
A New Class of Optimal High-Order Strong-Stability-Preserving
Time Discretization Methods

Raymond J. Spiteri
Steven J. Ruuth

Technical Report CS-2001-01

May 6, 2001

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

1

A New Class of Optimal High-Order Strong-Stability-Preserving

Time Discretization Methods

Raymond J. Spiteri∗ Steven J. Ruuth †

October 8, 2001

Abstract

Strong-stability-preserving (SSP) time discretization methods have a nonlinear stability property that
makes them particularly suitable for the integration of hyperbolic conservation laws where discontinuous
behaviour is present. Optimal SSP schemes have been previously found for methods of order 1, 2, and
3, where the number of stages s equals the order p. An optimal low-storage SSP scheme with s = p = 3
is also known. In this paper, we present a new class of optimal high-order SSP and low-storage SSP
Runge-Kutta schemes with s > p. We find that these schemes are ultimately more efficient than the
known schemes with s = p because the increase in the allowable time step more than offsets the added
computational expense per step. We demonstrate these efficiencies on a set of representative problems
from compressible gas flows.

1 Introduction

The method of lines is a popular semi-discretization method for the solution of time-dependent partial
differential equations (PDEs). The idea behind it is to first suitably discretize the spatial variables (e.g., by
finite differences, finite volumes, finite elements, or spectral methods) to yield a set of ordinary differential
equations (ODEs) in time. Then, this set of ODEs can be integrated using standard time-stepping techniques
such as linear multi-step or Runge-Kutta methods.

Standard stability analysis for the solvers of such systems generally focuses on linear stability. Indeed,
such analysis is often adequate when the desired solutions are smooth. However, solutions to hyperbolic PDEs
may not be smooth: Shock waves or other discontinuous behaviour can develop even from smooth initial data.
In such cases, standard discretizations based on linear stability analysis suffer from poor performance due to
the presence of spurious oscillations, overshoots, and progressive smearing. The numerical solutions obtained
from these discretizations often exhibit a weak form of instability (called nonlinear instability) resulting in
unphysical behaviour. Accordingly, numerical methods based on a nonlinear stability requirement are very
desirable. Such methods have been loosely referred to as total variation diminishing (TVD). Following [6],
we refer to them in this paper as strong stability preserving (SSP).

We are interested in the development, implementation, and analysis of a new class of optimal SSP Runge-
Kutta (SSPRK) time-stepping schemes for the system of ODEs

U̇ = L(U),

subject to suitable initial conditions, obtained from applying the method of lines to the hyperbolic conser-
vation law

ut + f(u)x = 0. (1)
∗Department of Mathematics and Statistics, Acadia University, Wolfville, Nova Scotia, B0P 1X0 Canada

(raymond.spiteri@acadiau.ca). The work of this author was partially supported by an NSERC Canada grant.
†Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada (sruuth@sfu.ca). The

work of this author was partially supported by an NSERC Canada grant.

2

Here, we assume that (1) has been suitably discretized in its spatial variables (e.g., using essentially non-
oscillatory (ENO) schemes [9], TVD schemes [8], or monotonic upstream-centered schemes for conservation
laws (MUSCL) methods [18]) and U = U(t) is a vector of discretized variables; i.e., [U(t)]j = Uj(t) = u(xj , t).
In particular, if unj is the numerical approximation to u(xj , tn), then TVD discretizations have the property
that the total variation

TV (Un) =
∑
j

|unj − unj−1| (2)

of the numerical solution does not increase with time; i.e.,

TV (Un+1) ≤ TV (Un).

When combined with a suitable SSP time-stepping scheme, the numerical solution obtained typically does
not exhibit nonlinear instabilities. However, nonlinear instabilities can occur in a numerical solution obtained
with, e.g., a TVD or MUSCL spatial discretization scheme, but a standard (i.e., linearly stable) time-stepping
scheme [5]. Hence, strong-stability-preserving time-stepping schemes are a critical part of the overall solution
strategy to (1).

It has been known for some time from a result of Goodman and LeVeque [4] that any method that
is TVD in two dimensions is at most first-order accurate. However, if we relax the strict requirement of
TVD, higher-order methods can be constructed that preserve stability in another suitable norm, such as the
maximum norm. These schemes are what we call strong stability preserving, and their favourable properties
are derived only from convexity arguments. In particular, if the forward Euler method is strongly stable
with a certain CFL number, higher-order SSP Runge-Kutta methods with a modified CFL number can be
constructed as convex combinations of forward Euler steps with various step sizes [17].

Optimal SSP schemes based on Runge-Kutta methods have been found for accuracy orders 1, 2, and 3,
where the number of stages s is assumed to be equal to the order p. Unfortunately, Gottlieb and Shu [5]
recently proved that no such four-stage, fourth-order SSPRK method exists involving just evaluations of
L(·). Fourth-order accuracy has only been obtained at the additional expense of introducing two additional
evaluations of a related operator L̃(·), leading to sub-optimal efficiency both in terms of time-step restriction
and memory usage (see Section 2). This appears to be where the search for higher-order SSPRK methods
has stopped, thus leaving researchers to focus on third-order accurate SSPRK methods.

In this paper, we derive a new class of optimal high-order SSPRK schemes where the restriction s = p
is lifted. We investigate the performance of our new schemes on a few test problems designed to capture
solution features that pose particular difficulties to numerical methods. These features include contact
discontinuities, expansion fans, compressive shocks, and sonic points. The results from these investigations
indicate that both the standard and low-storage versions of our schemes offer significant advantages over
methods currently available. In particular, our new schemes have significantly better stability restrictions
than the best SSPRK schemes currently known. Thus, step-size selection can be based more on accuracy
requirements rather than stability requirements, ultimately leading to more efficient integrators. Indeed, the
results based on three important test cases indicate that our new fourth-order SSPRK scheme offers between
40% and 80% improvements in the effective time-step restriction over the most popular fourth-order schemes
currently in use.

The remainder of this paper unfolds as follows. In Section 2, we describe SSP schemes and motivate
their use. In Section 3, we determine optimal families of SSP Runge-Kutta schemes up to five stages and
order four. We also give optimal low-storage versions of these schemes. In Section 4, we investigate the
performance of our new SSP Runge-Kutta schemes on a set of test problems from compressible gas flows
having solutions that commonly cause numerical problems. The success of the new methods is measured
relative to the most popular schemes currently in use. Finally, in Section 5, we summarize our findings and
offer plans for future work.

2 SSP Schemes

The concept of strong stability is central to our discussion, so we begin with its definition.

3

Definition 1 A sequence {Un} is said to be strongly stable in a given norm || · || provided that ||Un+1|| ≤
||Un|| for all n ≥ 0.

