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a b s t r a c t

Centre-Surround Neural Field (CSNF) models were used to explain a possible mechanism by which
information from different sources may be integrated into target likelihood maps that are then used to
direct eye saccades. The CSNF model is a dynamic model in which each region in network excites near-
by location and inhibits distant locations, thereby modeling competition for eye movements (saccades).
The CSNF model was tested in a number of conditions analogous to a naturalistic search task in which
the target was either (1) present in the expected location, (2) present in the unexpected location, or
(3) absent. Simulations showed that the model predicted a pattern of accuracy results similar to those
obtained by [Eckstein, M. P., Drescher, B. A., & Shimozaki, S. S. (2006). Attentional cues in real scenes,
saccadic targeting, and Bayesian priors. Psychological Science, 17(11), 973–980] from human participants.
However, the model predicts different saccadic latencies between conditions where Eckstein, Drescher,
and Shimozaki (2006) found no significant differences. These discrepancies between model predictions
and behavioural results are discussed. Additional simulations indicated that these models can also
capture the qualitative flavor of eye movements in conditions with multiple targets as compared to
[Findlay, J. M. (1997). Saccade target selection during visual search. Vision Research, 37(5), 617–631].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When an individual, or primate, moves their eyes they tend
to do so in jerky stop-and-start movements referred to as
‘‘eye saccades’’. Numerous neuropsychological and psychological
studies have studied these eye saccades in a various experimental
paradigms (for a recent review of eye movement research see
Stigchel, Meeter, and Theeuwes (2006)). A debate still exists about
how information from different sources is integrated to direct
these eye saccades. One model is the Centre-Surround Neural
Field (CSNF) model whose primary feature are centre-surround
nodes that excite near-by locations and inhibit distant ones (Amari,
1977; Grossberg, 1973). These CSNFmodels are dynamicmodels in
which each node represents a possible choice or location to which
a person could move their eyes. Each node competes to reach
threshold with the time it takes to reach threshold considered
to be the reaction time or saccadic latency, and the winning
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location represents where in space the saccade would be directed.
The current paper compares these CSNF models to models used
by Eckstein, Drescher, and Shimozaki (2006) and considers the
integration of multiple targets in comparison to Findlay (1997), as
well as Chen and Zelinsky (2006).

1.1. Model input: Maps

Many models use feature extraction at their core to determine
which regions would be interesting/relevant. For example, Naval-
pakkam and Itti (2005) recently proposed a model using a com-
bination of feature detectors tuned to different resolutions. This
informationwas furthermodified/enhanced through top-down bi-
asing to simulate previous knowledge that a person would have.
Navalpakkam and Itti’s (2005) model further incorporated hierar-
chies, and different types of what they called saliency maps, each
of which had to be integrated to make some decision in regards to
which locations the model would direct its eyes.

Maps are topographically arranged such that two equidistant
locations on the map represent two equidistant locations that fall
on the retina. High activity at a location on a map indicates a
corresponding region of interest (or saliency) in the real-world or
input (Li, 2005). Navalpakkam and Itti (2005) hypothesized the
existence of at least three different kinds of maps. These three
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maps included (1) an exogeneous or bottom-up visual saliency,
hypothesized to be in posterior parietal cortex, (2) an endogeneous
or top-down task-relevant map, hypothesized to be located in the
pre-frontal cortex, and (3) an eye-movement guidance map in the
superior colliculus that may guide the focus of attention. This final
map (3) can also be called a ‘‘target likelihood map’’, and is likely
the site at which information from both the other two maps are
integrated.

Previous research has built target likelihood maps using
various methods of integrating exogeneous and endogeneous
inputs. Tsotsos et al. (1995) implemented attentional selection
using a combination of feedforward bottom-up feature extraction
hierarchy and a feedback selective tuning of theses feature
extraction mechanisms. That location is then propagated back
through the feature extraction hierarchy, through the activation
of a cascade of winner-take-all networks embedded within the
bottom-up processing pyramid. Wolfe (1994) built on Neisser’s
pre-attentive/attentive distinction (Neisser, 1967), integrating
both exogeneous and endogeneous saliency criteria in his Guided
Search model. Deco, Pollatos, and Zihl (2002) used inhibition
to mediate between exogeneous and endogeneous influences
in a biased competition model (Duncan & Humphreys, 2002),
simulating saliency in posterior parietal cortex with a model
similar to that discussed here. For a review of these and other
models see Shipp (2004) and Itti and Koch (2001).

Itti and Koch (2000) proposed a model with centre-surround
receptive field mechanisms used to derive luminance, color,
orientation contrast difference signals at multiple spatial scales
within a pyramid. They then combined these feature contrast
signals to build saliency maps. Their model was successful at
explaining how feature singleton targets can be detected very
quickly independent of set size (cf. Treisman and Gelade (1980))
but did not incorporate the influence of top-down guidance.
Such top-down guidance is a key element to fixation patterns
as illustrated by the classic study by Yarbus (1967) in which
participants were shown to fixate on different areas in the
same painting depending on their instructions. In a more recent
example, Chen and Zelinsky (2006) found that top-down guidance
to be more influential on eye saccades than bottom-up in a design
that pitted top-down information (available in the form of a target
preview) against bottom-up information (color saturation). Thus,
it seems important to consider models that act on higher level
information than just bottom-up salience.

This current paper focused on maps that incorporate infor-
mation from multiple sources. In the context of most of the ex-
periments in this paper, these multiple sources can represent
bottom-up and top-down information, and the maps we discuss
here are ‘‘target likelihood maps’’, such as the map in the inter-
mediate layer of the superior colliculus. A common problem in the
literature has been deciding how exactly to combine top-down
task-relevantmapswith bottom-up saliencymaps. Ourmodel does
not distinguish between the nature of the sources, but implements
an universal mechanism for integrating them.

The CSNF model used in this study consist of a single
competitive layer plus one input layer. This CSNF layer was treated
as a layer in which information from potentially different sources
was integrated. We did not model feature detection in this paper,
but rather concentrate on the integration dynamics.

1.2. Centre-Surround Neural Field (CSNF) models

Centre-SurroundNeural Field (CSNF)models are named as such
because their mechanisms work similar to on-centre off-surround
ganglion cells. That is, certain ganglion cells in retina increase their
firing ratewhen stimulated in the centre of their receptive field, but

decrease their firing ratewhen stimulated in the periphery. Centre-
Surround Neural Field (CSNF) models work in a similar way with
activation at one region exciting near-by locations, but suppressing
distant locations. The CSNF models we will describe in this paper
are also called Continuous Attractor Neural Networks (Standage,
Trappenberg, & Klein, 2005; Stringer, Trappenberg, Rolls, & Araujo,
2002) and Competitive Integration Models (Godijn & Theeuwes,
2002). The centre-surround mechanisms of CSNF models have
been under investigation for a number of years (e.g. Standage
et al. (2005); Trappenberg, Dorris, Munoz, and Klein (2001); Zhang
(1996)), and are similar to those used by Itti and Koch (2000) and
Usher and McClelland (2001).

