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Abstract 
Our project is an implementation of Apriori based ARC-BC algorithm to classify text 
documents. The main idea is based on ARC-BC [3] [4]. This report reviews text 
categorization and traditional approaches to learning algorithms. Then we propose an 
association rule approach to text categorization. We test the text categorization with 
several different size data sets and support values. Accuracy is evaluated as well. 
Experiment results shows our implementation is efficient and comparable. 

 

 

1. Introduction 
Amazing development of Internet and digital library has triggered a lot of research areas. 
Text categorization is one of them. Text categorization is a process that group text 
documents into one or more predefined categories based on their contents [1]. It has wide 
applications, such as email filtering, category classification for search engines and digital 
libraries.  
 
Basically there are two stages involved in text categorization. Training stage and testing 
stage. In training stage, documents are preprocessed and are trained by a learning 
algorithm to generate the classifier. In testing stage, a validation of classifier is 
performed. There are many traditional learning algorithms to train the data, such as 
Decision trees, Naïve-Bayes (NB), Support Vector Machines (SVM), k-Nearest Neighbor 
(kNN), Neural Network (NNet), etc. In this project, we apply association rule based 
ARC-BC algorithm to generate a set of rules associated with each category, and from 
these rules classifier is further generated. In this way, training time is relatively fast and 
the rules generated are understandable and can be manually updated or adjusted if 
needed. 
 
In this project, data documents are preprocessed and ARC-BC algorithm is implemented 
to generate the classifier. Then the classifier is tested for validation. This project report is 
organized as follows: Section 2 is an introduction of text document categorization. A 
detail description of Apriori algorithm and ARC-BC algorithm are given in section 3. Our 
design document is in section 4, which includes our design flow chart and code 
description. Programs are tested on different data sets and support values. Accuracy was 
evaluated as well. Experiment results are described in section 5. Then a summary is given 
in section 6. In section 7, user documentation is presented.   
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2. Text Document Categorization Introduction  

2.1 Overview of Text Categorization 
With the increasing of information on the internet and development of digital articles, 
people urgently need an efficient tool to automatically classify the information into 
categories. In this way, we can easily search, filter and store the large amount of 
resources. Automated text categorization is a process that assigning pre-defined category 
labels to new documents based on the contents [2]. 
 
Text categorization has many applications. For example, we can classify web pages into 
different categories to speed up the internet search, which is very useful for some search 
engines like Yahoo. Text categorization can be applied to filter emails to judge if it is 
spam email and further folder the emails. For news agencies, such as Globe and Mail, 
they receive thousands of articles a day. Articles can be classified to several categories 
like sports, politics, medical and etc by text categorization methods. In digital library, 
people use key words to index articles, text categorization can also be used to classify the 
digital articles according to the subjects or key words.  
 
Usually there are two stages involved in text categorization, training stage and testing 
stage. In training stage, we need a learning algorithm to learn the training documents to 
build the classifier. In testing stage, classifier is used to categorize documents. 

2.2 Traditional Approaches for Learning Algorithm 
Most of the researches in text categorization come from the machine learning and 
information retrieval communities such as decision trees, naïve-Bayes (NB) [9], Support 
Vector Machines (SVM) [11], k-Nearest Neighbor (kNN) [10], Neural Network (NNet) 
and etc. Among these methods, SVM has the best performance. KNN is a simple statistic 
method and it also shows very good performance. NB is relatively underperforming the 
others [2].  
 

2.3 Association Rule Approach  
Association rule approach to categorize the documents is relatively new. The concept is 
to discover the strong patterns that are associated with the class labels and then take 
advantage of these patterns to build the classifier. Once classifier is built, new documents 
are categorized into the proper class. We will introduce this approach in more detail in 
Part 3. 