We tacitly assume that Un represents a vector of solution values on a mesh obtained from a method-of-
lines approach to solving a PDE. The choice of norm is arbitrary1, with the TV-norm (2) and the infinity
norm being two natural possibilities. Clearly, strong stability may not be relevant to the solution of an
arbitrary PDE. However, the class of PDEs (1) forms a notable exception. Exact solutions for this class of
problems have a range-diminishing property that forbids existing maxima from increasing, existing minima
from decreasing, and new maxima or minima from forming. Although not precisely a discrete analogue to
the range-diminishing property, the strong-stability property is a useful property to require of a numerical
solution to (1): By imposing such a condition on the numerical solution, we can suppress the formation of
spurious oscillations under a suitable restriction on the time-step. Such oscillations are termed nonlinear
instabilities, and are often a precursor for the numerical solution itself to become completely unstable.

The authors in [6] prove the somewhat surprising result that, under rather general assumptions, high-
order SSP methods must in fact be explicit. Fortunately, many researchers in fact prefer explicit time
discretization methods in order to avoid the expense2 of solving systems of nonlinear equations at each step.
Accordingly, in this paper we will focus on the development of explicit Runge-Kutta methods. Consider an
s-stage, explicit Runge-Kutta method written in the form

U (0) = Un (3a)

U (i) =
i−1∑
k=0

(αikU (k) + ∆tβikL(U (k))), i = 1, 2, . . . , s, (3b)

Un+1 = U (s), (3c)

where all the αik ≥ 0 and αik = 0 only if βik = 0 [15]. This representation of a Runge-Kutta method can
be converted to the standard Butcher array form (see e.g., [7]) in a straightforward manner; see also [5].
However, the conversion from the Butcher array form to (3) is not unique. For example, the modified Euler
scheme

0 0 0
1 1 0

1
2

1
2

has a one-parameter family of representations of the form (3):

α10 = 1, α20 = 1− λ, α21 = λ, β10 = 1, β20 =
1
2
− λ, β21 =

1
2
,

where λ ∈ [0, 1]. All of these representations are algebraically equivalent [17]; i.e., the only differences no-
ticeable between stable implementations of any scheme would be due to round-off errors. However, different
choices of λ may lend themselves more easily to implementation, memory management, or determination of
stability restrictions. Throughout this article, we give representations that naturally allow stability restric-
tions to be read from the coefficients of the scheme. Standard Butcher array forms of the schemes presented
are given in Appendix B.

For consistency, we must have that
∑i−1
k=0 αik = 1, i = 1, 2, . . . , s. Hence, if both sets of coefficients

αik, βik are positive, then (3) is a convex combination of forward Euler steps with various step sizes βik
αik

∆t.
The Runge-Kutta scheme written in this form is particularly convenient to make use of the following re-
sult [17, 6]:

Theorem 1 If the forward Euler method is strongly stable under the CFL restriction ∆t ≤ ∆tFE, then the
Runge-Kutta method (3) with βik ≥ 0 is SSP provided

∆t ≤ c∆tFE ,
1Indeed, the results of this paper still apply if we replace the norm ||·|| by any convex function that maps into the non-negative

real line.
2both in terms of computation time and software development

4

where c is the CFL coefficient
c ≡ min

i,k

αik
βik

.

Thus, we can use the result of this theorem to provide a theoretical criterion according to which we can
optimize a given SSPRK method.

SSPRK schemes with negative coefficients βik are also possible with the appropriate interpretation.
Following the procedure first suggested in [15], whenever βik < 0, the operator L(·) is replaced with the
related operator L̃(·), where L̃(·) is assumed to be strongly stable for Euler’s method solved backwards in
time for a suitable time-step restriction. This allows the following generalization Theorem 1:

Theorem 2 Let Euler’s method solved forward in time combined with the spatial discretization L(·) be
strongly stable under the CFL restriction ∆t ≤ ∆tFE. Let Euler’s method solved backward in time combined
with the spatial discretization ˜L(·) also be strongly stable under the same CFL restriction ∆t ≤ ∆tFE. Then
the Runge-Kutta method (3) is SSP provided

∆t ≤ c∆tFE ,

where c is the CFL coefficient
c ≡ min

i,k

αik
|βik|

,

where βikL(·) is replaced by βikL̃(·) whenever βik is negative.

Note: If both L(U (i)) and L̃(U (i)) are required, then the computational cost and storage requirements
for that stage are typically doubled. Moreover, there is the added inconvenience of having to code the spatial
discretization represented by L̃(·). These reasons provide the incentive for us to want to avoid negative βik
as much as possible when searching for the most efficient SSPRK methods.

We also note that the quantity
min
i,k

αik
|βik|

(4)

obviously depends on the particular representation (3) of a given Runge-Kutta scheme. Accordingly, the
CFL restriction is determined by the choice of coefficients αij , βij that maximizes (4); other choices render
bounds that are not as sharp.

We will be comparing a new class of SSPRK methods with s stages and order p with s > p to methods
known in the literature where s = p or some βik < 0. We note that if a method requires n− extra evaluations
of L̃(·) then the effective number of stages of that method is m = s + n−. We find that the new SSPRK
methods can have a significantly greater CFL coefficient (as given in Theorem 1) than the methods currently
used in practice. However, we must make a fair comparison as to the computational cost of a step. This
motivates the following definition:

Definition 2 The effective CFL coefficient of an SSPRK method of order p is scheme is cs∗/s where c is
the CFL coefficient of the method, s∗ is the minimum number of stages to theoretically achieve order p, and
s is the number of stages required for one step of the method.

It is well known (see e.g., [7]) that a Runge-Kutta method having s stages can achieve order p for
s = p ≤ 4. For p > 4, it is required that s > p. Because the cases we consider in this paper involve only
p ≤ 4, we always take s∗ = p here.

As conjectured in Shu and Osher [17] and subsequently proven in Gottlieb and Shu [5], the optimal
two-stage, order-two SSPRK scheme is the modified Euler scheme,

U (1) = Un + ∆tL(Un),

Un+1 =
1
2
Un +

1
2
U (1) +

1
2

∆tL(U (1)).

It has a CFL restriction ∆t ≤ ∆tFE , which implies a CFL coefficient of 1. Henceforth, we will refer to this
scheme as SSP(2,2). In general, we adopt the convention of referring to an s-stage, order-p SSPRK scheme
as SSP(s,p).

5

Shu and Osher [17] also conjectured that the optimal three-stage, order-three SSPRK scheme is

U (1) = Un + ∆tL(Un),

U (2) =
3
4
Un +

1
4
U (1) +

1
4

∆tL(U (1)),

Un+1 =
1
3
Un +

2
3
U (2) +

2
3

∆tL(U (2)),

which has a CFL coefficient of 1 as well. The optimality of this scheme was later proved by Gottlieb and
Shu [5]. This scheme is commonly called the Third-Order TVD Runge-Kutta scheme, but we will simply
refer to it as SSP(3,3).