These models have several important features including
(1) They are arranged retinotopically or topographically. (2)
They make predictions regardless of the source of information
(e.g. exogeneous or endogeneous). (3) They work competitively
and dynamically through time with lateral connections exciting
other near-by locations and inhibiting distant ones. (4) They can
be thought of as a type of Winner-Take-All (WTA) model with the
winning ‘‘node’’ (a unit of the model) representing the most likely
location for the target, and therefore the location to which an eye
saccade is most likely to go. (5) Thesemodels have a certain degree
of neurophysiological plausibility, for example, recent research
in macaque monkeys found centre-surround mechanisms in the
frontal eye-fields (Schall, Sato, Thompson, Vaughn, & Juan, 2004).
(6) Finally, and perhapsmost importantly, thesemodels have great
predictive power. Versions of these models have been shown to
explain many aspects of eye movement data including endpoints,
latencies, pro-saccades, anti-saccades, trajectories of eye saccades,
and responses to distractors and target expectancies, among other
things (cf. Godijn and Theeuwes (2002) and Trappenberg et al.
(2001)).

CSNF models are dynamic models in which the retinotopic
‘‘nodes’’ act over-timeon information/input from the environment.
Input from the environment (external input) is processed by the
model and results in increased activation at the node representing
that region in space. Activity at this node then, in turn, begins
to excite neighboring locations, and inhibiting distant locations.
If there is only one strong input to the system a winning
region/packet or bubble of activity will develop over time (see
Fig. 1A). With two or more strong inputs to the system, activity
at the strongest region will eventually inhibit activity at the
other regions (Fig. 1B). However, if two inputs to the model are
close enough to each other excitatory activity at both regions can
cause the CSNF model representation to merge together to form
a winning bubble of activity centered somewhere between the
two inputs (Fig. 1C). This last feature of CSNF models can explain
‘‘averaging saccades’’ in behavioural data (the phenomenon in
which eye saccades are made to a location between two close
targets instead of directly to one of the targets).

Generally, even with multiple inputs to the network, a location
will eventually reach threshold (‘‘win’’), however the location of
the ‘‘winner’’ and the time taken to reach threshold will depend
on the number of inputs, their relative strength, and their relative
distance from each other. The winning location, or the first node
to reach threshold, is a prediction about to which location an
eye saccade go. The time taken for the winning location to reach
threshold is a prediction about how long it takes to actually initiate
the saccade (known as the saccadic latency).

In CSNF models, each node has its own accumulator, which
interacts with accumulators at other nodes. This is opposed to
diffusion models, as described recently by Smith and Ratcliff
(2004), in which there is only a single accumulator. In basic
diffusion models, this accumulator is initialized to start between
some upper and lower threshold that represent different decisions.
The model then accumulates evidence and moves either up or
down until it crosses one of the two thresholds and a decision is
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Fig. 1. Build-up of CSNF model from different starting conditions. Left columns show early states of network, and right columns show the network as it reaches threshold.
Panel A show build-up of a single input (∗) to reach threshold. Panel B shows how with two inputs, the larger one will inhibit the smaller one through lateral connections
as it increases in activity. Panel C shows how two close inputs will merge via lateral excitatory connections to form a single winning bubble. Similar figures and explanation
of model dynamics can be found in Godijn and Theeuwes (2002).

made. Usher andMcClelland (2001) described the classical random
walk model where the accumulator variable can be thought of
the difference between the number green and red balls drawn
from an urn. Before processing, the counter is initialized and then
at each step a count is added if the ball is green or subtracted
if the ball is red. CSNF models, on the other hand, are a type
of leaky competing accumulator model where each node has its
own accumulator initialized to zero that rises toward an upward
threshold (moderated by lateral connections to other nodes). The
first to reach threshold represents the decision, or in this case,
the location to which the eyes are moved. Of course, as shown
in Fig. 1B, an important dynamic in this architecture, in contrast
to non-competing accumulator models, is that CSNF accumulators
not only rise, they can also fall back to zero through competition
and lateral connections between the nodes.

1.3. Current simulations

The first part of this paper focuses on comparing CSNF
models to recent work by Eckstein et al. (2006). Eckstein et al.

(2006) compared two different approaches to constructing target
likelihood maps for a simulated naturalistic search task with at
least two highly-likely target locations. They called one approach
(1) TheBayesian approach and the other the (2) LimitedAttentional
Resources (LAR) approach. In the Bayesian approach, two maps
were built separately, a likelihood ratio map (containing visual
evidence for the target) and a prior probability map (differential
weighting based on cues). These two maps were then combined
in a multiplicative way. The resulting posterior probability map
or target likelihood map would then indicate the decision map
or the location to which participants would most likely make eye
saccades. In the LAR model the likelihood ratio map was built in
the same way, but the prior probability map was instead used
to process cued locations more accurately. The different models
make different predictions in a case with only a cue and no target.
Specifically, the Bayesianmodel predicted eye saccades to the cued
location, while the LAR Model predicted better target rejection at
the cued location. In other words, the Bayesian Model predicted
more eye saccades to the cued location, while the LAR Model
did not, or no more so than chance. The Bayesian model more
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appropriately captured the pattern of results from the behavioural
data.

Although we see some of advantages in the modeling approach
of multiplying two different maps together to choose a winner
(as done by Eckstein et al. (2006) in their Bayesian model), we
believe leaky competing accumulator models offer an important
extension to their work. Most notably, these models offer a
temporal component to the saccadic predictions absent from the
models of Eckstein et al. (2006) in addition to offering a more
biologically plausible implementation (cf. Schall et al. (2004)).
Thus, the first part of this paper focused on applying our Centre-
Surround Neural Field (CSNF) models to conditions outlined by
Eckstein et al. (2006).

The Eckstein et al. (2006) model considered cases with only
two locations of interest, but several studies have investigated
multiple targets and distractors. For example, Chen and Zelinsky
(2006) considered a design in which a target was searched for in a
circular arraywithnine distractors. The objects in the arraywere all
black & white photos of real objects but one of the distractors was
shown in color to create visual salience and distract direction of
gaze away from the target. Findlay (1997) also considered a design
in which a target was one of eight objects somewhere around a
ring. In addition to single-target trials, initial eye saccade endpoints
were considered to conditions with no targets, two targets, or
targets of different distances. In the latter case, 16 objects were
presented, an inner ring with eight, and an outer ring of eight. The
saccade pattern difference was considered when the target was at
a near location versus a far location. Since CSNF models are easily
extendable to cases with multiple targets and/or distractors, the
last part of this paper incorporated a few of these simulations. The
results of these simulationswere compared to the behavioural data
collected by Chen and Zelinsky (2006) and Findlay (1997).

2. Methods

2.1. Centre-Surround Neural Field (CSNF) model architecture

The current simulations use a Centre-Surround Neural Field
model similar to those employed by in previous research (e.g.
Standage et al. (2005), Trappenberg (in press, 2008b) and
Trappenberg et al. (2001)). Neural field models of this sort were
first introduced by Amari (1977). The dynamics of an internal
state variable u( x

⇀
) at ‘location’

⇀
x in 2-dimensions (Owen, Laing,

& Coombes, 2007; Taylor, 1999) is given by:
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In this formula, Iext(
⇀
x , t) represents an external stimulus as

received by the neural field, and r(
⇀
z , t) is a state variable of the

neural field. This rate is related to the internal state variable u(
⇀
x , t)

through a gain function r = g(u). A sigmoid gain function of
g(u) = 1/(1 + exp(−βu)) was used. Other gain functions are
sometimes biologically more appropriate but would not change
the principle findings in the simulations presented here. The
weight kernel w(| ⇀

x −#z|) describes the interaction in the neural
field as specified further below.