3. Association Rule Algorithm 

3.1 Association Rule and Apriori Algorithm 
Association rule mining is a data mining task that discovers relationships among items in 
a transactional database [12]. It is described as follows: Let I= { i1, i2,…im}, be a set of 
items. Let D, the task relevant data, be a set of database transactions where each 
transaction T is a set of items such that T  I. Each transaction is associated with an ⊆
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identifier, called TID. Let A be a set of items. A transaction T is said to contain A if and 
only if A ⊆  T. An association rule is an implication of the form A⇒  B, where A  I, B 

 I and A ∩  B = NULL.  
⊂

∪

⊂
 
Following key parameters are used to generate valuable rules: 

• Support (s) 
Support (s) of an association rule is the ratio (in percent) of the records that contain 
X Y to the total number of records in the database: support( X ⇒  Y) = Prob { X  Y } ∪

• Confidence (c ) 
For a given number of records, confidence ( c) is the ratio of the number of records that 
contain X ∪ Y to the number of records that contain X. 
confidence(X ⇒  Y) = Prob { Y| X } = ( support (X ∪  Y) ) / ( support (X) ) 

• Strong Association Rules: 
Rules that satisfy both a minimum support threshold (min_sup) and a minimum 
confidence threshold (min_conf) are called strong rules. Strong rules are what we are 
interested in.   
 
There are two main steps to process association rule mining: Step 1 is to use prior 
knowledge find all frequent itemsets by Apriori algorithm. It uses iterative search and use 
k-itemsets to find (k+1) itemsets.[5] Every itemset occurs at least more than the 
min_support value. Step 2 is to generate strong association rules from frequent itemsets, 
which means these rules must satisfy both min_support value and min_confidence value.  

 

3.2 Apriori Based ARC-BC Algorithm 
A new document categorization algorithm was proposed by M. Antonie and Osmar R. 
Zaiane [3]. It has following advantages: it  makes no assumption of term independence 
and it is fast during both training and categorización. ARC-BC is an Apriori based 
algorithm that only interested in rules that indicate a category label. As shown in Figure 
3.1, in this algorithm each set of documents that belong to one category is considered as a 
separate text collection to generate association rules. If a document belongs to more than 
one category, this document will be present in each set associated with the categories that 
the document falls into. [4] 

 

category 

category 

category 

association rules 
for category 1 

association rules 
for category i 

put the new 
documents in the 
correct class

classifier

association rules 
for category n 

Figure 3.1 ARC-BC Algorithm [4] 
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ARC-BC Algorithm is described as follows: [3] 
• Input:  

A set of documents (D) of the form Di = {ci, t1, t2, … , tn} where ci is the category 
attached to the document and , tn are the selected terms for the document; min_support is 
the threshold for support;   

• Output:  
Association rules like: t1 ^ tt2^ … ^ tn => Ci 
tj is a term and Ci is the category 

• Pseudo Code: 
(1) C1 = {Candidate 1 term-sets and their support } 
(2) F1 = { Frequent 1 term-sets and their support} 
(3)  for ( i = 2; Fi-1  != Æ; i++){ 
(4)  Ci = candidates generated from Fi-1  
(5) Di = FilterTable (Di-1 , Fi-1) 
(6) foreach document d in Di { 
(7)  foreach c in Ci  { 
(8)   c.support += Count(c, d) 
(9)  } 
(10) } 
(11)  Fi  = {c Є Ci | c.support  > min_support} 
(12)   } 
(13)  Sets = Ui  {c Є Fi | i  > 1} 
(14)  foreach itemset I in Sets{ 
(15) R += { I => Category} 
(16)  } 
 
In step 2, it generates the frequent 1-itemset. In steps 3-12, it generates all the k-frequent 
itemsets. In step 14-16, it generates the association rule. It’s almost same as the Apriori, 
but there are some differences: 

1) In step 5, The filtertable function removes the terms not in Frequent i-1 sets, 
which are not useful in the next loop.  

2) In step 14-16, it generates rules by combining the frequent itemsets with category. 

4. Design and Implementation 

4.1 System Overview 
Basically, there are two stages involved in text categorization as shown in Figure 4.1: 
training stage and testing stage. In training stage, we have some predefined documents 
and we will try to learn these documents and generate the document classifier. In this 
stage, we preprocess the documents to represent them suitable for learning algorithm. 
Then we will implement an algorithm to learn the training documents to generate the 
document classifier. In our project, association rule mining algorithm is applied to 
generate the associative classifier. In testing stage, we put the new documents into the 

 5



document classifier and get the classified documents. In project implementation, there are 
three parts: data preprocessing, generate association classifier and validation.  
 

