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Abstract: In this paper, the Hopfield neural networks model is discussed and 
implemented for letter recognition. Hebbian and pseudo-inverse learning rules are 
applied. Comparisons are made between these two rules. The storage capacity, basin of 
attractions are studied. 
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1 INTRODUCTION 
 
Associative memory is a dynamical system which has a number of stable states with a 
domain of attraction around them [1]. If the system starts at any state in the domain, it 
will converge to the locally stable state, which is called an attractor. In 1982, Hopfield [2] 
proposed a fully connected neural network model of associative memory in which 
patterns can be stored by distributed among neurons, and we can retrieve one of the 
previously presented patterns from an example which is similar to, or a noisy version of it. 
 
The Hopfild model consists of N neurons and  synapses. Each neuron can be in one of 
two states. It is based on the difference equation 
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Where s is the state of neuron i.  is the synaptic strength from neuron j to i. The 
appropriate determined synaptic weights can store patterns as fix points. The previously 
stored patterns can be retrieved from the representation of partial patterns. 
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The dynamical behavior of its neuron states strongly depends on synaptic strength 
between neurons. The specification of the synaptic weights is conventionally referred to 
as learning. Hopfield used the Hebbian learning rule [3] to determine weights. Since 
Hopfield’s proposal, many alternative algorithms for learning and associative recalling 
have been proposed to improve the performance of the Hopfield networks. We will 
discuss the Hebbian rule and pseudo-inverse rule and apply them to letter recognition. 
The comparisons are made between these two rules. 
 
 
2 Different learning rules 
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Hebbian rule 
 
The Hebbian learning rule is given by : 
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Where is the state of weight matrix after the vth patters have been learnt but before the 
(v+1)th pattern has been introduced,  is the patterns for the v steps, where N is the 
number of neurons.  The Hebbian rule is local and incremental, but has a low absolute 

storage capacity of
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. This capacity decreases significantly if patterns are correlated. 

Its performance is poor in terms of storage capacity, attraction, and spurious memories 
[4]. 
 
Pseudo-inverse Rule 
 
The pseudo-inverse rue is given by 
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1 ξξ , and m is the total number of patterns with m<n, N is the 

number of neurons. 
 
The pseudo-inverse (PI) learning rule (LR), which is also called the projection learning 
rule [5, 6]. PI LR is accredited for its high retrieval capability. The limit of 0.5N for the 
associative capacity, obtained by Personnaz et al., Kaner and Sompolinsky [5, 7]. For 
comparison, Hebbian correlation LR retrieves only up to 14%N prototypes.  
 
However, the pseudo-inverse rule is not local or incremental, because it involves the 
calculation of an inverse. 
 
3 Storage Capacity 
 
By using computer simulation, Hopfield suggested that if a small error in recalling is 
allowed, the maximum number p of the patterns to be stored in a network with N neurons 
is 0.15N, Later, it was showed theoretically that the storage capacity is p=0.138N by 
Amit et al. [8] by using replica method. The limitation is attributed to the fact that the 
network is trapped to the so called spurious local minima. In 1987 McEliece et al. [9] 
proved that when holds, the Hopfield’s model is able to recall all the 
memorized patterns without error. 
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Other learning schemes have been proposed to escape the local minima and increase the 
storage capacity. Kohonen et al. [10] proposed a new learning mechanism for non-zero 
self-connection networks called pseudo-inverse learning rule by extending the Hebbian 



learning rule, and enlarged the capacity to p = N. Gardner [11] showed that the ultimate 
capacity will be p = 2N as the basin size tend to zero. 
 
 
4 EXPERIMENT 
 
All experiments in this paper are carried out on the model of letter patterns. The 26 letter 
patterns are presented with binary representation (0 or 1) of 156 neurons. The synaptic 
weight values are explored with Hebbian rule and pseudo-inverse rule. The update 
scheme is based exactly on the Hopfield model.  In the stage of retrieval, 10% noise is 
applied to letter patterns. Noise is created by randomly  inverting pixels of a pattern. We 
trained the networks with increasing number of letter patterns, which are randomly 
chosen from 26 letter patterns, and the difference is recorded between the final state of 
the networks and the corresponding training patterns for 30 repeats.  
 