To achieve fourth order, Shu and Osher provide a four-stage method that contains two negative coefficients
βik [16]. A slightly improved scheme (but also containing two negative coefficients βik) was proposed by
Gottlieb and Shu [5]

U (1) = Un +
1
2

∆tL(Un),

U (2) =
649
1600

Un − 10890423
25193600

∆tL̃(Un) +
951
1600

U (1) +
5000
7873

∆tL(U (1)),

U (3) =
53989

2500000
Un − 102261

5000000
∆tL̃(Un) +

4806213
20000000

U (1)

− 5121
20000

∆tL̃(U (1)) +
23619
32000

U (2) +
7873
10000

∆tL(U (2)),

Un+1 =
1
5
Un +

1
10

∆tL(Un) +
6127
30000

U (1) +
1
6

∆tL(U (1))

+
7873
30000

U (2) +
1
3
U (3) +

1
6

∆tL(U (3)).

This scheme has a CFL coefficient of 0.936 and an effective CFL coefficient of 0.936× 4/6 = 0.624 because 6
function evaluations are required per step. Because this seems to be the best four-stage, order-four SSPRK
scheme known, we will refer to it as SSP(4∗∗,4), with the two asterisks meant to convey two negative
coefficients βik. Gottlieb and Shu [5] subsequently proved that no four-stage, order-four SSPRK scheme
exists with positive coefficients.

Gottlieb and Shu [5] have also carried out an investigation of SSP time discretization methods for gener-
alized Runge-Kutta methods (also known as pseudo-Runge-Kutta methods or hybrid methods [7]3). They
report that they were unable to find effective SSP methods in this wider class of methods. It is from this
point that we start our derivations of improved SSPRK schemes where generally s > p. The details of these
derivations are provided in the next section.

3 Optimal SSP Schemes

We now turn to the task of finding optimal SSPRK schemes. To begin, we seek to optimize an s-stage,
order-p SSPRK scheme by maximizing its CFL coefficient according to Theorem 1. That is, we seek the
global maximum of the nonlinear programming problem

max
(αik,βik)

min
αik
βik

, (5)

where αik, βik, k = 0, 1, . . . , i−1, i = 1, 2, . . . , s are real and non-negative. The case αik = βik = 0 is defined
as NaN in the sense that it is not included in the minimization process if it occurs. Besides the non-negativity
constraints on the variables αik, βik, the objective function (5) is subject to the constraints

i−1∑
j=0

αik = 1, i = 1, 2, . . . , s, (6)

3All of these methods are also special cases of methods known as general linear methods.

6

s∑
j=1

bjΦj(t) =
1
γ(t)

, t ∈ Tq, q = 1, 2, . . . , p. (7)

Here, the functions Φj(t) are nonlinear constraints that are polynomial in αik, βik and that correspond to
the order conditions for a Runge-Kutta method to be of order p (see e.g., [7]); i.e., Tq stands for the set
of all rooted trees of order equal to q. The number of constraints represented by the Runge-Kutta order
conditions is equal to

p∑
q=1

card(Tq),

where card(Tq) is the cardinality of Tq. Also, we use the notation bj in the usual sense of the Butcher array
representation of a Runge-Kutta method; again this would be a polynomial function of the coefficients αik
and βik. It can be expected that the particular choice of coefficients αik, βik that maximizes the quantity (4)
for a given Runge-Kutta method will be naturally produced by the solution to this nonlinear programming
problem; hence the result will be a sharp estimate of the CFL coefficient.

In this form, the optimization problem does not lend itself easily to numerical solution. The difficulty
due to the high degree of nonlinearity in the constraints is compounded by the following two considerations.
First, the objective function (5) is non-smooth and so an optimization strategy that uses gradient information
will have difficulty obtaining reliable numerical estimates of the derivatives. Second, the min(·) function can
be quite insensitive to its arguments. This also contributes to the poor performance of optimization software
on this problem. We found that even optimizers that do not rely on gradient information were unable to
consistently converge to the same optimum with this formulation.

The performance of optimization software on this problem is greatly enhanced through the following
standard reformulation. By introducing a dummy variable z, the nonlinear programming problem can be
reformulated as

max
(αik,βik)

z, (8a)

subject to

αik ≥ 0, (8b)
βik ≥ 0, (8c)

i−1∑
j=0

αik = 1, i = 1, 2, . . . , s, (8d)

s∑
j=1

bjΦj(t) =
1
γ(t)

, t ∈ Tq, q = 1, 2, . . . , p, (8e)

αik − zβik ≤ 0. (8f)

It is easy to see that the dummy variable z corresponds to the CFL coefficient. This reformulation is
a standard technique that is widely used in the context of linear programming problems with objective
functions of the form max(·) or min(·) (see e.g., [2]). It is also a common reformulation of the so-called
feasibility problem, where any feasible solution to a set of equality or inequality constraints is desired (e.g.,
as in the first phase of a two-phase simplex algorithm for linear programming [3]).

The reformulated problem (8) was solved using Matlab’s Optimization Toolbox for s = 1, 2, 3, 4, 5 and
p = 1, 2, 3, 4 and the results shown below. Table 3.1 shows the optimal values for the CFL coefficients for
given pairs (s, p). The * in the (4, 4) position denotes the fact that no such SSPRK method exists with all
coefficients αik, βik positive.

Table 3.2 gives the theoretical efficiencies of these new schemes relative to the ones where s = p. We
note that there is no efficiency gain for the first-order methods. For example, although the CFL coefficient
of the (2,1) method is twice that of that (1,1) method (forward Euler), it is also twice as much work. The
percentages quoted refer to the theoretical increases in allowable step size of the new methods relative to
the methods with s = p. For example, the (3,2) method has twice the allowable step size compared to the
(2,2) method (the modified Euler method), but it requires 3/2 times more work. We thus report that the

7

s = 1 s = 2 s = 3 s = 4 s = 5

p = 1 1 2 3 4 5

p = 2 1 2 3 4

p = 3 1 2 2.65

p = 4 * 1.51

Table 3.1: Optimal CFL coefficients for s-stage, order-p SSPRK methods.

net effect is a relative increase in step size of ((2/1)/(3/2) − 1) × 100% = 33%. Equivalently, assuming the
CFL coefficient to be the exact bound on the time step, the new (3, 2) scheme can produce a comparable
second-order-accurate answer with only 75% of the computational effort as the (2, 2) scheme.

s = 2 s = 3 s = 4 s = 5

p = 2 33% 50% 60%

p = 3 50% 59%

p = 4 94%

Table 3.2: Optimal CFL coefficients for s-stage, order-p SSPRK methods.