 

Training set 

Testing set

Figure 4.1 Text categorization flow chart 

Preprocessing Phase 

Association Rule Mining

Model
ValidationAssociative Classifier 

 
4.1.1 Part 1: Data Preprocessing  
In preprocessing phase, test documents are regarded as transactions where items are 
words or phrases from the document as well as the categories to which the document 
belongs. Given a text document, which is represented by strings or characters, first we 
should change it into the format that is suitable for automatic text categorization learning 
algorithm. Reduce the feature set or data cleaning is usually the approach by selection a 
set of noise words. From Zipf’s law [8], we know that the high frequency terms in top of 
term list such as “a”, “the” and the low frequency terms with one or two occurrences in a 
document are useless to represent a document. Such kind of terms is usually treated as 
noise for document representation, and usually is removed before processing. As 
described above, a data cleaning phase is required to weed out those words that are of no 
interest in building the associative classifier. our processing includes: remove the tags 
from the text and retrieve the document, remove any words appearing in a stop list found 
in Van Rijsbergen [7] the remaining terms are applied to Porter’s stemming algorithm 
[6], which aims to get the stem of the word, such as removing the word suffix. It is only 
after the terms are selected from the cleaned documents that the transactions are formed.  
 
The size of our news data file is 27.8 M bytes. The documents are extracted and saved 
into “Repository” file, which is 13.4 M bytes after compression using ZLIB algorithm. 
Terms for each document are extracted and stemmed, stop words are removed. The 
frequency of all the terms in a document and in a category are counted and stored in 
vector and term files respectively. “Category” file is generated to store the document Ids 
in each category. After data preprocessing, three files, “Category”, “Vector” and “Term” 
will be used for classifier generating phase.  
 
Since the term frequency in Vector file is not used in current version of ARC-BC, and for 
the convenience of programming, the Documents file is generated based on Vector file. 
 
File format: 
 
Index File 
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GDBM  
Key 
 
Vector File 
 
 
GDBM 
Key 
 
Documents File 
 
 
GDBM 
Key 
 
Repository File 
 
GDBM 
Key 
 
Category File 
 
GDBM 
Key 
 
Term File 
 
GDBM Key 

Term        Total number                     docid        docid          … 
(String)    Of documents  (2bytes)   (2bytes)    (2bytes) 

Doc ID       Term ID    Frequency    Term ID    Frequency     …. 
(String)      (3 bytes)   (3bytes)        (3bytes)     (3bytes) 

Doc ID          Text of Document
(String)         (String) 

Doc ID        Terms 
(3bytes) (HashSet, each item in it is Integer, reprensenting the Term ID) 

Category     Doc ID      Doc ID     ….
(String)       (2 bytes)    (2 bytes) 

Category   Term ID    Frequency     …. 
(String)     ( 3bytes)    (3bytes) 
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Figure 4.2 Flow Chart of Data Preprocessing 

 
4.1.2 Part 2: Generate Classifier by ARC-BC 
 
After preprocess the data, we start to generate the classifier. For an automatic text 
categorization process, we should transform documents into transaction to represent them 
suitable for learning algorithm. That is, for a certain document Di, we divide it into two 
sets: first is the categories set of this certain document, cc1 to ccm, which is the subset of 
the whole categories set. And the second set of the document is the term set, tt1 to ttn, 
which is the subset of the whole term set. We can represent them as: 
categories  set C = {c1, c2, … , cm}  
term set T = {t1, t2, … , tn} 
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document Di = {cc1, cc2, … , ccm, tt1, tt2, … , ttn} 
 

For each category, we apply ARC-BC algorithm to generate the candidate sets, calculate 
the support and generate the frequent sets. The general flow chart for part 2 is shown in 
Figure 4.3. Detail ARC-BC algorithm implementation flow chart is shown in Figure 4.4.  

 
At the beginning, it gets 1-itemset from the category. Then it generates all the k-frequent 
itemsets from candidate sets. The third step is to calculate the support and delete those 
candidates less than min_support value, therefore generate the frequent set and we get the 
classifier.   

 
Figure 4.3 Flow Chart for Generate Rules 

 
For the details of “Using ARC-BC to generate rules”, please reference Figure 4.4. 
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ARC-BC Algorithm Flow Chart 

Figure 4.4 Flow Chart for the ARC-BC 

C
alculate the support and generate the frequent set 

C
i = candidates generated from

 F
i-1  
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Also we generate all k item frequent sets (k = 1, 2, 3…), we only save the last none 
empty k frequent set as the rules that will be used in text classifier, because the items in 
the last none empty k item show up most frequently in the documents.  
 
