

1

Implementing Lograph

Omid Banyasad
Philip T. Cox

Technical Report CS 2001-05

Nov 27, 2001

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

1

Abstract

Lograph is a non-deterministic visual logic programming
language which provides the basis for the language

LSD

, a
visual language for designing structured objects. Hence in
order to implement

LSD

 we must first implement Lograph.
This raises many questions about visual logic programming
languages, such as efficient execution, and clarity of the inter-
face. Here we show how Lograph can be made deterministic
and potentially efficient by ordering execution rules, cases of
definitions and literals within cases and queries. We also dis-
cuss the conflict that arises between this ordering for efficiency
and the clarity of programs, and present an interface mecha-
nism to overcome it. Finally, we describe a prototype of
Lograph which is currently under development.

1 Introduction

The work reported here is part of a continuing project
aimed at creating new software tools for “design engineer-
ing”, in which some of the concepts underlying software
engineering tools are applied to the domain of structured
object design. We briefly recap the main issues, as follows.

In [9] it was observed that in logic programming,
terms (data) and literals (the components of algorithms)
are uniformly represented, and that the execution mecha-
nism transforms terms via unification. This led to the
conjecture that visual logic programming might provide a
basis for a design language in which design components
and algorithm components are homogeneously repre-
sented in an integrated environment, and to a proposal
for a Language for Structured Design (

LSD

).

The language underlying

LSD

 is Lograph, a general,
non-deterministic, visual logic programming language
[7]. It should be noted that although various visual logic
programming languages have been proposed, for example
[11,13,15,16,19], Lograph has some properties that make
it particularly suitable as the basis for a design environ-
ment. First, the semantics can be realised as graph trans-
formations, and second, unification is replaced by two
execution rules that reveal the details of unification rather
than treat it as one large step [8]. Together, these proper-
ties allow an execution to be viewed as a movie depicting
the morphing of a query into a result.

Lograph is extended to

LSD

 by the addition of

compo-
nents

and

operations,

logical manifestations of

solids

 and

operations

 on them in design spaces, formally defined in
[10].

As mentioned above, Lograph is a non-deterministic
language and so, therefore, is

LSD

 as proposed in [9].
However, programs written in

LSD

 should produce consis-
tent results (solids) when executed, so the execution of

LSD

 programs must be deterministic. We therefore need a
deterministic execution model for Lograph, which is one
of the issues addressed here.

The consideration of determinism raises a second
issue. Since determinism in logic program execution
implies ordering of the literals in the bodies of clauses,
and ordering of clauses in the definition of a predicate, as
in Prolog, how should such ordering be expressed in a
visual logic programming language without resorting to a
confusing network of lines? This issue is addressed in Sec-
tion 4.

Finally, since these questions have arisen as a conse-
quence of our implementation of deterministic Lograph
on the way to

LSD

, we will discuss some of the features of
the current Lograph editor environment.

Since Lograph syntax and semantics are essential to
our discussion, in the next section we give a brief overview
of Lograph. Our presentation is based on the more
detailed descriptions in [5,7].

2 Lograph Syntax and Semantics

Lograph is a visual representation of

flat Horn clauses

which are a specific form of first-order predicate calculus
formulae. The semantics of flat Horn clauses are defined
by a set of deduction rules called

Surface Deduction

. The
discussion of surface deduction, its soundness and com-
pleteness can be found in [8].

2.1 Lograph Syntax

A Lograph

program

 is a collection of literal definitions
with no terminals in common. A

literal

definition

 (or defi-
nition for short) is a set of cases with the same name and
arity. A

case

 consists of a name, a head and a body. The

Implementing Lograph

Omid Banyasad Philip T. Cox

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, Canada

2

head

 of a case is an ordered list of terminals of length

n

 for
some integer

n

≥

0 called the

arity

 of the case. The

body

 of
a case is a network of items called cells interconnected by
wires. A

cell

 is either a function cell or a literal cell.