We draw particular attention to the efficiency of the (5, 4) scheme in Table 3.2. As mentioned earlier, a
(4, 4) SSPRK scheme does not exist for any positive CFL coefficient. The figure of 94% is measured relative
to the (4∗∗, 4) scheme reported in [5] as the best scheme of order 4 that could be found. Recall that this
scheme had a CFL coefficient of 0.936 and effectively used 6 stages because it involved two coefficients βik
that are negative (hence leading to a 50% increase of the storage requirement per step and the overhead of
coding L̃(·)). The new (5, 4) scheme thus compares very favourably.

The first few optimal SSPRK schemes of orders 1 and 2 are given in Tables 3.3 and 3.4. Here we give
the schemes in terms of the coefficients αik, βik; the Butcher form of these schemes in given in Appendix B.

Stages αik βik CFL number

1 1 1 1

2
1
0 1

1
2

0 1
2

2

3
1
0 1
0 0 1

1
3

0 1
3

0 0 1
3

3

Table 3.3: The first few optimal SSPRK schemes of order 1.

From Tables 3.1, 3.3, and 3.4, we can conjecture the form of the optimal SSPRK methods with s stages
and orders 1 and 2; namely, the optimal SSPRK method with s stages and order 1 has CFL number s;
and the optimal SSPRK method with s stages and order 2 has CFL number s − 1. Shu [15] has given a
proof of the first-order result and Gottlieb and Shu [5] have given a proof of the second-order result for
s = 2. We provide a new proof of the first-order result below as well as a proof of the second-order result for
arbitrary s. These low-order methods with large CFL numbers are useful when seeking a time-independent
(steady-state) solution of (1), given that in such problems the accuracy considerations in time are typically
less critical than those in space [15].

8

Stages αik βik CFL number

2
1
1
2

1
2

1
0 1

2

1

3
1
0 1
1
3 0 2

3

1
2

0 1
2

0 0 1
3

2

4

1
0 1
0 0 1
1
4 0 0 3

4

1
3

0 1
3

0 0 1
3

0 0 0 1
4

3

Table 3.4: The first few optimal SSPRK schemes of order 2.

Theorem 3 For s = 1, 2, 3, . . ., the optimal s-stage SSPRK method of order 1 has CFL number s and can
be represented in the form

αik =

{
1 k = i− 1,
0 otherwise.

, βik =

{
1
s k = i− 1,
0 otherwise.

, i = 1, 2, . . . , s.

Before giving the proof of Theorem 3, we introduce the following notation and give a useful Lemma. We
find it convenient to write the general s-stage explicit Runge-Kutta method in the following form (cf. [5]):

U (0) = Un, (9a)

U (i) = U (0) + ∆t
i−1∑
k=0

cikL(U (k)), i = 1, 2, . . . , s, (9b)

Un+1 = U (s). (9c)

The coefficients cik are related to the coefficients αik, βik recursively by

cik =
i−1∑

j=k+1

αijcjk + βik. (10)

It is also easy to see that the coefficients cik are related to the Butcher array quantities aik, bk by

aik = ci−1,k−1, k = 1, 2, . . . , i− 1, i = 1, 2, . . . , s− 1,
bk = cs,k−1, k = 1, 2, . . . , s.

Lemma 1 If a method of the form (3) with αik, βik ≥ 0 has a CFL coefficient c > m > 0, then 0 ≤ cik < 1
m

for all k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.

Proof. From Theorem 1, if c > m > 0, then αik > mβik, or equivalently βik < 1
m αik, for all i, k such that

αik 6= 0.
Now,

αik ≥ 0,
i−1∑
k=0

αik = 1, i = 1, 2, . . . , s, ⇒ αik ≤ 1

for all i, k. Hence, βik < 1
m for all i, k. In particular, c10 = β10 <

1
m for any valid SSPRK method.

9

We now proceed by induction on stage ` of an s-stage method. Assume cij < 1
m for j = 0, 1, . . . , ` − 1;

i = 1, 2, . . . , `. (We have just shown that this result holds for ` = 1.) Now consider stage (` + 1) of a valid
SSPRK method; i.e., consider coefficients c`+1,k for k = 0, 1, . . . , ` with

∑̀
k=0

α`+1,k = 1.

Then using (10),

c`+1,0 =
∑̀
k=1

α`+1,kck0 + β`+1,0

<
1
m

∑̀
k=1

α`+1,k +
1
m
α`+1,0

=
1
m
.

Similar arguments can be used to show c`+1,j <
1
m for j = 1, 2, . . . , `. The Lemma now follows by induction.

Proof of Theorem 3. By contradiction, suppose there exists an s-stage, order-1 SSPRK method with CFL
coefficient c > s. Because the method is order 1, we have

s−1∑
k=0

csk = 1. (11)

But from Lemma 1, we have

cik <
1
s
, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.

Thus,
s−1∑
k=0

csk <
s−1∑
k=0

1
s

= 1,

contradicting (11). Thus, no s-stage, order-1 SSPRK method can exist with CFL coefficient c > s. Because
the SSPRK methods proposed in Theorem 3 have c = s, they must be optimal representations.

Theorem 4 For s = 2, 3, 4, . . ., the optimal s-stage SSPRK method of order 2 has CFL number s − 1 and
can be represented in the form

αik =

{
1 k = i− 1,
0 otherwise.

, βik =

{
1
s−1 k = i− 1,
0 otherwise.

, i = 1, 2, . . . , s− 1.

αik =

1
s k = 0,
s−1
s k = s− 1

0 otherwise.

, βik =

{
1
s k = s− 1,
0 otherwise.

, i = s.

Proof. By contradiction, suppose there exists an s-stage, order-2 SSPRK method with CFL coefficient
c > s− 1. Because it is order 2, the coefficients of the method must satisfy (11) and

s−1∑
i=1

csi

i−1∑
k=0

cik =
1
2
. (12)

10

Also, using Lemma 1 with c > s− 1 implies that

cik <
1

s− 1
, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s. (13)

Using (13) in (12) for k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s− 1 leads to

s−1∑
i=1

i

s− 1
csi >

1
2
,

and using this result in (11) yields
s−2∑
k=0

s− k − 1
s− 1

csk <
1
2
.

Thus,

1
2

>
s−2∑
k=0

s− k − 1
s− 1

csk

=
s−2∑
k=0

s− k − 1
s− 1

 s−1∑
j=k+1

αsjcjk + βsk

 .

Now we substitute recursively for cjk using (10) in the right-hand side of the above equation and (12), and
recalling that αik > (s− 1)βik and αik ≥ 0 for k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s, we can use (12) to write

1
2
>

1
2

+
s−2∑
j=1

j
s−1∑

l=s−j−1

βslβl,s−2−j +
s−2∑
j=0

s− j − 1
s− 1

βsj .

This now contradicts the fact that βik ≥ 0 for all k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s. Thus, no s-stage, order-2
SSPRK method can have CFL coefficient c > s− 1. The proof is now completed by noting that because the
schemes proposed have c = s− 1, they must be optimal representations.