Period boundary conditions were used to minimize boundary
effects. The result in 2-dimensions is a torus, where we used
feature values contained between values of (0–2π ]. Eq. (1) defines
the dynamic evolution of the neural field, which is continuous in
time and space (Schöner, 2007).

The interpretation of each node is not that of a simple neuron,
rather, it stands for a collection (population) of neurons that

receive similar input in a certain task (Brunel & Wang, 2001;
Gerstner, 2000; Wilson & Cowan, 1972), or that of a cortical
minicolumn (Johansson & Lansner, 2007). The lateral interaction
kernel w(| ⇀

x −#z|), is chosen to be a shifted Gaussian

w(| ⇀
x −#z|) = Aw

(
1√
4πσr

e−∆2/4σ 2
r − C

)
, (2)

with Aw = 50, σr = 2π/24, and the inhibition level (C) = 0.3,
and

∆ = min(| ⇀
x −#z|, 2π − | ⇀

x −#z|). (3)

Other popular choices are weight profiles in form of a Mexican-
hat, but these functions result in similar behaviour when the
extent of inhibition and excitation are matched in the periodic
featuremaps discussed here. Many studies assume this interaction
structure from the start, and it is possible that such structures are
genetically coded, in particular if the feature space is topographic.
However, such weights can also be learned from activity-
dependent Hebbian learning on Gaussian patterns with width σr
(Stringer et al., 2002; Trappenberg, 2002; Wu & Trappenberg,
2008). Such learning might be, for example, important in the
formation of place fields in the hippocampus (Stringer et al., 2002).

All CSNF simulations were done using MATLAB (Mathworks,
Natick, MA). Sample code for one of these programs is provided
in the Appendices A and B. The MATLAB programs and files
themselves are available, by request, from the authors.

2.2. Simulations: Using CSNF models to predict eye saccades in
different conditions

We first considered the performance and predictions of eye
saccade data under the same conditions investigated by Eckstein
et al. (2006). Eckstein and colleagues considered the predictions of
their models under three different conditions: (1) target present
at expected location, (2) target present at unexpected location,
and (3) target absent, or cue only. Eckstein et al. (2006) described
their models as simulating perception in naturalistic search. They
compared performance in their models to behavioural data in
which participantswere searching for items in a scene inwhich the
item would more probabilistically occur in certain locations. For
example, participants would be asked to look for/at a chimney and
then be shown a picture of a house. Not surprisingly, participants
tended to look toward the roof of the house (that’swhere chimneys
tend to be). Thus, previous knowledge that houses and chimneys
occur together could act as a real-time ‘‘cue’’ towards the roof
(prior probability map). The knowledge about the features of a
chimney would be a separate and distinct form of knowledge then
the knowledge of the ‘‘cue’’.1 Specifically, the map that contains
information about the chimneywould be amap that containsmore
low-level feature-extraction information or visual evidence for
target information (likelihood ratio map). These can be considered
two different maps or two different sources of information.

In the CSNF model of such a naturalistic task (searching for a
chimney on a picture of a house) the focuswas on how information
from these two different sources were integrated. Input to the
model such as location of the target (chimney) and the cue (roof
of house) were feed to the model at the same time. The CSNF
main leaky accumulator layer then simulated the integration of
these pieces of information. How information was imputed was
changed based on source (as explained in the next section), but the

1 Note, that although the ‘‘cue’’ in this context is not a traditional cue (it does not
precede presentation of the target), however, the location of the roof/house will be
referred to as a ‘‘cue’’ for the remainder of this paper.
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mechanism by which the CSNF model integrated information was
consistent at all nodes regardless of the information source. Thus,
whether information was coming from a target map (likelihood
ratio map) or cue map (prior probability map), it was treated in
the same way by a CSNF model.

Thus, a CSNF model can simulate target absent (cue only) trials
with a single input (input from cue map but not from target
map). Target present at expected location trials are simulated with
two inputs that are close or very close together (both maps send
input to the same spatial location). Target present at unexpected
location trials would be two inputs at different locations (input
from two maps sent to different spatial locations in the target
likelihood map).

Our final simulations considered examples with more than one
target and more than one distractor. The focus of the Eckstein
et al. (2006) was predicting, on average, the error rate of initial
saccades from the target on various conditions. However, when
there are multiple targets and distractors error rates in terms of
numbers become less meaningful and the real interest is where
the participants looked. That is, did they go to target A, target
B, or somewhere in between (averaging saccade)? This has been
best represented in the past by plots showing the input to the
model with an overlay of all the initial saccade endpoints (draw
as dots or squares). Thus, our models were modified to create
figures of this type. We then used these models to simulate a
number of conditions (1) eight targets around a ring with equal
salience, (2) two targets with two different degrees of separation
in a ring of distractors, and (3) targets of different distances from
the initial fixation position. The results of these simulations were
then compared to behavioural data collected by Chen and Zelinsky
(2006) and Findlay (1997).

2.3. Additional details: CSNF model simulations

There are a number of details worth keeping in mind when
considering the results of the current simulations. (1) In the current
simulations target map and cue map were used as inputs to the
models at the same time. (2) The current simulations differentiated
between target and cue inputs on the basis of size, with target
inputs having larger amplitudes and smaller diameters (occupying
a more precise region in space). (3) The current models did not
employ active inhibition of previously attended locations, as only
the first eye saccade was being modeled. (4) The models included
a ‘‘cost’’ function as explained by Eckstein et al. (2006) that biases
attention to making shorter eye saccades. (5) The simulations
used noise/noisy inputs, even though this noise is not depicted
in the figures drawn in the results section. These features of the
simulations will now be elaborated on.

(1) The simulations in this research differed from those used
by Trappenberg et al. (2001) in that target maps and cue maps
were fed into the current model at the same time in the current
simulations. Research has suggested that target information is
generally available to the visual system more quickly than cue
information (of this type) because cue information requires extra
processing time and, in this case, memory for the contiguity
of objects. In a sense, the target information in this example
is considered a bottom-up source, and the cue a top-down,
although these distinctions are debatable. Trappenberg et al.
(2001) simulated this with models in which input from bottom-
up (exogeneous) were imputed to the models with top-down
(endogeneous) added only after a delay. In the context of the
current simulations, these timing differences did not appear to
significantly alter the results. In addition, it’s difficult to say to
what extent the power of the ‘‘cue’’ has or true timing differences.
For example, participants were told the target ‘‘chimney’’ before
shown the picture, thus, there might be advanced top-down

priming of ‘‘chimneys on houses — look for house’’ before the
task even begins. Also, the target is not a true exogeneous or
bottom-up source in the traditional sense. Usually exogeneous
info or salient info is that which is expected to automatically
capture the visual system by standing out from the background. In
these cases, no attempt was made to make the target (‘‘chimney’’)
any more salient, in fact, care was taken to insure there was no
strong pop-out effect (Eckstein et al., 2006). Thus, in the current
simulations, there was no clear reason why information from one
source should arrive sooner than the other, and target info and
cue info information were always imputed into the models at the
same time.