If there are too few documents in a category, there may be too many noisy rules. For 
example, if there is only one document in a category, all term combinations will be kept, 
but they are noisy rules. The program simply bypass this kind of category, and the 
threshold can be set in the configure file.  
 
4.1.3 Part 3: Validate text classifier 
Our classification method is: for a new document, first, we count the number of rules this 
document satisfy for each category, then label the document with category that has max 
count number. The result shows the accuracy of classifier. Flow chart is shown as Figure 
4.5. 

 
 

Figure 4.5 Flow Chart for Classifier Validation 
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4.2 Program Structure 
4.2.1  Part 1: data preprocessing 
1) class  IRZIPG  A class compress a string 

• Method: 
o public static String compress( String s )  
o public static String uncompress( String s ) 

2) class NewString  Compile it, import the Porter class into you program and create an 
instance. Then use the stripAffixes method of this method which takes a String as input 
and returns the stem of this String again as a String. 

• Methods:  
o private String Clean( String str ) 
o private boolean hasSuffix( String word, String suffix, NewString 

stem ) 
o private boolean vowel( char ch, char prev )  
o private int measure( String stem )  
o private boolean containsVowel( String word )  
o private boolean cvc( String str )  
o private String step1( String str )  
o private String step2( String str ) 
o private String step3( String str ) 
o private String step4( String str ) 
o private String step5( String str ) 
o private String stripPrefixes ( String str) 
o private String stripSuffixes( String str ) 
o public String stripAffixes( String str ) 

 
3) class Preprocessing  This class is used to do preprocessing for Association Rule for 
Document Categorization, CS6405 Data Mining project.The documents will be readed 
from source text file, which are in SGML format. All the tags will be removed. Stop 
words will be filtered out. The terms in the documents set are extracted and the term 
frequencies are calculated. Some files, vector, category, term are generated. 

• Methods:  
o public static void main(String[] args) 

 
4) class Repository  A class extracting documents from source text file. Create the 
repository database which stores all document one by one with tags. In repository 
database, each document is saved as an entry in GDBM file 

• Attribute:  
static public int BUFF_SIZE  BUFF_SIZE is the default size of Buffer 
static byte[] buffer  Buffer is used to improve the performance of I/O     

• Methods:  
o public Repository(String fileFrom, String fileTo) throws 

IOException 
o static public void InsertEntry(int intKey, String strItem, GdbmFile 

db)  
o static public String GetDoc(int intKey,GdbmFile db) 
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5) class Indexer  A class building inverted index and vector file 

• Attribute:  
o private String strFileFrom; 
o private Vector v; 
o public  StopWord sw; 
o private TreeMap m; 
o private int intStopWordCount 
o static GdbmFile vectorDatabase, indexDatabase, 

repositoryDatabase 
o private int intTermNo=0; 
o private HashMap termHashMap; 
o private Porter st; 
o public Indexer () throws IOException 

• Methods:  
o public void CreateIndexAndVector(String strIndexFile,String 

strVectorFile,String strRepositoryFile) throws IOException  
o public void InsertTermToInvertedIndex(String strNo, int 

intDocID) throws IOException  
o private void InsertToVector(int docid) throws IOException 
o private void InsertOrAppendToMapOfTermList(String strTerm) 

throws IOException 
o public String Stemming(String strTerm) 
o public void BuildTermListProcessing (int docid, String s) throws 

IOException 
o public void BuildTermCode(String strTermCodeFile) throws 

IOException  
o public void BuildTermList() throws IOException 

 
6) class CategoryIndexe  A class building category index file 

• Attribute:  
o private GdbmFile indexDatabase; 
o private GdbmFile vectorDatabase; 
o private GdbmFile repositoryDatabase; 
o private GdbmFile categoryDatabase; 
o private GdbmFile termDatabase; 

• Methods:  
o public CategoryIndexer () 
o public String getTermInCategory (byte[] byteTermList, byte[] 

byteTermNo, int intTermFrequency)  
o public String getDoc(int intDocID) 
o public String getCategory(String strDoc) 

 
7) class StopWord  

• Attribute:  
o private String strFileFrom="stopwords"; 
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o private InputStream in = null; 
o  private Vector v; 
o private int intSize=0; 