In Tables A.1–A.2 in Appendix A, we give results for the coefficients of the optimal schemes of order
p = 3, 4 in terms of their numerical values up to double precision. We do not offer formal proofs of optimality
in these cases; however, these are the results of extensive numerical searches.

Finally, we describe our results for optimal low-storage SSPRK schemes. There are computational prob-
lems for which memory management considerations are at least as important as stability considerations when
choosing a numerical time discretization method, e.g., direct numerical simulation of Navier-Stokes equations
requiring high spatial resolution in three dimensions. In such cases, s-stage explicit Runge-Kutta methods
that use less than the usual s units of storage are very desirable (see e.g., [19]). We focus our discussion on
SSPRK schemes that require only two units of storage per step4, although more general methods requiring
more storage per step are possible. These schemes take the form

dU (i) = AidU
(i−1) + ∆tL(U (i−1)), (14a)

U (i) = U (i−1) +BidU
(i−1), i = 1, 2, . . . , s, (14b)

where U (0) = Un, Un+1 = U (s), and A1 ≡ 0. Again, we note that there is a relation between the coefficients
Ai, Bi and the coefficients αik, βik or equivalently the usual quantities in the Butcher array. We denote the
general s-stage, order-p low-storage SSPRK scheme simply by LS(s,p).

We have solved the corresponding nonlinear programming problems to optimize the CFL coefficient for
the low-storage schemes defined by (14). The results for the coefficients Ai, Bi are given in Tables 3.5–3.7
for up to 5 stages and order 3. Again, only numerical values of the coefficients are given to double precision.

4We note that if some form of error control is envisaged, perhaps using an embedded [7] SSPRK scheme, then additional
storage for the current solution vector is also required.

11

Stages Ai Bi CFL number

1 0 1 1

2 0 0.25471543653218 1
0.66323286721269 0.44809394647120

3 0 0.26237801705341 1
0.42645094785793 0.20169056000013
0.45339958582027 0.27321697994061

4 0 0.14142439246204
0.42623204099143 0.35397016495696 1
0.38851833123083 0
0.01694135866933 0.34465757966021

5 0 0.03368800719745 1
0.61573074220688 0.13960527476637
0.24191712486786 0.22864919232774
0.16549924932085 0.26079330982391

-0.04239297405834 0.10750824432183

Table 3.5: The coefficients of the first few optimal low-storage schemes of order 1.

The Butcher array form of these schemes is given in Appendix C. Of course, a traditional implementation of
any 2-stage scheme must be low-storage in the sense we are considering, so the optimal low-storage method
with s = p = 2 corresponds to the optimal SSPRK scheme in Table 3.4. We note that the optimal 3-stage,
order-3 low-storage method reported in Table 3.7 agrees with that reported in [5]. We also note that we
were not successful in finding a 5-stage, order-4 scheme in this family, and we strongly suspect that such a
method does not exist.

4 Numerical Studies

In this section, we study the numerical behaviour of our schemes and Shu-Osher SSP-schemes for a few test
problems designed to capture solution features that pose particular difficulties to numerical methods. Ex-
periments for the classical fourth-order explicit Runge-Kutta method are also included because this method
is commonly used in method-of-lines discretizations of hyperbolic conservation laws but is not SSP.

4.1 Test Problems

There are a variety of solution features in computational fluid dynamics that commonly cause numerical
problems. For example, many numerical methods produce significant errors near sonic points (points where
the wavespeed equals zero). Upwind methods in particular are forced to give sonic points special consideration
since the upwind direction changes at sonic points. Shock waves, contact discontinuities, and expansion fans
may also lead to a variety of serious problems including oscillations, overshoots, and smearing that can spread
discontinuities over several cells. In particular, contact discontinuities do not have any physical compression
and thus smearing increases progressively with the number of time steps. Even when approximating smooth
solutions, most numerical methods exhibit obvious flaws. For example, many stable numerical methods
continuously erode the solution, leading to amplitude and dissipation errors [12].

To investigate the behavior of our time-stepping schemes, we consider three of Laney’s five test problems
[12]. These three problems involve all of the important flow features identified above: shocks, contacts,
expansion fans, sonic points, and smooth solutions. Similar to Laney, we focus on the behaviour of the
numerical scheme for interior regions rather than boundaries and impose periodic boundary conditions on

12

Stages Ai Bi CFL number

2 0 1 1
-1 1

2

3 0 0.79609964254616 1
-0.86514937424574 0.47921739051941
-0.01459406292961 0.13955204452449

4 0 0.08820909208788
0.34143758512319 0.62773790223092 1

-0.80189834090053 0.43908735985479
-0.26868602239001 0.10090483677631

5 0 0.24064789292000 1
-0.35363900948812 0.28813102587031
0.23144682054640 0.15490366543216
0.30287923513739 0.33623843526263

-0.90122396243589 0.27101878032131

Table 3.6: The coefficients of the first few optimal low-storage schemes of order 2.

Stages Ai Bi CFL number

3 0 0.92457411523577 0.32234930738853
-2.91549398859489 0.28771294148749
0.00000000151682 0.62653829645172

4 0 1.03216665875130 0.52841816101829
-4.94661981618529 0.18793881263711
0.00000000050902 0.15215751854315

-0.15127914578976 0.65675174856653

5 0 0.67892607116139 1
-2.60810978953486 0.20654657933371
-0.08977353434746 0.27959340290485
-0.60081019321053 0.31738259840613
-0.72939715170280 0.30319904778284

Table 3.7: The coefficients of the first few optimal low-storage schemes of order 3.

13

the domain [−1, 1]. It is known that sometimes a conventional (and intuitive!) treatment of the boundary
data (especially in the case of inflow boundary conditions) within the stages of a Runge-Kutta method can
lead to a deterioration in the overall accuracy of the integration. We refer to [1] and references therein for
a discussion of this problem and a method for its resolution. The spatial discretization and the results of
three test cases follow.

4.2 Spatial Discretization

SSPRK schemes are natural candidates for any method-of-lines discretization involving nonsmooth solutions.
Similar to the original paper on SSPRK methods [17], we choose Shu-Osher methods (ENO) to spatially
discretize the equations. These methods are derived using flux reconstruction and have a variety of desirable
properties. For example, they lend themselves easily to nonuniform meshes, they naturally extend to an
arbitrary order of accuracy in space, and they are independent of the time discretization, thus allowing
experimentation with different time discretization methods. Moreover, educational codes are also freely
available [12, 11], an attribute which is desirable for standardizing numerical studies.

It is noteworthy that high-order, fully TVD spatial discretization schemes are also available; see Osher
and Chakravarthy [14]. In these numerical studies, we choose Shu-Osher spatial discretization schemes rather
than TVD schemes since TVD schemes only obtain between first- and second-order accuracy at extrema and
they have “been largely superseded by Shu and Osher’s class of high-order ENO methods” [12].