A

function cell

 consists of a
name, a

root terminal

 and a
list of

terminals

 of length

n

≥

0 called the

arity

 of the cell. A
function cell is represented by
an icon with the name of the function in the centre, a
curved face containing the root terminal of the function
on its peak, and a flat face along which the terminals of
the function, represented by small circles, are arranged.
Figure 1 shows a function cell named

Function

with arity
5. A function cell can have two possible orientations,

 or . Regardless of the orientation of a func-

tion cell, its terminals are ordered from left to right.

A function cell with arity 0, also called a

constant

, has

the simpler representation or , where <name> is
the name of the function.

A

literal cell

 consists of a name
and a list of

terminals

 of length

n

≥

0 called the

arity

 of the cell. A
literal cell is represented by a
rounded rectangle with the name
of the literal in the centre. The terminals of a literal cell
are arranged along the perimeter starting from the

origin,

indicated by a clockwise-pointing arrowhead which may
be placed anywhere on the perimeter of the cell. Figure 2
shows a literal cell named

Concat

 with arity 3.

A terminal may occur in several cells and the head of a
case. This is indicated by wires connecting the different
occurrences. Hence saying “terminal A is connected to
terminal B” is the same as saying “terminals A and B are
the same.”

2.2 Lograph Transformation Rules

Executing a Lograph program involves applying three
Lograph execution rules to a

query,

which is a network of
cells, none of the terminals of which occur in the pro-
gram.

Since the underlying semantics of Lograph is provided
by surface deduction, as mentioned earlier, the three
Lograph transformation rules are, of course, pictorial
manifestations of the three rules of surface deduction. The

Replacement

 rule replaces a literal cell with a copy of the
body of one of the cases of the definition with same name
and arity as the literal cell, if such a definition exists. The
terminals of the head of the case and the corresponding
terminals of the literal are connected in the process. By

connecting

 two terminals, we mean that every occurrence
of one of the terminals is replaced by a new occurrence of
the other.

The

 Merge

 rule can be applied to two

function cells if
they have the same name, arity and root terminal. First
the corresponding terminals of the two function cells are
connected, then one of the cells is deleted.

The

 Deletion

rule applies to a function cell the root
terminal of which has no other occurrences, removing the
cell from the query.

Since a query provides the starting point for execution
of a program, we use the phrases “execution of a program”
and “execution of a query” interchangeably.

2.3 Lograph and Prolog

In Section 3, we present the restrictions we impose on
Lograph to obtain a viable programming language. In this
discussion we will make frequent comparisons to Prolog
[12].

A Lograph definition is analogous to a set of Prolog
clauses that define a predicate, and a case is analogous to a
clause. A literal cell is analogous to a literal in the body of
a clause or a query. A function cell corresponds to a term.
A terminal occurring in a literal cell or in the head of a
case corresponds to a variable. A variable with just one
occurrence that is not the root of a function cell is analo-
gous to an anonymous variable in Prolog.

Just as the execution of a query in Prolog aims to pro-
duce the empty clause, the goal of a Lograph execution is
to reduce a query to an empty graph. It is important to
remember, however, that our purpose in implementing
Lograph is to provide a basis for

LSD

 where the goal is to
generate explicit components [4,9]. In that context, the
graphical transformations accomplished by the merge and
deletion rules (finer grained than unification in Prolog)
are important; and the definition of “successful computa-
tion” depends to a large extent on the nature of the solids
produced in the design space.

In Prolog, a failure occurs when two variables cannot
be unified because they are bound to terms that begin
with different functions. The analogy in Lograph occurs
when the query is transformed into a graph containing
two function cells with the same root, but different names
or arities. Such cells cannot be merged, and therefore pre-
vent the query from being transformed into the empty
graph. Note that in Lograph, there are other untransform-
able configurations. The simplest example is a function
cell the root of which also occurs as another terminal of
the cell. This corresponds to cycles detected by full unifi-
cation, which is not performed by Prolog.

