Question 1.

What is the amount of information when transmitting a character in ASCII code?

Answer:

The amount of information when transmitting a character y_{i} in ASCII code is $I\left(y_{i}\right)=-\log _{2} p\left(y_{i}\right)$
In the case of standard ASCII code, the probability that y_{i} is chosen is $p\left(y_{i}\right)=\frac{1}{128}$ $I\left(y_{i}\right)=-\log _{2} \frac{1}{128}=7$
In the case of extended ASCII code, the probability that y_{i} is chosen is $p\left(y_{i}\right)=\frac{1}{256}$
$I\left(y_{i}\right)=-\log _{2} \frac{1}{256}=8$

Question 2

What is the maximal average amount of information (entropy) that can be transmitted with a Poisson spike train with an average firing rate of 100 Hz ?

Answer

The entropy of observing N spikes in the time interval T with a Poisson spike train is

$$
S(N ; T) \approx \frac{1}{2} \log _{2} N+\frac{1}{2} \log _{2} 2 \pi, \quad N=r T
$$

And the average firing rate is 100 HZ , we can get $N=100 T$.
Therefore, the maximal average amount of information that can be transmitted with a Poisson spike train with an average firing rate of 100 HZ is
$S(N ; T) \approx \frac{1}{2} \log _{2} 100 T+\frac{1}{2} \log _{2} 2 \pi, \quad T$ is the time interval.
It is maximum in the sense that we consider only the noiseless case.

Question 3

What is the maximal firing rate of an integrate-and-fire neuron with an absolute refractory time of 2 ms ?

Answer :

The firing rate of an integrate-and-fire neuron is
$\bar{r}=\frac{1}{t^{\text {ref }}-T_{m} \ln \frac{v-R I}{u_{\text {res }}-R I}}$
also $t^{f}=-T_{m} \ln \frac{v-R I}{u_{\text {res }}-R I} \geq 0$, therefore, if $t^{f}=0, \bar{r}$ will have maximal value, that is $\bar{r}=\frac{1}{t^{r e f}}=\frac{1}{2 \times \frac{1}{1000}}=500 \mathrm{HZ}$

Question 4

How many hidden layers are necessary to implement the Boolean XOR function with a feedforward neural network? Can the activation function of the hidden nodes be linear? (Explain briefly)

Answer:

1) We don't have to use hidden layers to implement the Boolean XOR function. Because if we employ a nonlinear activation function, such as a rotation combined with a non-monotonic function, we can represent the Boolean XOR function with a single sigma node.
2) We need to use a non linear activation function for the hidden nodes, since units of hidden layers using linear functions will not be more powerful than a well chosen single layer. Suppose we use linear activation functions $g(x)=a x+b$ to all the nodes in a two hidden layer network.

$$
\begin{aligned}
& r^{\text {out }}=g\left(w^{\text {out }} g\left(w^{h 2} g\left(w^{h 1} r^{\text {in }}\right)\right)\right)=g\left(w^{\text {out }} g\left(a w^{h 2} w^{h 1} r^{\text {in }}+b w^{h 2}\right)\right) \\
& =g\left(a^{2} w^{\text {out }} w^{h 2} w^{h 1} r^{\text {in }}+a b w^{\text {out }} w^{h 2}+b w^{\text {out }}\right)=g\left(A r^{\text {in }}+B\right)
\end{aligned}
$$

In the last step, I use A to stand for the multiplication of a series of weights matrices and constant, use B to stand for the other part.

We can see that each layer would perform as a purely linear operation on its inputs and the multiple layers network would still perform as a single-layer network.

Question 5

A Boolean function can be defined with a truth table. A specific Boolean function is given by the following truth table

Answer:

x_{1}	x_{2}	y_{1}	y_{2}
true	true	true	true
true	false	false	true
false	true	true	false
False	false	true	true