It is also noteworthy that recent variations on Shu-Osher methods such as methods based on WENO
reconstructions (e.g., [13, 10]) also naturally combine with SSPRK schemes. See [12] for detailed discussions
on these and other spatial discretizations appropriate for hyperbolic conservation laws.

4.3 Test Case 1: Linear advection of a sinusoid

In this test case, the smooth initial conditions

u(x, 0) = − sin(πx)

are evolved to time t = 30 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0

using a constant grid spacing of ∆x = 1/320. Since this evolution causes the initial conditions to travel around
the periodic domain [−1, 1] exactly 15 times, it is clear that the exact solution is just u(x, 30) = − sin(πx).
Test Case 1 effectively illustrates the evolution of a smooth solution with no sonic points and is useful for
verifying convergence rates for high-order schemes. Moreover, even on completely smooth solutions most
numerical methods designed for hyperbolic conservation laws exhibit obvious flaws [12]. This test case is
quite helpful for understanding phase and amplitude errors but should not be used to study dispersion
because only one frequency is present in the exact solution. It is also informative to contrast these results
with those derived for problems involving shocks and other discontinuities.

To quantify the accuracy of the computed solution, we use the logarithm of the l1 errors, i.e.,

log10

(
1
N

N∑
i=1

|Ui − u(xi, 30)|

)
,

where N is the number of grid points and xi is the ith grid node. A plot of the error is given in Figure 4.1.
To ensure a fair comparison for methods with a different number of stages, the error is plotted as a function
of the effective CFL number rather than the CFL number itself. This implies that for a particular plot, the
total number of function evaluations at a particular abscissa value will be the same for each scheme. We
start calculating errors for an effective CFL number of 0.6 and continue until the numerical method is so
unstable that a value of NaN is returned; i.e., the scheme has become completely unstable.

In this smooth test example, the new second-order schemes give improved stability and accuracy over
the original SSP(2,2). Also, SSP(5,3) gives improved stability over SSP(3,3) and SSP(4,3). Calculations for

14

Figure 4.1: l1 errors as a function of the effective CFL number. (a) Second-order schemes (b) Third-order
schemes (c) Fourth-order schemes (d) Low-storage schemes.

0.6 0.8 1 1.2 1.4 1.6
−2.5

−2

−1.5

−1

−0.5

Effective CFL number

lo
g1

0(
er

ro
r)

0.6 0.8 1 1.2 1.4 1.6
−6

−5

−4

−3

−2

−1

0

Effective CFL number

lo
g1

0(
er

ro
r)

0.6 0.8 1 1.2 1.4 1.6
−7.5

−7

−6.5

−6

Effective CFL number

lo
g1

0(
er

ro
r)

0.6 0.8 1 1.2 1.4 1.6
−6

−5

−4

−3

−2

−1

0

Effective CFL number

lo
g1

0(
er

ro
r)

(2,2)
(4,2)

(3,2)

(4,3)

(5,3)

(3,3)

(4**,4)

(5,4)

classical
LS(4,3)

LS(5,3)

LS(3,3)

(a) (b)

(c) (d)

15

low-storage schemes show that LS(5,3) outperforms both LS(4,3) and LS(3,3). (For clarity, we use arrows
to indicate the exact points at which SSP(3,3) and LS(3,3) go completely unstable.)

Based on these plots, we see that the second-order, third-order, and low-storage schemes all give stability
restrictions that are within 20% of one another. This contrasts sharply with the results for fourth-order
schemes (plot (c)). Here the new SSP(5,4) scheme gives more than a 40% improvement in the stability
time-step restriction over the original SSP(4**,4). Moreover, it produces a marked reduction in the error,
signifying a smaller error constant for this problem. It is noteworthy that in this case the classical fourth-
order Runge-Kutta scheme outperforms even SSP(5,4): On smooth problems, schemes based purely on a
linear stability analysis are expected to perform well. SSP schemes are designed to outperform on problems
involving discontinuities in the solution or its derivatives, so in this case there is no reason to expect that
schemes derived using nonlinear stability analysis will necessarily outperform classical schemes based on
linear stability analysis.

4.4 Test Case 2: Linear advection of a square wave

In this test case, the discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,
0 for 1/3 < |x| ≤ 1,

are evolved to time t = 4 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0

using a constant grid spacing of ∆x = 1/320. Since this evolution causes the initial conditions to travel
around the periodic domain [−1, 1] exactly 2 times, it is clear that the exact solution at the final time is just
u(x, 4) = u(x, 0). Test Case 2 exhibits two jump discontinuities in the solution that correspond to contact
discontinuities. This test case nicely illustrates progressive contact smearing and dispersion.

The log of the l1 errors as a function of the effective CFL number are plotted in Figure 4.2. Based on
these plots, it is immediately clear that a material improvement in both stability and accuracy are obtained
using our new schemes.

For example, plot (a) shows that SSP(3,2) and SSP(4,2) allow about a 20 − 30% improvement in the
time-step restriction over the original SSP(2,2). It is also clear that the new schemes also give a substantial
improvement in stability and accuracy in the third-order case (b). Here we find that the optimal SSP(5,3)
scheme gives about a 40% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed. SSP(5,4) gives more than a 60%
improvement in the stability time-step restriction and only requires half the number of function evaluations
to achieve an error of 10−1.5. Moreover, SSP(5,4) is clearly superior to the classical fourth-order Runge-
Kutta scheme, with more than a 40% improvement in the observed time-step restriction. As conjectured,
the best SSP-schemes outperform classical (but non-SSP) schemes when discontinuities in the solution arise.

Out of the low-storage schemes (plot (d)), the new LS(4,3) gives the best performance. It is interesting
that the best-performing scheme LS(4,3) requires one-third less storage and is more CPU-efficient than the
standard SSP(3,3) in this test example.

4.5 Test Case 3: Evolution of a square wave by Burgers’ equation

In this test case, the discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,
−1 for 1/3 < |x| ≤ 1,

are evolved to time t = 0.3 according to Burgers’ Equation

∂u

∂t
+

∂

∂x

(
1
2
u2

)
= 0

16

Figure 4.2: l1 errors as a function of the effective CFL number. (a) Second-order schemes (b) Third-order
schemes (c) Fourth-order schemes (d) Low-storage schemes.