• Methods:  
o public StopWord () throws IOException  
o public int size()  
o static public boolean compare(byte[] s, byte[] d) 
o public boolean greater(byte[] s, byte[] d) throws IOException 
o public boolean IsStopWord(byte[] term) throws IOException 
 

8) class StopWord  Convert Vector file format to Document file format 
• Methods:  main() 

 
 
4.2.2 Part 2: Generate classifier by ARC-BC 
1)  class GenRules  This class implements the ARC-BC algorithms 

• Methods: public static void main(String args[]) 
 

2)  class Arcbc  This class implements the ARC-BC algorithms 
• Attribute:  

CanSet candidates  The candidates set as well as the frequent set 
int minSupport  The minimum support 
int minCount   minCoun t= minSupport * transactions count 
DocSet docSets  The DocSet object to commucate with data sets 

• Methods:  
o public Arcbc(int aMinSupport, DocSet aDocSet) 
o public Set generateAllRules()  
o public boolean genFreqSet()  

 
3) class CanSet  This class is used to generate and save rules. 

a. Attribute:  
Set canSet  The set to store candidates 

• Method: 
o public CanSet(Set aSet) 
o public Set getCandidates() 
o public void add(CanSetItem aItem) 
o ArrayList genSubSets(CanSetItem aOrgSet, Integer 

addingTermID)  
o public boolean genNextCanSet()  
o   public String toString() 

 
4)  class CanSetItem.java extends HashSet  The candiate or frequent set, including 

the support(count) of each item. 
• Attribute: 

int support  The support(count) of this item 
• Method: 
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o public int getSupport() 
o public void setSupport(int aSupport)  
o public void addSupport(int aAdd)  
 

5) interface DocSet  The DocSet interface is designed to provid a common protocol 
for operating data sets. 

• Method: 
o public String[] getAllCategories() 
o public void saveRules(String aCategory, HashSet aRules); 
o public void setCategory(String aCategory) 
o public void initialize() 
o public Set getOneItemCanSet() 
o public boolean hasNext() 
o public Doc next() 
o public int docsCount() 
 

6) class GdbmDocSet   implements DocSet  The GdbmDocSet class implements the 
DocSet interface using Gdbm file format. 

• Attribute:  
String categoryPatht  The paths and filename of category GDBM file. 
String documentsPath  The paths and filename of document GDBM file. 
String canFirstPath  The paths and filename of 1 item candidates GDBM file. 
String rulesPath  The paths and filename of rules GDBM file to save rules. 
String category  The label of category 
List documents   Documents in the category 
int nextDocument  The pointer points to the next document 

• Method: 
o GdbmDocSet() 
o public String[] getAllCategories() 
o public void saveRules(String aCategory, HashSet aRules) 
o public void setCategory(String aCategory)  
o public void initialize() 
o public Set getOneItemCanSet() 
o public boolean hasNext() 
o public Doc next() 
o public int docsCount() 

 
7) interface Doc  The Doc interface is designed to provid a common protocol for 

interface DocSet to operate a document, which is the a of a terms. 
• Method: 

o public Set getTerms(); 
o public boolean isContain(Collection aTerms) 
 

8) class GdbmDoc implements Doc  The GdbmDoc class implements the Doc 
interface. 
b. Attribute:  
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Set terms  The terms of the doucment   
• Method:  

o public Set getTerms()  
o public boolean isContain(Collection aTerms) 

 
 
4.2.3 Part 3: Validate text classifier 
1) class Classfier   This program is a simple classifier use the generated association 

rules 
• Method: 

o public Classfier() 
o static HashMap readCategory(GdbmFile categorydb) 
o public static void main(String[] args)  
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5. Experimental Result 

5.1 Experiment Data 
Data source of our experiments is news documents from “The Herald” from July 1, 2002 
to August 31, 2002. The total number of documents is 7837, each document with a pre-
assigned category label and total number of term occurrences is 3950848. Stop words are 
used as filter and then words are stemmed by Porter stemmer. There are 1741183 words 
removed from the data set. After preprocessing, there are 76682 unique terms stored in 
the database. The corpus is split into two parts, 5000 document training set and 2837 
document testing set respectively. We also picked different number of documents from 
the training data set. 
 
Our experiment is executed on Locutus server of Dalhousie University Computer Science 
Department. The server is a Sun Enterprise 4500 with eight 400Mhz Sparc processors 
and three gigabytes of RAM.  
 