Figure 1: A function cell

<name>
<name>

Figure 2: A literal cell

3

3 Deterministic Lograph

In Lograph as described above, there are three sources of non-determinism: the choice of which execution rule to apply,
which cell or collection of cells to apply it to, and for the replacement rule, which case of a definition to use. Because
Lograph represents flat Horn Clauses graphically, it expresses this non-determinism in a natural way: however, to make
Lograph viable as a programming language, we must impose restrictions similar to those imposed on general, first-order,
Horn Clause resolution theorem to obtain Prolog.

In Prolog, the clauses that define a predicate are linearly ordered, indicating the order in which they will be applied to a
query literal. Similarly, the literals in each program clause are linearly ordered, and are executed by resolution in that order.
The order in which the search space is traversed is therefore well defined, and is exploited by the Prolog programmer.

Clearly, since Lograph is a first-order Horn Clause language like Prolog, we can aim for the same kind of implementa-
tion based on depth first search with backtracking instigated by failure, where failure in Lograph is defined by the occur-
rence of undeletable function cells, as discussed at the end of the last section. The restrictions we will make are analogous
to the above restrictions inherent in Prolog: however, there are some important differences because Lograph is based on
surface deduction rather than simple resolution.

As in Prolog, we need to impose two orderings on Lograph to obtain a well defined traversal of the search space: specif-
ically, the order in which cases of a definition should be tried in applying the replacement rule, and the order in which lit-
eral cells in a query should be replaced. In addition, we need to decide on the order in which the three execution rules are
to be applied, We address the latter issue first.

3.1 Order of Transformation Rules

In this section we show that if a particular ordering of the transformation rules leads to an execution that reduces a
query to an empty graph, then any ordering will do the same.

As mentioned in Section 2.2, the deletion rule is applied to functions with dangling root terminals. Since a

deletable

function cell cannot participate in any other transformation rules, the order in which deletable functions are removed will
have no effect on the rest of the execution.

Let us suppose that the replacement rule precedes the merge rule in the chosen rule ordering, and that the current
query contains a pair {A, B} of function cells connected by their roots. Clearly A and B are compatible, since otherwise the
query cannot be reduced to the empty graph. We have four cases to consider: either

(a) the query contains some literal cells, or

the query does not contain any literal cells, and either

(b) the roots of the two compatible cells identified above are not connected to any other terminals, or

(c) the roots of the two cells are connected to the roots of some other function cells, or

(d) the roots of the two cells are connected only to non-root terminals of some other function cells.

In case (b), the only transformations that can be applied to A and B is merge followed by a deletion. These transforma-
tions are independent of any others, and can therefore be applied immediately.

In case (c), since the query is eventually reduced to the empty graph, any function cell connected by its root to the
roots of A and B must be compatible with them. Since every merge produces a function cell compatible with the merged
cells, and therefore with any other compatible cells attached to them by root terminals, the order in which the cells in such
a group are merged is irrelevant. Hence the merge of A and B can be performed before any other merges of cells in the
group.

In case (d), suppose that the execution removes the “other” function cells before any other transformations occur. The
“other” cells are removed either by (d1) deletion, or by (d2) merging followed by deletion.

In case (d1), we are left with an instance of case (b) or (c), so that merging A and B can be the next operation per-
formed. Clearly the deletion of the “other” function cells does not depend on the presence of cells A or B, so the merging
of A and B could be performed earlier.

4

In case (d2), we are left with an instance of case (b), (c)
or (d). We deal with (b) and (c) as in the previous para-
graph. As for (d), we need only note that cases (d) and
(d2) cannot alternate forever since the transformations
that occur in case (d2) strictly reduce the size of the graph,
so we must eventually get case (b) or (c).

In case (a), no merging of A and B will occur until all
replacements have been performed. Clearly, performing
the replacements is not affected by the presence or
absence of A or B, so we can merge A and B at any time.