0.5 1 1.5
−2

−1.5

−1

−0.5

Effective CFL number

lo
g1

0(
er

ro
r)

0.5 1 1.5
−2

−1.5

−1

−0.5

Effective CFL number

lo
g1

0(
er

ro
r)

0.5 1 1.5
−2

−1.5

−1

−0.5

Effective CFL number

lo
g1

0(
er

ro
r)

0.5 1 1.5
−2

−1.5

−1

−0.5

Effective CFL number

lo
g1

0(
er

ro
r)

(a)
(2,2)

(4,2)

(3,2)

(3,3)

(4,3)

(5,3)

(b)

(4**,4)

classical

(5,4)

(c)

LS(5,3)

LS(3,3)

LS(4,3)

(d)

17

using a constant grid spacing of ∆x = 1/320. In this example, the jump at x = −1/3 creates a simple
centered expansion fan and the jump at x = 1/3 creates a steady shock. Until the shock and expansion fan
intersect (at time t = 2/3), the exact solution is

u(x, t) =

−1 for −∞ < x < b1,

−1 + 2 x−b1
b2−b1 for b1 < x < b2,

1 for b2 < x < bshock,

−1 for bshock < x <∞,

where b1 = −1/3− t, b2 = −1/3 + t and bshock = 1/3 [12]. Test Case 3 is particularly interesting because it
illustrates the behaviors near sonic points (u = 0) that correspond to an expansion fan and a compressive
shock.

The log of the l1 errors as a function of the effective CFL number are plotted in Figure 4.3. Based on
these plots, it is clear that a marked improvement in both stability and accuracy are obtained in the second-,
third-, and fourth-order cases using our new schemes.

Once again, plot (a) shows that SSP(3,2) and SSP(4,2) show about a 20 − 30% improvement in the
time-step restriction over the original SSP(2,2). It is also clear that the new schemes also give a substantial
improvement in stability and accuracy in the third-order case (b). Here we find that the optimal SSP(5,3)
scheme gives about a 20% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed than in Test Case 2. SSP(5,4) gives
an 80% improvement in the stability time-step restriction and only requires one-third the number of function
evaluations to achieve an error of 10−2.6. Moreover, SSP(5,4) is clearly superior to the classical fourth-order
Runge-Kutta scheme, with more than a 60% improvement in the observed time-step restriction. Similar
to the previous example, SSP(5,4) outperforms classical (but non-SSP) schemes when discontinuities in the
solution arise.

Out of the low-storage schemes (plot (d)), LS(3,3) and the new LS(4,3) give the best performance. In
this test case, the best low-storage schemes are nearly as CPU-efficient as SSP(3,3) but require one-third
less storage.

5 Summary and Future Work

We have presented new optimal SSPRK time discretization methods of orders 1 through 4 and stages 1
through 5. We find that, by allowing the number of stages to differ from the order of the method, it is
possible to derive schemes with better effective CFL coefficients than those that are most commonly used.
We have also performed a comparison of the new methods with Runge-Kutta methods (both SSP and non-
SSP) most commonly used in practice on three representative problems from compressible gas flows. Our new
methods compare favourably in terms of computational efficiency per time step, especially when the solution
exhibits discontinuous behaviour. The improvements are the greatest for the new fourth-order scheme with
5 stages (SSP(5,4)), where the allowable time step is significantly greater than the Shu-Osher fourth-order
scheme and the classical fourth-order explicit Runge-Kutta scheme.

We also give results of a similar treatment of low-storage SSPRK schemes, where again we find significant
improvements over the schemes most commonly used. The results are for orders 1 through 3 and stages 1
through 5. We were unable to find a low-storage scheme of order 4 having only 5 stages.

We have already examined the possibility of finding even more efficient SSPRK schemes by lifting the
positivity constraint on the coefficients βij . Not surprisingly, improvements in the raw CFL coefficient are
possible; however, the reduction in the effective CFL coefficient necessitated by the introduction of L̃(·)
whenever βij < 0 causes these methods to be uncompetitive.

We are currently extending our investigation of optimal SSPRK methods to methods having more than
5 stages and to orders greater than 4. In particular, we would like to determine an optimal low-storage
SSPRK method of order 4 with the minimum number of stages. We have also derived families of embedded
SSPRK schemes for local error estimation and step-size control. We report on these findings elsewhere.

18

Figure 4.3: l1 errors as a function of the effective CFL number. (a) Second-order schemes (b) Third-order
schemes (c) Fourth-order schemes (d) Low-storage schemes.

0.5 1 1.5

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Effective CFL number

lo
g1

0(
er

ro
r)

0.5 1 1.5

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Effective CFL number

lo
g1

0(
er

ro
r)

0.5 1 1.5

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Effective CFL number

lo
g1

0(
er

ro
r)

0.6 0.8 1 1.2 1.4 1.6

−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

Effective CFL number

lo
g1

0(
er

ro
r)

classical

(4**,4)

(5,4)

(2,2) (3,2)

(4,2)

(a)

(c)

(3,3)

(4,3)

(5,3)

(b)

LS(5,3) LS(3,3)

LS(4,3)

(d)

19

6 Acknowledgements

The authors would like to express their thanks to J. Borwein and W. Sutherland for helpful discussions.

Appendix A Optimal (αik, βik) for p = 3, 4

Tables A.1–A.2 respectively give the optimal SSPRK methods of orders 3 and 4 and up to 5 stages in the
representation (3).

Appendix B Butcher array forms of SSPRK schemes

The following are the Butcher array representations of the optimal SSPRK schemes given in this paper.
Order 1:

0 0

1

0 0 0
1
2

1
2 0
1
2

1
2

0 0 0 0
1
3

1
3 0 0

2
3

1
3

1
3 0

1
3

1
3

1
3

Order 2:

0 0 0
1 1 0

1
2

1
2

0 0 0 0
1
2

1
2 0 0

1 1
2

1
2 0

1
3

1
3

1
3

0 0 0 0 0
1
3

1
3 0 0 0

2
3

1
3

1
3 0 0

1 1
3

1
3

1
3 0

1
4

1
4

1
4

1
4

Order 3:

0 0 0 0
1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

0 0 0 0 0
1
2

1
2 0 0 0

1 1
2

1
2 0 0

1
2

1
6

1
6

1
6 0

1
6

1
6

1
6

1
2

0 0 0 0 0 0
0.37726891511710 0.37726891511710 0 0 0 0
0.75453783023419 0.37726891511710 0.37726891511710 0 0 0
0.49056882269314 0.16352294089771 0.16352294089771 0.16352294089771 0 0
0.78784303014311 0.14904059394856 0.14831273384724 0.14831273384724 0.34217696850008 0

0.19707596384481 0.11780316509765 0.11709725193772 0.27015874934251 0.29786487010104

Order 4:

0 0 0 0 0 0
0.39175222700392 0.39175222700392 0 0 0 0
0.58607968896779 0.21766909633821 0.36841059262959 0 0 0
0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738 0 0
0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237 0

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395

20

Table A.1: The first few optimal SSPRK schemes of order 3.