 
5 RESULTS AND DISCUSSION 
 
5.1 Storage Capacity 
                              

 
Figure 1 Load parameters Vs average Hamming 
distance between updated states and initial states 
(Hamming/n) for Hebbian rule. 

 
Figure 2 Load parameters Vs average Hamming 
distance between updated states and initial states 
(Hamming/n) for pseudo-inverse rule. 

    
Figure 1 and 2 show the storage capacity for Hebbian rule and pseudo-inverse rule. The 
trained patterns are initialized with 10% noise. The average distance is measured by the 
average Hamming distance between updated states and initial states divided by the 
number of neurons n=156 for 30 repeat tests. Figure 1 shows that the storage capacity for 
Hebbian rule, and figure 2 for pseudo-inverse rule. The load parameter is define as 

, where N  is the number of trained pattern, C is the number of nodes in 
the fully connected networks. 
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According to figure 1 and 2, the storage capacity of Hebbian rule is about 0.012. That 
means 2 letter patterns can be stored and retrieved without error by the model. And the 



storage capacity of pseudo-inverse rule is about 0.064. That means 10 letter patterns can 
be stored and retrieved without error by the model.  
 
Also we notice that the average distance between updated states and initial states for 
pseudo-inverse rule is much smaller than that for Hebbian rule 
 
The storage capacity of our Hopfield networks, for Hebbian rule is 0.012 and  for psedo-
inverse rule is 0.064, are far away from the result in theory which are 0.138 and 1. This 
can be caused by the following factors [12]. 
 
1) A high correlation of the training patterns. Correlations between the patterns worsen 
the performance of the network. Pseudo-inverse rule is one of the solutions to lower the 
correlation of the training patterns by preprocesse the patterns. 
 
2) The capacities of Hopfield networks are related with sparse representation of training 
patterns.  
 
3) Global inhibition is another factor that can affect storage capacity.  
 
 
5.2 Basin of Attraction 
 

 
Figure 3 Initial distance (noise level) Vs average 
Hamming distance between updated states and 
initial states (Hamming/n) for Hebbian rule.    

 
Figure 4 Initial distance (noise level) Vs average 
Hamming distance between updated states and 
initial states (Hamming/n) for pseudo-inverse rule  

 
Figure 3 and 4 show that the initial distance (noise level) Vs average Hamming distance between 
updated states and initial states (Hamming/n) for Hebbian rule and pseudo-inverse rule 
respectively. The distance is measured by Hamming distance between updated states and 
initial states divided by number of neurons n=156. 2 patterns are chosen randomly from 
26 letter patterns and presented to the network for each test, the first trained pattern is 
presented and the distance is recorded.  
 
We can see from figure 3 and 4 that the difference is not significant between the 
attraction basins for Hebbian rule and that for pseudo-inverse rule at a very low loading. 



The pattern completion ability of the associative memory makes the trained patterns point 
attractors of the network. Figure 3 and 4 demonstrate that, for both Hebbian and pseudo-
inverse rules, randomly chosen letter pattern converge to desired attractor if the initial 
distance is less than a certain value d, which is the size of basin of the attraction. 
 

 
Figure 5 Store 2 patterns and retrieve first 
pattern for pseudo-inverse rule   

 
Figure 6 Store 15 letter patterns and retrieve first 
pattern for pseudo-inverse rule 

 
Figure 5 and 6 are similar to figure 3 and 4 but for only store 2 patterns and 15 letter 
patterns with pseudo-inverse rule respectively. The retrieving of the first letter pattern is 
recorded. 
 
It shows if the networks only store 2 letter patterns, the networks can retrieve the letter 
pattern without error with the initial distance  as long as 0.4. However, if the networks 
store 15 letter patterns, the longest initial distance decrease to 0.2. That means the size of 
basin of the attraction will became smaller with more patterns are stored. 
 
 
6 CONCLUSIONS 
 
We have discussed Hopfield model of associative memory and implemented a Hopfield 
networks for letter recognition. We found that the networks with 156 neurons would store 
and retrieve without error for only 2 patterns with the Hebbian learning rule in average. 
The network of this size using pseudo-inverse rule can store an average of 10 patterns 
and retrieve without error. Also we found that the size of basin of the attraction of the 
Hopfield networks will became smaller with more stored patterns. 
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