5.2 Experimental Results and Analysis  
Table 6.1 shows the result of generated rules with different training time based on three 
support thresholds 70%, 80%, 90%.  
 

Data Set 
Size 1000 documents 2000 documents 3000 documents 5000 documents 

Support 
(%) 

# of 
Generated 

Rules 

Training 
Time 
(sec) 

# of 
Generated 

Rules 

Training 
Time 
(sec) 

# of 
Generated 

Rules 

Training 
Time 
(sec) 

# of 
Generated 

Rules 

Training 
Time 
(sec) 

70 8 1.93 31 199 40 276 36 460 
80 5 1.86 30 184 32 249 29 422 
90 5 1.7 22 123 27 251 24 268 

Table 5.1 Generated Rules and Training Time 
 
From Table 5.1, firstly, we can see that the number of generated rules varies with the size 
of training set. From 1000 to 3000 documents, the number of rules increases 
correspondingly, and for 5000 documents, it decreases comparing with the 3000 
documents.  
 
Secondly, when the support thresholds are going up (70%, 80%, and 90%), the number of 
rules and training time are reduced. It is because that the higher support threshold prunes 
more items in the procedure of association rule generating so processing time and 
generated rules are reduced as expected. Figure 5.1 shows the chart of dataset vs. training 
time compared by two support values, whose data is derived from the above table, the 
training time with higher support value 90% (bottom line) has a better performance, and 
we notice that when the size of data set is greater than 3000, the difference of training 
time is remarkably increased. The trend was clearly showed in Figure 5.2 
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Figure 5.1 Dataset vs. Training Time (Sup=70% and 90%) 
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Figure 5.2 Training Time vs. Support (Data Set size = 1000 ) 

 
 

The validation of the association rule classifier is implemented by our simplified 
algorithm, and table 5.2 shows the experiment result and table 5.3 shows the sample 
association rules composing the classifier. Two testing data sets of 100 and 1000 are 
applied on two training data sets with three support thresholds: 70%, 80%, and 90%. The 
validation is measured by accuracy which is the percentage of correctly classified data on 
whole test data. 
 
First, we see that there is no significant difference of accuracy between the two test data 
sets. They almost achieved all the same result for different testing. Second, the accuracy 
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is almost constant around 50% for 2000 training set, whereas the accuracy has a 
significant increase when the support threshold is set up to 90% for the 5000 data set. The 
difference shows that increasing the number of files in training set and the support 
threshold can increase the accuracy of classification.  

 
Number of 

documents in 
Training Set 

Number of 
documents in 
Testing Set 

Support 70% 80% 90% 

100 Accuracy 49% 48% 50% 2000 1000 Accuracy 49% 50% 50% 
100 Accuracy 53% 52% 79% 5000 1000 Accuracy 52% 50% 80% 

 
Table 5.2: Accuracy of classifier for different support and data set 

 
people ^  halifax ^ editor ^ dear  Letter 
press ^ look ^ include ^ fashion  LivingFashion 
People ^ new ^ disease ^ medical  LivingHealth 

 
Table 5.3 Examples of association rules composing the classifier. 

 
 
 
Our experimental results are not as good as the results shown in paper [3].  The results 
are not contributed by the association rule generating algorithm, but by our simple 
implementation of model validation. This may also be caused by our data set. The 
document distribution for each category may not be uniform. Some categories have small 
number of documents, for example, category “funny” has only one document, and this 
document has high possibility to generate a noisy rule, thus further affect the accuracy of 
our classifier. 
 
Because of limited time, we implemented a simple classifier, which classify documents 
by counting the rules that satisfy and return the category with maximum count. Our 
implementation ignores the confidence, which is an important measure that can be used 
to generate rules, prune rules and apply rules to build text classifier. The number of rules 
generated by our system is relatively small since we prune the rules and only keep the last 
none empty k frequent sets as the final rules, which we think is the most representable 
feature of a certain category. Since each document in our data set is pre-labeled with one 
category, we only implement single-class categorization. A document can be assigned to 
multi-classes, if more that one category exceeds a threshold for the count of rules that this 
documents satisfied. So by introducing the “count threshold”, our algorithm can also be 
used for multi-class categorization after slightly change the method of classifier.   
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6 Conclusion and future work 
 
In this project, we employed association rule in the text categorization. Our study 
provides evidence that association rule can be used in automatic text categorization 
efficiently and effectively. One major advantage of the association rule based classifier is 
that it doesn’t assume that terms are independent and its training is relatively fast. 
Furthermore, the rules is human understandable and easy to be maintained or pruning by 
human being. Since time is limited, we simplified the pruning and classification method, 
and the result is comparable to the methods mentioned in the [3] [4].  
 