Therefore, since the transformation rules can be
applied in any order, we need to consider the best order in
which to apply them. Obviously, if we are doing a depth
first search of the solution space as in Prolog, then we
should discover “nonunifiability” early. In Lograph, this
means applying the merge rule as early as possible. The
deletion rule does not really affect this since it just plays
the role of “garbage collector”; however, if we are inter-
ested in useful animated visualisations of executions, then
we might want to apply it early as well, in order to reduce
clutter.

Another issue relating to the order of rule application
is whether or not we want to optimise our search for a
solution. Interestingly, the graphical structures built from
function cells are very similar to structures for terms pro-
posed in [5] to enable intelligent backtracking. If intelli-
gent backtracking were to be implemented, the merge and
deletion rules would not necessarily be applied as early as
possible.

Finally, since Lograph replaces unification with explicit
transformation rules, there may be ways to apply them
which are better suited to the application. For example it
might be possible in some circumstances to “batch”
merges and deletions, applying them only occasionally
between sequences of consecutive replacements.

3.2 Ordering Cases

Just as Prolog orders the clauses of a predicate defini-
tion, we need to order the cases of a definition in
Lograph. The easiest way to do this is simply to label each
case with a sequence number. The ordering can also be
visually represented as a list of icons each bearing the
name of one of the cases. The case at the head of the list
has sequence number 1 and will be tried first in the
replacement of a literal cell in a query. The list of cases can
be rearranged by dragging and dropping entries in the list.
This ordering of cases is illustrated in our discussion of
the Lograph prototype in Section 4.1.

3.3 Ordering cells in cases and queries

As mentioned above, we need to specify the execution
order of the cells in a case or query. Note that since merge
and deletion can be applied at any time, we need concern
ourselves only with the order of literal cells.

This leads us to an interesting problem. Like other
visual languages, Lograph exposes the structure of algo-
rithms without imposing needless sequentiality on them.
However, we need to impose sequentiality for the sake of
efficiency. This looks like the same problem that arises in
implementing other visual languages, for example data-
flow languages. In the case of dataflow languages, opera-
tions are partially ordered, and any linear order produced
by topological sort will do [6]. In Lograph, however, the
wires are not data flow links, so no suitable order can be
automatically generated. It is therefore up to the program-
mer to specify an appropriate order. This is, of course,
what Prolog programmers do, so deciding on literal cell
ordering should not be a too great a burden for the
Lograph programmer. Furthermore, the goal of this
project is to implement

LSD

 where the domain is the
design of structured objects. As noted in [4] the design
process has a natural order to it, so imposing an ordering
on the cells in a case should be quite natural for the
designer/programmer.

One obvious solution is to add special connections
between literal cells to indicate execution order, like the
synchros of Prograph [6]. However these would be far
more intrusive than such synchronisation links in a data
flow language where they are needed only occasionally.

Instead we use two representations of literal cell order-
ing analogous to the two representations of multi-layered
images in Photoshop [1]. The first is a list of icons similar
to the list of cases described above, and to the list of layers
displayed in Photoshop’s “layers” palette. The second rep-
resentation, like the Photoshop image window, treats the
window in which a case or query is displayed as a series of
transparent layers each containing some of the items that
make up the whole image. In Lograph, each layer contains
one or more literal cells. Those in the topmost layer are to
be executed first, followed by those in the next layer, and
so forth. There is no ordering imposed on literals within a
layer, allowing the programmer to group together literals
which he or she knows could be executed in parallel.

As a clue to the ordering of cells in the layered window,
the literal cell icons are painted in a range of shades of one
colour, ranging from dark at the front to pale at the back.

Layers can be reordered by dragging their iconic repre-
sentations in the list view. Layers are recoloured whenever
they are reordered or a new layer is added. Literals can

5

also be moved from layer to layer. When new literals are
added to the body of a case or a query, the colour of all
layers are adjusted to their new values. When the number
of layers increases the range of shades is subdivided result-
ing in less differentiation between layers. Clearly, as the
number of layers grows, the programmer may have to rely
more on the list view for ordering.

Note that during execution, when a literal cell is
replaced by the body of a case, the layers of the case body
are placed in front of the existing layers of the query.