(2) In a naturalistic search task such as the ones used by Eckstein
et al. (2006) it would be quite likely that when searching for a
chimney in a picture of a house with a yard, that that chimney
itself would create a strong but very localized region of activity
(or saliency), after all the chimney does occupy much space, and
it should have all relevant features of a chimney by definition.
The roof, and upper region of the house, would also provide a
sort of information (or saliency) cue, but this cue would be more
diffuse (roofs occupy more space) and less potent/salient (a roof
is less guaranteed to contain a chimney than chimney is likely to
be a chimney). Thus, our simulations differentiated between target
(e.g. chimney) and cue (e.g. roof) inputs by creating all target inputs
with a large amplitude (strength) and small diameter (size), and all
cue inputs with a small amplitude (strength) and large diameter
(size). To put it another way, our targets were designed as strong
inputs to a small spatial region, while cues were more diffuse
(weaker influence but to a wider area).

Specifically, target inputs had an amplitude (strength)≈15, and
a size = 1σr . Cue inputs, on the other hand, had an amplitude
(strength) ≈12, and a size = 2σr . Target and cue strength were
modified for some examples (as stated in the results section) but
their relative sizesweremaintained for all simulations. Further, for
these simulations we used 51 ∗ 51 nodes (nn = 51), with the
resolution in degrees (dx) taken as dx = 2π/(nn). However, the
nature of these models does not depend on the number of nodes
as long as there are enough nodes to sufficiently approximate
the spatial continuum. With fewer or more nodes the principal
behaviour of these models would be identical.

(3) The Competitive IntegrationModel of Godijn and Theeuwes’
(2002) described how a fixation point is salient at the beginning
of trial (when nothing else is present) but then needs to be
actively inhibited when stimuli appear so that a participant can
effectively disengage from the fixation to attend/move their eyes
to other regions of space. This active inhibition of previously
attended locations is an important feature of any model of
eye saccades and eye trajectories (cf. literature on inhibition
of return for example Klein (2000) and Lupiáñez, Klein, and
Bartolomeo (2006)). However, the current simulations were only
interested in the initial saccade to a visual scene, and thus this
sort inhibition was unnecessary in the current model. Thus, the
current simulations did not include active inhibition of previously
attended /uninteresting locations, and the only inhibition present
in this simulations were those inherent in the lateral connections
between the nodes (all nodes inhibit distant locations). This
feature, however, could easily be added to future models, and
would be important for any simulations considering subsequent
saccades. It is worth reminding the reader, however, that the
current model still includes inhibition, as each location in the
network still inherently inhibits all distant locations through
lateral connections.

(4) Althoughwe did not include active inhibition at fixation, we
did include what Eckstein et al. (2006) called a ‘‘cost function’’.
The cost function relates to the behavioural observation that
during eye saccadic tasks to targets participants will favor short
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saccades over long saccades. One explanation for this has been
that longer saccades require more energy and therefore, when
possible, shorter saccades are favored as a sort of ‘‘cost’’ saving
mechanism. CSNF models provide an alternative theory for short
saccades that perhaps shorter saccades are result of inefficient
inhibition of fixation, or the fact that previous activity at fixation
inherently cues near-by locations. In any event, a ‘‘cost function’’
was added to the simulations through the simple addition of a
very diffuse (large diameter and small amplitude) input centered
at fixation. Specifically, the ‘‘cost function’’ was an additional input
to the model centered in the middle of the visual array with a
amplitude (strength) = 10 and a diameter (size) = 12σr .

(5) The visual system is very noisy and, in a true naturalistic
search task, other visual stimuli can share visual properties with
the target. Thus, any biologically plausible model is incomplete
without some degree of noise. Noise was added to the current
simulations by adding a normally distributed random variable
to all locations in the model. Specifically, noise was added by
multiplying each location in the external input (Iext(

⇀
x , t)) by 1 +

Nx, whereNx for each locationwas chosen randomly from a normal
distribution with µ = 0, σ = 0.5. For single trial simulations,
this noise was excluded from figures to more clearly illustrate the
principle behaviour of themodel. However, for all simulations over
a large number of trials noise was present for each trial.

3. Results

We simulated experimental conditions of search in natural
scenes as described and studied by Eckstein et al. (2006). These
experiments consisted of trials where targets were either absent,
present at the expected location, or present at an unexpected
location. Simulations of these trials are discussed in turn.

3.1. Simulating target absent trials

In naturalistic search a target absent trial would be when a
participant is asked to make an eye saccade to a chimney and then
they are shown a picture of a house (cue) without a chimney (no
target). Since the only salient input to the CSNFmodel in the ‘‘target
absent’’ case is a cue, then this entire condition can be modeled
with a CSNF that has a single input (Fig. 2A and B). Since the CSNF
model is built retinotopically, activity in the network will begin
increase the fastest at the location in which the input is presented
(Fig. 2C). As the network is allowed to progress through time,
activity around the input excites the neighbors while inhibiting
distant locations and a winning bubble will emerge (Fig. 2D). This
winning bubble or activity packet is where we would predict the
eyes tomove. The examples shownbelow (Fig. 2A–D) are all shown
in a noiseless case. In simulations of average reaction times (RTs)
we included stochastic processes by random input that represents
noise in the system and unrelated objects in the environment.

Fig. 2 shows snapshots of a 2-dimensional CSNF model
responding to a single input at different times. However, it is also
possible to graph the complete activity of nodes in the network
over-time. Of particular interest is graphing the growth in activity
of the node at the winning (in this case ‘‘cued’’) location compared
to other locations. The time evolution of the internal states, u,
of the neural fields are shown in Fig. 3A while the external
states, r , are shown in Fig. 3B. The internal state of the winning
node (region) begins rising, slowly at first, but eventually recruits
enough neighbors that the winning region (cue) takes over the
whole network rising quickly to its maximum state. The internal
states of other nodes are suppressed (Fig. 3A). The external state
(firing rate) of the winning node (cue) follows a similar trend of
rising slowly at first and then taking off all at once (Fig. 3B). In
this example, this sudden take-over appears to happen at around

t = 20τ , where τ is an arbitrary time scale. In fact, if we set an
arbitrary rate threshold at 0.8, with all firing rates are between 0
and 1, then we label the point at which any node/region passes
threshold as the reaction time (RT) or the time it would take to
initiate an eye saccade (saccade latency). The RT or saccade latency
is shown to be about t = 20.5τ in this case. This simulated RT
can be related to a RT of human subjects by choosing a specific
time constant and by taking further sensory and response latencies
into account. Here, however, we are mainly interested the relative
pattern of RTs across the different conditions.

The time to reach threshold will depend on a number of factors
including, but not limited to: (1) the strength (amplitude) of the
input to the network, (2) the size (radius) of the input (3) the
number of inputs to the network, (4) the amount of noise added to
the system, (5) the level of excitation and inhibition in the model
and (6) where the threshold is chosen.

3.2. Target present at expected location (simulated) trials

In the naturalistic search example, a trial with a target present
at the expected location would be one in which participants are
asked to search for a chimney, and then shown a picture of a house
with a chimney on it. In a CSNF model this is simulated by two
inputs either very close to each other, or right on top of each other.
Perhaps, not surprisingly,when two inputs in thismodel are beside
each other or very close, they add together to make very strong
input at that location for the model (Fig. 4A). The result is a strong
response from the network right from the start (Fig. 4B). Just like
in the target absent case, an activity bubble will develop (Fig. 4C),
although this time much faster. This speed is evident when the
firing rate of the winning node is graphed over-time (Fig. 4D). In
this case, threshold was reached for the winning node (cue and
target together) at t = 3.5τ , more than five times faster than in
the target absent case.