St
ag

es
α
ik

β
ik

C
F

L
nu

m
be

r

3
1 3 4

1 4
1 3

0
2 3

1 0
1 4

0
0

2 3

1

4

1 0
1

2 3
0

1 3

0
0

0
1

1 2 0
1 2

0
0

1 6

0
0

0
1 2

2

S
ta

g
e
s

5

α
i
k

1 0
1

0
.5

6
6
5
6
1
3
1
9
1
4
0
3
3

0
0
.4

3
3
4
3
8
6
8
0
8
5
9
6
7

0
.0

9
2
9
9
4
8
3
4
4
4
4
1
3

0
.0

0
0
0
2
0
9
0
3
6
9
6
2
0

0
0
.9

0
6
9
8
4
2
6
1
8
5
9
6
7

0
.0

0
7
3
6
1
3
2
2
6
0
9
2
0

0
.2

0
1
2
7
9
8
0
3
2
5
1
4
5

0
.0

0
1
8
2
9
5
5
3
8
9
6
8
2

0
0
.7

8
9
5
2
9
3
2
0
2
4
2
5
3

β
i
k

0
.3

7
7
2
6
8
9
1
5
1
1
7
1
0

0
0
.3

7
7
2
6
8
9
1
5
1
1
7
1
0

0
0

0
.1

6
3
5
2
2
9
4
0
8
9
7
7
1

0
.0

0
0
7
1
9
9
7
3
7
8
6
5
4

0
0

0
.3

4
2
1
7
6
9
6
8
5
0
0
0
8

0
.0

0
2
7
7
7
1
9
8
1
9
4
6
0

0
.0

0
0
0
1
5
6
7
9
3
4
6
1
3

0
0

0
.2

9
7
8
6
4
8
7
0
1
0
1
0
4

C
F

L
n
u
m

b
e
r

2
.6

5
0
6
2
9
1
9
2
9
4
4
8
3

21

Appendix C Butcher array forms of LS schemes
The optimal low-storage SSPRK schemes of order 1 and order 2 occur when s = p and have already been given
both in terms of representation (3) and Butcher arrays. Here we provide the Butcher array representation
of the third-order schemes presented in Table 3.7.
Order 3:

0 0 0 0

0.92457411523577 0.92457411523577 0 0

0.37346170537554 0.08574876388805 0.28771294148749 0

0.08574876111733 0.28771294243783 0.62653829645172

0 0 0 0 0

1.03216665875130 1.03216665875130 0 0 0

0.29044361656735 0.10250480393024 0.18793881263711 0 0

0.44260113480482 0.10250480354712 0.18793881271456 0.15215751854315 0

0.10250480379728 0.18793881266399 0.05280467502407 0.65675174856653

0 0 0 0 0 0
0.67892607116139 0.67892607116139 0 0 0 0
0.34677649493991 0.14022991560621 0.20654657933371 0 0 0
0.66673359500982 0.20569370073026 0.18144649137471 0.27959340290485 0 0
0.76590087429032 0.16104646283838 0.19856511041100 0.08890670263481 0.31738259840613 0

0.19215670424132 0.18663683901393 0.22177739201759 0.09623007655432 0.30319904778284

References

[1] S. Abarbanel, D. Gottlieb, and M. H. Carpenter, On the removal of boundary errors caused by
Runge-Kutta integration of nonlinear partial differential equations, SIAM J. Sci. Comput., 17 (1996),
pp. 777–782.

[2] V. Chvátal, Linear programming, W. H. Freeman and Company, New York, 1983.

[3] R. Fletcher, Practical methods of optimization, John Wiley & Sons Ltd., Chichester, second ed.,
1987.

[4] J. B. Goodman and R. J. LeVeque, On the accuracy of stable schemes for 2D scalar conservation
laws, Math. Comp., 45 (1985), pp. 15–21.

[5] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput., 67
(1998), pp. 73–85.

[6] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong-stability-preserving high-order time discretization
methods, SIAM Review, 43 (2001), pp. 89–112.

[7] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I, Springer-Verlag,
1987.

[8] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49 (1983),
pp. 357–393.

[9] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate
essentially nonoscillatory schemes. III, J. Comput. Phys., 71 (1987), pp. 231–303.

[10] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys.,
126 (1996), pp. 202–228.

[11] C. Laney, CFD Recipes: Software for Computational Gasdynamics. Web Address:
http://capella.colorado.edu/∼laney/booksoft.htm.

22

[12] , Computational Gasdynamics, Cambridge University Press, 1998.

[13] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially nonoscillatory schemes, J. Comput. Phys.,
115 (1994), pp. 200–212.

[14] S. Osher and S. Chakravarthy, Very high order accurate TVD schemes, in Oscillation Theory,
Computation, and methods of Compensated Compactness. The IMA Volumes in Mathematics and Its
Applications, C. Dafermos, J. Erikson, D. Kinderlehrer, and M. Slemrod, eds., vol. 2, Springer-Verlag,
New York, 1986, pp. 229–271.

[15] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988),
pp. 1073–1084.

[16] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing
schemes, CAM Report 92-33, University of California, Dept. of Mathematics, Los Angeles, 1987.

[17] , Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys.,
77 (1988), pp. 439–471.

[18] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Go-
dunov’s method, J. Comput. Phys., 32 (1979), pp. 101–136.

[19] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys., 35 (1980), pp. 48–56.

23

Table A.2: The coefficients of the optimal SSPRK (5,4) scheme.

S
ta

g
e
s

5

α
i
k

1

0
.4

4
4
3
7
0
4
9
4
0
6
7
3
4

0
.5

5
5
6
2
9
5
0
5
9
3
2
6
6

0
.6

2
0
1
0
1
8
5
1
3
8
5
4
0

0
0
.3

7
9
8
9
8
1
4
8
6
1
4
6
0

0
.1

7
8
0
7
9
9
5
4
1
0
7
7
3

0
0

0
.8

2
1
9
2
0
0
4
5
8
9
2
2
7

0
.0

0
6
8
3
3
2
5
8
8
4
0
3
9

0
0
.5

1
7
2
3
1
6
7
2
0
8
9
7
8

0
.1

2
7
5
9
8
3
1
1
3
3
2
8
8

0
.3

4
8
3
3
6
7
5
7
7
3
6
9
4

β
i
k

0
.3

9
1
7
5
2
2
2
7
0
0
3
9
2

0
0
.3

6
8
4
1
0
5
9
2
6
2
9
5
9

0
0

0
.2

5
1
8
9
1
7
7
4
2
4
7
3
8

0
0

0
0
.5

4
4
9
7
4
7
5
0
2
1
2
3
7

0
0

0
0
.0

8
4
6
0
4
1
6
3
3
8
2
1
2

0
.2

2
6
0
0
7
4
8
3
1
9
3
9
5

C
F

L
n
u
m

b
e
r

1
.5

0
8
1
8
0
0
4
9
7
5
9
2
7

24