4 Programming Environment

In this section, we
discuss the editor envi-
ronment of Lograph
through a worked
example. The example
shows how to write a
program in Lograph
that computes the
concatenation of two
lists.

4.1 Editor

When Lograph is started, a menu bar containing,

File

,

Edit

,

Run

, and

Settings

 appears together with an empty
window named

Untitled

 in which a program is created
and maintained. Double-clicking inside this window cre-
ates a definition icon with no terminal, an origin on the
left side, and the default name

Un-named

. We rename it

Concat

. Every definition icon has a sensitive boundary;
that is, the cursor changes to whenever it is near the
perimeter of the cell, indicating that a a click will add a
terminal. Figure 3 shows the program window after we
have created a definition with arity 3 named

Concat

.

We now
double-
click on
the defi-
nition,
opening
its cases
window,
consist-
ing of the
list of
cases on
the right
and a

thumbnail of the selected case on the left. A new case is
added to the definition of a literal by double clicking in
the list. This creates a new case named

Case N

 where N is

the number of cases previously created. The name of a
case can be edited at any time by selecting it in the list an
typing. Note that our implementation allows cases to be
named, which is not a feature of Lograph as described
above. In our example, we have created three cases for the

Concat

 definition and named them

Left_Null

,

Right_Null

,
and

Attach

 as shown in Figure 4. The order of cases can
be changed by dragging them in the list. Notice that in
Figure 4 the thumbnail of the newly-created selected case

Attach

 shows only the head of the case with an empty
body.

To define the body of a case, we double click on it in
the case list or double click the selected case’s thumbnail.
This opens the case window consisting of a workspace to
the left and a layer list to the right, both of them initially
empty. The workspace contains the layered view of the
case described above. New literal cells can be added to the
workspace by dragging and dropping definitions from the
program window or can be created by double clicking in
the workspace. Definition icons in the program window
literal cell icons in case windows are similar except for
their colours, green and blue respectively. The colour set-
tings for different icon classes can be customized.

In our current implementation, each layer contains
only one literal cell. Consequently, when a literal cell is
added to the workspace, a new layer is created to contain
it, and its icon is used to identify the layer in the layer list.
Editing the name or adding a terminal is accomplished in
the same way for a literal cell as for a definition as
described above. In addition, the origin and terminals of a
literal cell can be dragged around its perimeter.

Double clicking in the workspace while holding down
the “F” key creates a new function cell with root terminal
and arity 0, named

Un-named

 by default. The name can
be edited and terminals added as described above. Dou-
ble-clicking a function cell changes its orientation, from
pointing-up to pointing-down or

vice versa

.

As the cursor passes over a terminal, the terminal turns
red indicating that the terminal is “active”. Clicking on an
active terminal creates a “rubber band” between the termi-
nal and the cursor. Clicking on another terminal in the
same workspace creates a wire between the two terminals.
Figure 6 illustrates the case windows for the three com-
pleted cases of

Concat

.

4.2 Animated Execution

Now that the definition of

Concat

 is complete, we can
use it to execute queries. A query window is opened by
selecting

New Query

from the program’s

File

 menu. Edit-
ing in a query window is similar to editing in a case win-

Figure 3: Program window

Figure 4: Cases window of Concat

6

dow. We create a new query as in Figure 5. Note that the
constant X in this query is an example of a

neutral con-
stant

, indicated by its solid root. A neutral constant is one
which will not cause backtracking if it fails to merge with
a connected function cell. The effect in this example is
that execution will stop rather than backtrack in its search
for the empty graph.

A query can be executed in three different modes:

Run

,

Single Step

 and

Animate

. In the

Run

 mode, the
result is computed by Lograph interpreter and displayed
in the query window. In

Animate

 mode the interpreter
displays an animation of each rule application. The dele-
tion of a function is animated by fading out the function
and releasing all the wires which shrink away from the
disappearing function cell towards their other ends.