If the target and cue are close together, but not exactly in
the same location the network response is similar, but the extra
distance costs the network in terms of speed. In this example the
‘‘target’’ was differentiated from the ‘‘cue’’ by being defined with a
larger amplitude/strength but smaller radius/size. Thus, when the
target and cue are shown to the system, the target appears as a
brighter smaller spot than the cue (Fig. 5A). At first, the network
representation of the input looks similar to the input itself (Fig. 5B).
However, as locations in the network excite near-by locations and
inhibit distant locations the characteristic winning activity bubble
develops (Fig. 5C). This activity bubble will develop centered at
the ‘‘target’’ location, the ‘‘cue’’ location, or somewhere in between
(which would constitute an averaging saccade). In this particular
example, the winning bubble appears to be centered above the
target (Fig. 5C–D). The firing rate of the winning node or target
rises, as usual, although at a slower rate than when the target and
cue are at exactly the same location (Fig. 5D). Further, Fig. 5D also
shows that node representing the cued location increases firing at
a slower rate than the target location.

3.3. Target present at unexpected locations (simulated) trials

In the naturalistic search example, a target present at an
unexpected location would be one in which a participant was
asked to look for a chimney and then shown a picture in which
the chimney was not on the house but in a different location (such
as in a tree, or on the ground). The CSNF model simulates these
trials with two inputs (a cue and a target) in different locations.
When the cue and target are at different locations only one can
‘‘win’’, that is, only one location can attract the eyemovement. The
winner in these models will depend upon the distance between
the cue and the target, as well as the relative strength of the cue
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Fig. 2. A CSNF model with a single input to the model shown from the side (A) and from the top (B). The model responds with increased activity at the location of input (C).
As time progresses they activity grows into a winning bubble inhibiting activity at all other locations (D). These figures show a noiseless case.

Fig. 3. Activity of select nodes in the single input case (time on the x-axis). (A) Represents themembrane potential of the cue or winning node (dashed) and another random
node (solid). (B) Represents the firing rate of the cue or winning node (dashed) and another random node (solid). With a firing rate threshold set = 0.8, relative predictions
about reaction times can be made.

and target. As stated earlier, the cue was set to be larger than the
target (occupy more of the visual field) but the target was set to be
stronger in amplitude than the cue. The relative amplitude of the
target and cue can then be influenced by noise, so that sometimes
the targetwill win, and sometimes the cuewillwin. Fig. 6A–B show
an example of a case where the cue (top-right) is twice as large
as the target (bottom-left). In addition, the amplitude of the target
and cue are close enough in strength that the system resolves itself
for the cue to win (Fig. 6C–D). Notice, however, that this system
takes much longer to resolve itself than in the target at expected
location condition.

Any parameter sufficiently changed, such as amplitude or size,
will change the dynamic of the system. For example, if the size
or amplitude of the cue was increased, the system would resolve

more quickly (faster RT). If the size or amplitude of the target was
increased, then the system would resolve less quickly. Eventually,
if the strength of the target is increased enough the target will win
instead of the cue. Fig. 7 is an example of targets and cues in the
same location shown in Fig. 6, only now the strength (amplitude)
of the target has been increased so that it is the winning node.
Again, this system does not resolve as quickly as the other non-
competitive conditions (RT = 12τ , Fig. 7D). The more unbalanced
the balance between cue and target, the faster the system resolves.
When the cue and target are almost perfectly balanced the system
takes a long time to resolve, and is very sensitive to noise. When
the two are almost balanced then the addition of noise to the
system will tilt the balance so that sometimes the cue will win,
and sometimes the target will win. A consequence of this is that



J.P. Salmon, T.P. Trappenberg / Neural Networks 21 (2008) 1476–1492 1483

Fig. 4. Target present at expected location. (A) The input to the system. (B) The initial response of the system. (C) The system after it has reached at equilibrium state
(t = 30). (D) The firing rate of the winning location over time.

Fig. 5. Target present NEAR the expected location. (A) The input to the system. (B) The initial response of the system. (C) The system after it has reached at equilibrium state
(t = 30). (D) The firing rate of the target (dotted) reaches threshold faster than the firing rate of the cue (dashed) meaning that an eye saccade would be generated to the
target. Other locations (solid) are inhibited by all this activity through lateral connections.
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Fig. 6. Target present at the unexpected location (Cue Amp = 13, Target Amp = 15). (A) The input to the system. (B) The initial response of the system. (C) The system after
it has reached at equilibrium state (t = 30τ), the cue has inhibited activity at the target location. (D) The firing rate of the cue which also the winner (dashed), the firing
rate of the node at the centre of the target (dotted), and another distant location (solid).

the average error (the distance between the first saccade end-
point and the target) will be larger in target present at unexpected
location condition compared to the other conditions.

3.4. Accuracy over many trials

When Eckstein et al. (2006) considered behavioural data
under these different experimental conditions, their focus was on
accuracy / error data, not speed. They measured the distance from
the end-point of the first saccade to the target (only the first/initial
saccade) was considered. Shorter average distance (over many
trials) implied a smaller error, and therefore more accuracy. In the
target absent case distance measures were taken from the end-
point of the initial saccade to the location ofwhere the targetwould
have been if it were present in the expected location. Behavioural
data collected by Eckstein et al. (2006) showed that participants
were the most accurate in the target present at expected location
condition and the least accurate in the target present at an
unexpected location condition. This was also the pattern of results
predicted by their Bayesian model.

The CSNF model can also be used to predict accuracy over
many trials. This was done by considering the average Euclidean
distance for many simulations under the different conditions. In
the noiseless case, the network performs the same way given
the same starting conditions. That is, without noise, the model
is either always right or always wrong. This is, of course, a poor
analogy to the real visual system that is full of noise and competing
stimuli. Thus, to get more valid predictions, noise was added
to each location in the model. The result of these noisy CSNF
models was that target present at expected location trials were
the most accurate as the combined strength of the target and
cue occurring together creates a strong signal to the network that

is not easily disrupted by noise. Target present at unexpected
location conditions, on the other hand, were the least accurate
as sometimes the cue, which is in a different location, will win
instead of the target. The percentage of the time that either
cue or target will win depends on the relative strength of the
two. In our implementations, that cue and target were set to
have approximately equal strength such that the noise would
sometimes enhance the target and sometimes enhance the cue.

Fig. 8 shows the predicted accuracy for the different trial
conditions. From left to right these conditions were target present
at the expected location (PE), target present at the unexpected
location (PU), target absent at the expected location (AE), and
target absent at the unexpected location (AU). The last ‘‘condition’’
(AU) comes from representations by Eckstein et al. (2006) and
deserves some explanation. Eckstein et al. (2006) took distance
measures for target absent trials — a distance measure from the
eye saccade to where the target would be if it where at the
expected location (AE) and from where the target would be at the
unexpected location (AU). However, since one would never expect
participants to look at unexpected locations especially when there
is nothing there to attract attention, youwould never expect much
accuracy in target absent at the unexpected location condition
(AU). Thus, the distance measures in these cases were essentially
identical to taking the average distance measure between any two
random points. The result is that the average distance measure for
these cases indicate the average distance between any two points
in the visual array which works out to be roughly half the size of
the visual array.2

2 Actually, it’s a little less than half the size of the original visual array because
targets are always chosen to be somewhat off-set from the border (never at the
extreme edge).
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Fig. 7. Target present at the unexpected location (Cue Amp = 13, Target Amp = 20). (A) The input to the system. (B) The initial response of the system. (C) The system
after it has reached at equilibrium state (t = 30τ), the target has inhibited activity at the cued location. (D) The firing rate of the target which also the winner (dotted, blue),
the firing rate of the node at the centre of the cue (dashed, red), and the firing rate of another distant node (solid, pink). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(A) Accuracy of CSNF model. (B) Behavioural data (Eckstein et al., 2006).