In the future, we would add following features to the project: 

• Feature selection: Adding the weight of each term in the documents and pruning the 
terms with lower weight. The feature selection will reduce the number of terms as 
well as reduce the noisy of the terms. 

• Classification: Improve our simple classifier by using algorithms based on 
confidence. 
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7. User Instruction 

7.1 User Instruction Overview  
This system can be used to classify text documents. Our system can be applied in many 
fields, such as web site categorization, email filtering, digital library etc.  
 
Java 1.3.1 and GNU dbm (GDBM) need to be installed in the computer to run our project 
programs. GDBM is a set of database routines that use extensible hashing. It works 
similar to the standard UNIX dbm routines and is idea for storing and retrieving small 
dataset. JDK 1.3.1 can download from www.sun.com. GDBM can be downloaded from 
GNU website http://www.gnu.org/software/gdbm/gdbm.html. Both of them are free. 
 
Our programs run well on the Locutus server. We can use javac *.java to compile the 
programs. 
 
There are three steps shown as following: 

7.2 Part 1: User instruction for data preprocessing 
Run 
java Preprocessing 
 
This program reads the source document, generate three data files, “Vector”, “Category” 
and “Term”, these files will be used in the training phase.  

7.3 Part 2: User instruction for generating classifier by ARC-BC 
Run 
java GenRules 
 
Configure 
There are to configure files. 
1. configure 
1) min_support: Set the mininum support. 
Examples: min_support=90, min_support=80 
2) min_Category_#files: The minum number of files in a category. If 
the number of files in a category is lower than iMinFilesInCategor, 
system will not generate rules for it. 
Examples: min_Category_#files=5, min_Category_#files=7 
 
2. dataconfigure 
1)category_file: the path and filename of category file, which is in 
Gdbm file format, created in data preprocessing phase. 
Examples: category_file=./data/category1k 
category_file=./data/category2k 
 
2)document_file: the path and filename of doucment file, which is in 
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Gdbm file format, created in data preprocessing phase. 
Example: document_file=./data/documents 
 
3)first_item_candidates_file: the path and filename of the first 
item candidates file, which is in Gdbm file format, created in data 
preprocessing phase. 
Examples: first_item_candidates_file=./data/candidates1k, 
first_item_candidates_file=./data/candidates2k 
 
4)rules_file: the path and filename of the file in Gdbm file format, 
to save the rules that will be generated. 
Exapmle: rules_file=./data/rules 

7.4 Part 3: User instruction for validating text classifier 
Run  
java Classfier 
 
Input 
Rule set generated from part 2 
 
Output 
accuracy & error 
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Appendix1: Sample of news document in experimental data set 
<ARTICLE> 
<HEADER> 
<PUBDATE>2002/07/01</PUBDATE> 
<CATEGORY>Metro</CATEGORY> 
<SUBCAT>None</SUBCAT> 
<RATING>3</RATING> 
<KEYWORDS>CRI</KEYWORDS> 
<COPYRIGHT>Unknown</COPYRIGHT> 
</HEADER> 
<STORY> 
<VERSION> 
<PUBINFO> 
<COPYRIGHT>Unknown</COPYRIGHT> 
<INTERNET>yes</INTERNET> 
<PUBMETRO>A3</PUBMETRO> 
<INTONLY></INTONLY> 
</PUBINFO> 
<HEADLINE>Police seek cab robber </HEADLINE> 
<SUBHEAD></SUBHEAD> 
<BYLINE> </BYLINE> 
<CONTENT>Nova Scotia Crime Stoppers is asking for the public's help in finding the man responsible for 
a Halifax robbery. 
 
On June 17 shortly after 10 a.m., a man asked a cab driver in front of the Casino Nova Scotia Hotel to take 
him to Dutch Village and Bayers roads. 
 
Near Almon Street and Connaught Avenue, the suspect indicated he had a gun but no money. 
 