The merge rule is animated by morphing two function
cells into one. Animation of the replacement is accom-
plished by expanding the replaced literal to the size of the
case that replaces it, then fading in the body of the case
together with the necessary connecting wires. Execution
of queries in single step mode is in fact the pictorial mani-
festation of the Lograph interpreter engine process. Back-
tracking is also visualized by reversing these animations.
The result of executing the query in Figure 5 is shown in

Figure 5. In

Single Step

 mode, the interpreter animates
each step but stops between steps.

5 Current status and future work

5.1 Prototype

The heart of the prototype is the Lograph interpreter
engine, a standard logic programming interpreter imple-
mented in Java.

The features of Lograph presented here provide capa-
bilities similar to Lisp and Prolog. Some of the conve-
niences of those languages need to be included as well,
which we will now briefly describe.

In Lograph, a list can be rep-
resented by a nested structure of
function cells as in Figure 5
where two structures built with
cells named

dot

 represent the
lists [a,b,c] and [X,1,2]. Here
the constant [] is interpreted as
the empty list. Such structures
can be abbreviated as they are in
Prolog, by special constants
such as [a,b,c]. In Prolog, however, a list can contain a

Figure 5: Query window

Figure 7: Query result

Figure 6: Case windows of Concat

[a, 2, ,b ,c]

X

Figure 7: List constant
cell with embedded

terminal

7

embedded as in Figure 7.

Although logic programming is not usually used for
numerical problems, Prolog provides numbers as special
constants and some basic arithmetic operations that com-
pute functions of numbers in a data flow fashion. In the
domain of structured object design, there is a clear need
for numerical computation far more extensive than that
normally expected in Prolog programs, so it will be neces-
sary to extend Lograph to provide this capability beyond
the mechanisms provided by Prolog, which are inconve-
nient at best.

5.2 Future work

As noted above, the Lograph is being implemented as
the first step in implementing

LSD

. We now briefly
describe some of the more significant steps that need to be
taken to reach that goal.

The core of the current prototype is a Java implemen-
tation of a standard logic language interpreter. This has
the usual advantages such as ease of development and
debugging, cross-platform executability and so forth. It
also has the usual disadvantages, such as low execution
efficiency, and slow and limited graphics. Once we have
passed the proof of concept stage, a more “industrial
strength” implementation will be required, using more
appropriate technologies and implementation techniques
to obtain a fast and capable interpreter engine, able to
support the heavy demands of the intended application.

Solids are 3

D

 objects which manifest themselves in

LSD

programs as explicit components [9]. An

LSD

 program is
therefore necessarily three-dimensional, requiring an edi-
tor that operates in 3

D

. In the 2

D

 editing environment
described above, however, we have used layering in the
third dimension to deal with the ordering of literals in
cases. Clearly we need to extend this notion to a three-
dimensional editor. One possibility might be to use trans-
parency instead of the shading employed in the 2

D

scheme. More opaque objects would be analogous to
darker literals in the upper layers of a Lograph case or
query, and more transparent objects would be analogous
to literals in the deeper layers. Under execution, the fully
opaque objects in a query are the ones that undergo trans-
formation first, and objects become more opaque the
closer they get to being executed.

6 Concluding remarks

Implementing a prototype Lograph environment has
raised various questions about visual logic programming
languages in general and Lograph in particular.

For execution efficiency, it is necessary to restrict the
Lograph language from a general first-order Horn-clause

theorem-prover to an efficiently implementable language.
Many of the restrictions are obvious counterparts of the
restrictions inherent in Prolog, involving the ordering of
clauses and the ordering of literals.

Since Lograph is based on surface deduction rather
than simple resolution, it is also necessary to consider how
its three execution rules should be ordered. We have
shown that the merge and deletion rules can be applied at
any time, and to simulate the search order of Prolog,
should be applied as early as possible. However, it is possi-
ble that other execution orders could be chosen to suit
certain applications.