Fig. 8. CSNF model accuracy data averaged over many trials (N = 80, 20 per condition). Using a CSNF model with noise to reproduce the relative pattern of accuracy data
observed in real participants in Eckstein et al. (2006). Note, this exact pattern depends on the presence and balance between the cost function, noise, and relative strength
of the cues and target.

In some ways the errors for the target absent at an unexpected
location are meaningless, but they offer a good comparative scale
in which to compare the other conditions. For example in Fig. 8,
the errors in target unexpected location (PU) are lower than the
errors in the target absent at unexpected (AU). This means that
participants were finding the target at better than chance in
the target at unexpected location case (PU). Individual trials for
condition PU saccades do seem to be generally directed either at
the cue or at the target. Thus, the saccade distributions for these PU

trials was approximately bimodal, resulting in low accuracy (large
errors from the target).

In the target absent at expected location case (AE), errors were
low but not as low as in the target present at expected location
(PE) trials (see Fig. 8). That reduced accuracy in target absent trials
occurs simply because these trials are less robust to noise as there
is only one input to the model. That is, an eye saccade to the
correct location (in AE) is more likely to get disrupted by noise
(an incorrect signal) in the system. Thus, target absent or AE trials
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Fig. 9. CSNF reaction time (RT) or saccadic latency predictions when averaged over
many trials (N = 80, 20 per condition). In this figure the last bar, target absent at
unexpected locations (PU), has nomeaning and is completely redundant with bar 3
(AE). This last bar was maintained in the figure for reasons of symmetry with Fig. 8.

(with only a single input) are more sensitive to noise in the system
than target present at expected or PE trials.

3.5. Speed over many trials

Generally the CSNF model, like the visual system, is accurate
where it is fast. However, we can see from the predictions of the
model that there are some exceptions to this rule — in particular
the target present at the unexpected location (PU) condition. As
we saw in Fig. 8, this condition has the lowest accuracy compared
to the two other conditions, however the CSNF model predicts
reaction times (RTs) in this condition that would be faster than
RTs in target absent trials (Fig. 9). Recall the difference between
these two conditions is that target absent (AE and AU) trials have
only one input to the model, where target present at unexpected
location (PU) trials have two competing inputs. Thus, on average,
the network predicts that resolution between two competing
inputs will occur faster than the build-up of a single input (Fig. 9).

The CSNFmodel predicts accuracy and speed differences across
these conditions. In the case of accuracy, the CSNF predictions
match those of Eckstein et al.’s (2006) Bayesian model and the
pattern of results they observed in human participants. In the
case of speed, however, the CSNF model predictions did not
match Eckstein et al.’s (2006) behavioural data (their Bayesian
model did not make speed predictions). Specifically, Eckstein
et al.’s (2006) results indicated no significant difference in saccade
latencies between the conditions, with average latencies between
225 ms and 236 ms (p. 997). Further, these saccadic latencies are
comparable, if not a little longer/slower, than saccadic latencies
from other research. For example, Godijn and Theeuwes (2002)
reported shorter latencies to distractors (M = 161 ms) than
to targets (M = 223 ms) during a simple onset distractor task
with six possible target locations. However, the lack of match
between behavioural data (no latency differences) and CSNFmodel
predictions (predicted differences) was concerning. Thus, one
more simulation was considered.

3.6. Time constrained CSNF models

It is possible that the lack of difference in saccade latencies for
the three conditions was related to search strategies employed
by the participants. For example, searching in a naturalistic task
(color photographs) may have been a sufficiently difficult task
that participants began moving their eyes as soon as the picture
appeared. However, the accuracy data suggests that participants

must have allowed enough time for at least some information
about the ‘‘cue’’ and ‘‘target’’ to reach their target likelihood map
before making a saccade (otherwise accuracy would be equivalent
in all conditions). Thus, the data suggests the participants must be
waiting until they have some information about the visual scene
before making an eye saccade, but perhaps their strategy was
to acquire a bare minimum amount information before making
a saccade. We simulated this search strategy by programming a
time-constrained CSNF model that forced the system to make pre-
threshold saccade/decision regardless of the trial type (Fig. 10).

The CSNF time-constrained model was told to make a saccade
(choose a winning location) after only t = 2.5τ (recall that the
fastest RTs previously in a no-noise condition were t = 3.5τ ).
Thus, the RTs for each condition were identical (RT constrained to
2.5 τ ), and no simulation ever reached threshold (firing rate of 0.8
or above). Interestingly, in all trial conditions the firing rate for the
winning nodewas already beginning to differentiate itself from the
other nodes as early as 2.5 τ . In fact, it appeared, from the gradual
increasing slopes of the firing rates, that as early as 1.0 τ may have
been enough to accurately predict the winning node (Fig. 10A–C).
In addition, whenmany trials of this time-constrained CSNFmodel
were averaged together the accuracy pattern appeared exactly as
it did before (Fig. 10D). This suggests that a CSNF model can be
forced tomake a very early decision and the result is not noticeably
different than when the model is given all the time it needs. If
the CSNF model is a good analogy for how the biological visual
system behaves in this specific experiment, than this suggests that
the participant did not wait until certainty is reached but acted as
soon as one area of the target-likelihood map rose to an activity
level slightly higher than the others. That is, the systemmay act on
what little information is available, and does so with a generally
high degree of success.

3.7. Multiple targets

Our last simulations considered the extension to cases with
more than one target. First, we considered the condition with
eight targets spread equidistant around the fixation (or centre).
The simulation figures show the input to the model (without
noise) with initial saccade endpoints for each run/trial super-
imposed as black dots on top. A small degree of jitter was added
to the plotting to partially simulate motor error but mostly to
decrease the chances of multiple dots appearing in one location
and distorting the apparent results (the sense of where the model
‘‘looked’’). In the trials, noise was always added to input, otherwise
all saccades would have been to the same location.

At first past, all targets inputs used the same diameter as before,
but a lower strength / amplitude (Target Amp = 2). The result
of the initial simulation (Fig. 11A) showed significantly fewer
averaging saccades compared to the behavioural results obtained
Chen and Zelinsky (2006). However, by simply increasing the
width of the interaction kernel (from sig = 2 ∗ pi/12 ∗ 0.5 to
sig = 2 ∗ pi/12 ∗ 0.7, Fig. 11B), the diameter/size of the targets
(diameter from 1*sig to 2 ∗ sig, Fig. 11C), or increasing both at the
kernel and diameter of targets (Fig. 11D) themodel predictedmany
more averaging saccades.

Adjusting these parameters to produce Fig. 1B–D was akin to
either (1) lower visual resolution of the image, in the case of
increasing the target diameter or (2) increasing the radius of the
centre-surround mechanisms, in the case of increasing the lateral
interaction kernel. Both seemed like justifiable adjustments to
the parameters as research suggests (1) fast decisions such as
eye saccades are probably done on lower resolution images. For
example, recent modeling research by Rao, Zelinsky, Hayhoe, and
Ballard (2002) suggests that processing of visual stimuli by humans
likely is done on a coarse-to-fine scale. In addition, (2) stimuli
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(A) Target present (Expected). (B) Target present (Unexpected).