The cabbie turned right onto Connaught Avenue and pulled into an Irving station hoping to find help. As he 
tried to get out, the suspect held him by his coat, pulled out a carpet knife with a hooked blade and jabbed it 
at the driver's ribs. The cabbie managed to jump out of his car and call police from the gas station. 
 
The suspect was seen running east on Bayers Road and then through the back of a funeral home parking 
lot. 
 
The robber was biracial, 23 or 24 years old and wore a beige baseball cap and a grey and beige three-
quarter-length jacket.  Anyone with information on this or any other serious crime in Nova Scotia 
is asked to call Crime Stoppers anytime at 1-800-222-8477. 
 
If your tip leads to an arrest, you will qualify for a cash award from $50 to $2,000. Your call is anonymous 
and you will not have to testify in court.</CONTENT> 
</VERSION> 
</STORY> 
<PHOTOS> 
</PHOTOS> 
<GRAPHICS> 
</GRAPHICS> 
<INFOBOXES> 
</INFOBOXES> 
</ARTICLE> 
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Appendix 2: Stop words list used in the preprocessing. 
a 
about 
above 
across 
after 
afterwa
rds 
again 
against 
all 
almost 
alone 
along 
already 
also 
althoug
h 
always 
am 
among 
amongst 
amoungs
t 
amount 
an 
and 
another 
any 
anyhow 
anyone 
anythin
g 
anyway 
anywher
e 
are 
around 
as 
at 
back 
be 
became 
because 
become 
becomes 
becomin
g 
been 
before 
beforeh
and 
behind 
being 
below 
beside 
besides 
between 
beyond 
bill 
both 

bottom 
but 
by 
call 
can 
cannot 
cant 
co 
compute
r 
con 
could 
couldnt 
cry 
de 
describ
e 
detail 
do 
done 
down 
due 
during 
each 
eg 
eight 
either 
eleven 
else 
elsewhe
re 
empty 
enough 
etc 
even 
ever 
every 
everyon
e 
everyth
ing 
everywh
ere 
except 
few 
fifteen 
fify 
fill 
find 
fire 
first 
five 
for 
former 
formerl
y 
forty 
found 
four 
from 

front 
full 
further 
get 
give 
go 
had 
has 
hasnt 
have 
he 
hence 
her 
here 
hereaft
er 
hereby 
herein 
hereupo
n 
hers 
herself 
him 
himself 
his 
how 
however 
hundred 
i 
ie 
if 
in 
inc 
indeed 
interes
t 
into 
is 
it 
its 
itself 
keep 
last 
latter 
latterl
y 
least 
less 
ltd 
made 
many 
may 
me 
meanwhi
le 
might 
mill 
mine 
more 

moreove
r 
most 
mostly 
move 
much 
must 
my 
myself 
name 
namely 
neither 
never 
neverth
eless 
next 
nine 
no 
nobody 
none 
noone 
nor 
not 
nothing 
now 
nowhere 
of 
off 
often 
on 
once 
one 
only 
onto 
or 
other 
others 
otherwi
se 
our 
ours 
ourselv
es 
out 
over 
own 
part 
per 
perhaps 
please 
put 
rather 
re 
same 
see 
seem 
seemed 
seeming 
seems 
serious 

several 
she 
should 
show 
side 
since 
sincere 
six 
sixty 
so 
some 
somehow 
someone 
somethi
ng 
sometim
e 
sometim
es 
somewhe
re 
still 
such 
system 
take 
ten 
than 
that 
the 
their 
them 
themsel
ves 
then 
thence 
there 
thereaf
ter 
thereby 
therefo
re 
therein 
thereup
on 
these 
they 
thick 
thin 
third 
this 
those 
though 
three 
through 
through
out 
thru 
thus 
to 

togethe
r 
too 
top 
toward 
towards 
twelve 
twenty 
two 
un 
under 
until 
up 
upon 
us 
very 
via 
was 
we 
well 
were 
what 
whateve
r 
when 
whence 
wheneve
r 
where 
whereaf
ter 
whereas 
whereby 
wherein 
whereup
on 
whereve
r 
whether 
which 
while 
whither 
who 
whoever 
whole 
whom 
whose 
why 
will 
with 
within 
without 
would 
yet 
you 
your 
yours 
yoursel
f 
yourse
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