; 0) and F1 satisfy (22), and
also that Y1 = Y�11 = L1(T; 0). However, for t not an integer multiple of T ,
unlike the Yakubovich and Starzhinskii construction leading to (18) (see also
(35)), we have

L1(t + T; 0) 6= L1(t; 0) �Y1:

Here L1(t; 0) and F1 provide another real decomposition, with 2T -periodic
L1(t; 0), of the same state transition matrix �(t; 0) that, in turn, corresponds
to the real fT = 1=2g-periodic system matrix A(t). However it is clear that
Y1F1 6= F1Y1, showing that the conditions given in Theorem 2.3 are only
suÆcient and not necessary.

6 Conclusions

It is common practice to appeal to Corollary 2.2 in order to determine a real
Floquet factorization of the state transition matrix of a real T -periodic sys-
tem. A major disadvantage of this is that the system is treated as having
2T -periodic coeÆcients; hence, more eÆcient factorizations with a T -periodic
factor L(t; 0) are generally lost. We have shown that the necessary and suf-
�cient conditions for a real T -periodic L(t; 0) to exist are that �(T; 0) have
a real logarithm; see Theorem 3.1. We have shown there are no other real
factorizations besides those given by Corollary 2.2, and in particular that the
factorizations in Theorem 2.3 form a subset of those in Corollary 2.2. More-
over, we have shown that are also useful factorizations besides those given by
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Theorem 2.3, and we have shown how all these factorizations can be obtained
with information on only [0; T ]. The usefulness of these results has direct ap-
plication to control engineering, where it is possible to use this knowledge
to construct a continuous periodic stabilizing feedback for LTP systems us-
ing full-state or observer-based information [12,13]. In particular, the results
presented here allow the control engineer to assign the stability of the closed-
loop periodic system (via the matrix F), to take advantage of working on the
transformed system (14) using the knowledge of the matrix L(t; 0), and to
synthesize a controller with a speci�c periodicity (T , 2T , 3T , etc.) by means
of assigning the Yakubovich matrix Y. We report on these �ndings elsewhere.
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