(C) Target absent. (D) Constrained model average accuracy.

Fig. 10. A CSNFmodel in which the system is forced tomake an early saccade. (A) In the target present at expected location the winning node (cue and target) and the target
are quite clearly distinguishing themselves from the cue. (B) In the target present at unexpected location we can see the cue (dashed) is winning over the target (dotted) in
this case. (C) In the target absent case, the cue (dashed) is already starting to rise above the others even after only t = 2.5τ . (D) Averaging this constrained CSNF model over
80 trials. The accuracy results are virtually identical to the non-constrained CSNF model from before.

further in the periphery fall on regions with larger receptive fields.
Thus, both parameter adjustments seemed reasonable. The choice
of interaction kernel size will largely depend on the eccentricity of
targets, and perhaps should be adjusted in future models to vary
as a function of eccentricity (instead of being the same value at all
nodes — as in the current simulations).

Next, we considered the case where two of the items in the
ring were targets and the rest were distractors. We looked at
both the case where the two targets were at adjacent locations
(Fig. 12A), and the case where targets were separated by a
distractor (Fig. 12B). Both simulations were done with 100 trials,
and both the interaction kernels and size/diameters of the targets
were kept large as before (see Fig. 11D). The result was a pattern
of averaging saccades that appeared to be almost identical to the
pattern seen in human data (cf. Findlay (1997)). That is, averaging
saccades predicted by the CSNF model appeared to be equally
frequent. With a smaller interaction kernel and/or targets of a
smaller size, fewer averaging saccades were observed.

Finally, simulations with 16 objects in which the target was
located either near (Fig. 13A) or far (Fig. 13B) from fixation
were considered. The primary difference between the near/far
model predictions was more accurate saccades in the near
condition (Fig. 13A, in particular). In the far condition, inaccurate
saccades went to near not distant distractors. This pattern
was consistent with Findlay’s (1997) behavioural data. In these
particular simulations, targets with a smaller strength and a lower
interaction kernel appeared to better capture the behavioural
pattern.

In summary, the CSNF models, with the proper parameters,
were able to replicate the pattern of initial saccade endpoints for
multiple targets and distractors in numerous conditions.

4. Discussion

4.1. Summary

This research shows that Centre-Surround Neural Field (CSNF)
models can account for the pattern of results predicted from
behavioural experiments by Eckstein et al.’s (2006). That is, a
CSNF model predicts better accuracy (in terms of eye saccades)
when a target is at an expected location. Further eye saccades
are more likely to go to a contextually cued location than the
target at an unexpected location as indicated by lower error
rates (higher accuracy) in the target absent (but cue still present)
condition compared to the target present at an unexpected
location condition. The CSNFmodel is consistent with the Bayesian
model by Eckstein et al. (2006), and can be viewed as a biological
plausible implementation of this model. The CSNF model has an
additional advantage over models described by Eckstein et al.
(2006) in that the CSNFmodel is a dynamicmodel that explains the
time component allowing for predictions of saccadic latency to be
made. The predictions made by a CSNF model in these conditions
are also generalizable to more traditional experimental designs,
as shown in work by Godijn and Theeuwes (2002) as well as
Trappenberg et al. (2001).
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Fig. 11. Initial saccade endpoints (dots) overlaid on model input consisting of eight equal strength targets (N = 100). Shown here is the default model (A), the same thing
with an increased width of the interaction kernel (B), increased size of targets (C), or both increased width of the interaction kernel and size of targets (D).

While our model predicted the same pattern of accuracies
in the different search tasks as the Bayesian model and human
data in Eckstein et al. (2006), the results on reaction times of
human subjects found by Eckstein et al. (2006) offer an interesting
suggestion on the processing strategy in humans. While the CSNF
model shows that resolving discrepant information takes longer
than processing matching input, Eckstein et al. (2006) found that
reaction timeswere similar in all conditions. However, as discussed
in the paper, it is possible to resolve this issue by assuming that
the participants used a search mode in which they acted in a
fixed time onminimal information. Interestingly, we could further
reproduce this accuracy pattern in a modified (time-constrained)
model based on the fact that competitive interactions already
have a measurable effect in a short time. If the hypothesis of the
different search mode is correct, then it should be possible to
design an experiment in which participants are forced to adopt
a different search strategy resulting in different saccade latencies
for different conditions. For example, perhaps a reward for correct
initial saccades would encourage participants to adopt a more
conservative search strategy andwait longer to make eye saccades
(leading to different saccadic latencies for different conditions).
The different strategies of fixed-duration (FD) and free-response
(FR) task are also discussed and Zhang and Bogacz (2008) andwere
used by Trappenberg (in press) to interpret the data of Roitman and
Shadlen’s (2002).

Our CSNF models further captured the qualitative flavor of
initial eye saccades in conditions with multiple targets and
distractors. First, with eight targets equidistant from fixation, the
first simulation predicted most saccades to targets. However, by
using a slightly higher interaction kernel or larger diameter targets
more averaging saccades were predicted. Second, the CSNF model
appropriately captured the pattern of initial saccade endpoints for

two targets (cf. Findlay (1997)). Third, our CSNF model was able to
show the expected pattern of initial eye saccades to amanipulation
of target distance. Tuning of parameters such as target diameter
size or size of the interaction kernel seemed particularly important
to the number of averaging saccades that were produced. This
is perhaps not surprising because eccentricity (distance from
fixation) is particularly important for human participants. That is,
receptive fields get logarithmically larger as one moves further
away from the fovea (Van Gisbergen, Van Opstal, & Tax, 1987).
Since larger interaction kernels (related to size of receptive
fields) result in more averaging saccades, one would predict an
eccentricity effect on averaging saccades.

Future CSNF models may want to consider implementing a
lateral interaction kernel that changes based on its distance from
the fovea/fixation. On the other hand, larger receptive fields result
in lower resolution, and in fact research by Rao et al. (2002) has
suggested that processing of visual stimuli is done on a coarse to
fine scale. Thus, larger diameter targets may be a legitimate way of
conceiving how target information is perceived at early processing
stages.

4.2. Outlook

The CSNF model used in this work was intentionally kept to a
minimumandwas not drastically tuned tomatch the experimental
data. Rather, it was important to show that even this minimal
version was able to fully capture an abstracted version of a
naturalistic search task described by Eckstein et al. (2006) as
well the pattern of results obtained by Findlay (1997) and Chen
and Zelinsky (2006). These CSNF models also have a certain
degree of biological plausibility. Specifically, the CSNF model’s
primarymechanism is centre-surround interactionwhich has been
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Fig. 12. Initial saccade endpoints (dots) overlaid on model input of eight objects, two of which are targets (N = 100). In panel (A) the targets are right beside each other,
one at 3 o’clock and the other half-way between 1 and 2 o’clock. In panel (B) the targets are separated by one distractor, with one target still at 3 o’clock and the other at 12
o’clock.

Fig. 13. Initial saccade endpoints (dots) overlaid on model input of sixteen objects, one of which was a (N = 100). Simulations were done with the target at a near 3 o’clock
location (A), or with the target at a far 3 o’clock location (B).

observed in the ganglion cells, as well as higher areas including the
superior colliculus and frontal eye fields (Schall et al., 2004).