Like other visual languages, Lograph exposes the struc-
ture of algorithms in a useful way. However, since it is not
dataflow, there is no way to automatically linearise opera-
tions, so like the Prolog programmer, the Lograph pro-
grammer must take responsibility for this task. We have
proposed and implemented a layering scheme similar to
the layering of Photoshop images, for visualising the
ordering of literal cells in a case.

7 Acknowledgments

This research was supported by Natural Sciences and
Engineering Research Council of Canada Research Grant

OGP0000124

.

8 References

[1] Adobe Systems Inc., Photoshop 6.0 User Guide,
(2000).

[2] Autodesk Inc., AutoLISP Release 12 Programmers
Reference Manual, (1992)

[3] Bentley Systems Inc., MicroStation 95 User’s Guide,
(1995)

[4] O. Banyasad, P. T. Cox, Solving design problems in a
logic-based visual design environment, Report CS-
2001-04, Faculty of Computer Science, Dalhousie
University, (2001).

[5] P.T. Cox, On determining the causes of nonunifi-
ability, Journal of Logic Programming 4, American
Elsevier (1987), 33-58.

[6] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph: a
step towards liberating programming from textual
conditioning, Proc. 1989 IEEE Workshop on Visual
Programming, Rome (Oct 1989), 150-156.
Reprinted in Visual Object-Oriented Programming:
Concepts and Environments, M. Burnett, A. Gold-
berg, & T.G. Lewis (Eds), Manning Publications
(1995).

[7] P.T. Cox, T. Pietrzykowski, LOGRAPH: a graphi-
cal logic programming language, Proceedings IEEE
COMPINT 85, Montreal (1985), pp 145-151.

8

[8] P.T. Cox, T. Pietrzykowski, Incorporating equality
into logic programming via Surface Deduction,
Annals of Pure and Applied Logic 31, North Holland
(1986), pp 177-189.

[9] P.T. Cox, T. Smedley, LSD: A Logic Based Visual
Language for Designing Structured Objects, Jour-
nal of Visual Languages and Computing, v9, Aca-
demic Press (1998), 509-534.

[10] P.T. Cox, T. Smedley, A Formal Model for
Parametrised Solids in a Visual Design Language,
Journal of Visual Languages and Computing, v11,
Academic Press (2000), 687-710.

[11] K.M. Kahn, V.A. Saraswat, Complete Visualiza-
tions of Concurrent Programs and their Executions,
Proc. 1990 IEEE Workshop on Visual Languages,
(1990), 7-15.

[12] R.A. Kowalski, Logic for problem solving, North-
Holland, (1979).

[13] M.A. Najork, S.M. Kaplan, The CUBE Language,
Proc. 1991 IEEE Workshop on Visual Languages,
(1991), 218-224

[14] A. Paoluzzi & C. Sansoni, Programming Language
for solid variational geometry. Computer Aided
Design 24, (1992), 349-366.

[15] L.F. Pau, H. Olason, Visual Logic Programming,
Journal of Visual Languages and Computing, v2
(1991), 3-15.

[16] J. Puigsegur, W.M. Schorlemmer, J. Agustí, From
Queries to Answers in Visual Logic Programming,
Proc. IEEE Symposium on Visual Languages, (1997),
102-109.

[17] A. Rau-Chaplin, B. MacKay-Lyons, and P. Spieren-
burg (1996), The LaHave House Project: Towards
and Automated Architectural Design Service, Pro-
ceedings of the International Conference on Computer
Aided Design (CADEX’96), IEEE Computer Society
Press, pp 25-31.

[18] T.J. Smedley, P.T. Cox, Visual Languages for the
Design and Development of Structured Objects,
Journal of Visual Languages and Computing, v8, Aca-
demic Press (1997), 57-84.

[19] L.L. Spratt, A.L. Ambler, A Visual Logic Program-
ming Language Based on Sets and Partitioning
Constraints, Proc. 1993 IEEE Symposium on
Visual Languages, (1993), 204-208.

[20] Standard VHDL Language Reference Manual-Std
1076-1987. IEEE (1988).