An emerging question in the literature has been about how
a brain integrates information from different spatial maps? For
example, to use the present example (searching for a chimney),
information about the features of a chimney, and information
about the object contiguous to chimneys (roofs and houses)
are two very different sorts of information. Therefore, it’s not
unreasonable to expect one region in the brain to contain one
map for target likelihood based on features (what Eckstein et al.
(2006) called the likelihood ratio map), and another map for the
location of the roof, ormore generally, locations of high probability
(Eckstein et al. ’s prior probability map). The current simulations
focused on the integration of these two types of information or
maps regardless of the source. The only difference in how they
were treatedwas at the input level: target information had a higher
strength and was more localized (smaller diameter), roof/cue
information had a lower strength and was more diffuse (larger
diameter). After that the model integrated this information along
with any noise in the input to make a decision. In principle, the
sources of information were irrelevant, CSNF models could be
applied to information from other/multiple sources.

There remains the concern about the relative timing of inputs.
Is it fair to assume the information from two different sources
would arrive at the same time? Trappenberg et al. (2001) explored
this issue with their model of intermediate layers of the superior
colliculus (SC). The SC receives both convergent afferents from
many cortical and subcortical visual and cognitive centers related

to eyemovement control and is therefore thought to be a candidate
location where exogeneous and endogeneous visual information
is integrated. In the SC exogeneous information is suspected to
arrive earlier through direct retinotectal projections, compared to
the endogeneous signals that would arise through higher cortical
processes. Trappenberg et al. (2001) implemented this timing
difference in the model by imputing exogeneous information first,
and then endogeneous after a delay. Trappenberg et al.’s (2001)
model was, at its core, a Centre-Surround Neural Field (CSNF)
Model that effectively explained a variety of saccadic effects.
Their model accounted for saccadic reaction time effects due to
removal of fixation, the presence of distractors, execution of pro-
versus antisaccades, and variation in target probability. Further,
their model suggested a possible mechanism for the generation of
express saccades.

In contrast, the currentmodel assumed synchronous processing
of inputs. However, in the naturalistic search case inputs,
such as chimney location and roof location, neither are clearly
exogeneous or endogeneous, although information about their
location probably arrives from different sources in the brain.
But, there are many different types of information that need
to be integrated for a successful search. It is therefore more
reasonable to conjecture that information integration through
competitive networks is done on different hierarchical levels
in cortical and subcortical areas. Thus, the SC is not the only
structure where signals from different sources are combined, and
the neural field model can also describe the effective interactions
in a hierarchical cortical model. While predictive hierarchical
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models, of which Bayesian models are a simple example, are
an important description of cortical processes (Friston, 2005),
our model captures the dynamics of the integration process not
addressed in the model by Eckstein et al. (2006).

4.3. CSNF models and cognitive processes

Schöner has argued and shown formany years how such neural
field models of the type discussed here can accurately describe
the dynamics of many cognitive processes. For example, Schöner
and Dineva (2007) argued that such models can explain the
emergence of developmental competencies without the need to
pre-suppose innate/dormantmodules of knowledge and cognition.
They use a dynamic field model to explain how over-coming
object perseverance in infants can be explained by an increase
in the strength or recurrent connections over development. The
development of these connections, although continuous, may
result in behaviour that appears categorical, as the systemdevelops
competency to perform the task (Schöner & Dineva, 2007).
Spencer, Simmering, Schutte, and Schöner (2007) outline a similar
spatial precision hypothesis (SPH) that explains how a qualitative
shift in geometric category biases can be accomplished through a
quantitative shift inmodel parameters. Thus, dynamic fieldmodels
can show that the appearance of stage-based learning is really just
an emergent property of gradual and continuous refinement of
connections between & within neural fields.

The dynamic field theory (DFT)model outlined by Spencer et al.
(2007) has seven layers, with one layer each representing: (A) a
perceptual field in an egocentric reference frame, (B) a system
that transforms locations from egocentric to an object-centered
frame, (C) a perceptual field in object-centered reference frame,
(D) a long-tem memory field associated with (C), (E) a shared
layer of inhibitory neurons, (F) a spatial working memory field
in object-centered reference frame, and (G) a long-term memory
field associated with the spatial working memory field (p. 331).
Thus, each layer in this seven layerDFT serve conceptually different
functions — most of the time, with some functional flexibility
built into the system, especially during training. Connections
between layers in this DFT model feed-forward and backward,
and connections within a layer act in a centre-surround fashion,
with near-by locations exciting each other, and distant location
inhibiting each other. Spencer et al. (2007) show that such DFT
modelmay explain aspects ofmemory such asmetricmemory (the
location/size of objects in space), working memory, and how long-
term and working-spatial memories are integrated.

Cognitive processes are continuous in space and time and
it is an outstanding question how the constancy of the world
arises through specific brain processes. One possibility is that
information from different sources (such as exogeneous or
endogeneous) are combined in a ‘cognitive map’ of which the
model discussed here is a simple example. Certainly growing
research suggests dynamic fields may be able to explain how
representations of sensorimotor as well as metric and categorical
information are maintained over time (cf. Spencer & Schöner,
2003). The appearance of perceptual decisions and the formation
of perceptual categories may also be explainable through these
models (cf. Schöner & Thelen, 2006). In short, dynamic field
models, properly implemented, appear to be very tractable over
many domains.

4.4. Conclusion

In conclusion, dynamic field models, particularly those with
a centre-surround (local excitation and distant inhibition), are
proving to be an effective neurophysiologically plausible, model

Fig. A.1. An example of the MATLAB code used for a single simulation of
a condition. In this example the simulation was for the target present at an
unexpected location case.

for aspects of visual cognition as well as other general cognitive
processing. Further, as elaborated in Spencer et al.’s (2007)
dynamic field theory model, multi-layered versions of these
models can be effective for explaining aspects ofmemory, and even
how gradual quantitative shifts in model parameters can result
in qualitative changes in behaviour – or the appearance of stage-
based learning. The minimal Centre-Surround Neural Field (CSNF)
model used in this paper is another example of the effectiveness
of these models. Specifically, our CSNF model was able to explain
the behavioural accuracy data obtained by Eckstein et al. (2006),
as well data by Findlay (1997) and Chen and Zelinsky (2006).
Although further behaviour researchwill be needed to fully resolve
the discrepancy between our predictions and the saccadic latency
data of Eckstein et al. (2006), we feel, overall, our model captured
the essential flavour of initial eye saccades during a variety of tasks.
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Fig. A.1. (continued)

The power of dynamic field models, such as the one used in the
current design, are becoming increasingly evident.
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Fig. B.1. MATLAB code for necessary functions called by the code in Fig. A.1.

Appendix A

This is MATLAB code for a 2-dimensional CSNFmodel. Themain
code ‘‘cann2d_js2007’’ requires four functions ‘‘w2dgauss.m’’,
‘‘in_signal_pbc2d.m’’, ‘‘f1.m’’ and ‘‘rnn_ode_u.m’’ which are listed
in Appendix B.
Main code:

The following is the main code for a single trial simulation.
Using the current parameters, this will run a single trial simulation
for the target present at unexpected location condition. However,
you’ll notice that in the parameters sections variables can easily
be changed to run the other simulations. For example, to run a
target absent expected location trial set variable present = 0, and
expected= 1. The simulation can be runwith or without noise and
the cost function. The target & cue strength and size can also be
modified, although the defaults work pretty well.

To get an average over many trials a loop would have to be
added to this code. For a copyof the codewith an added loop, please
contact the authors. See Fig. A.1.

Appendix B

See Fig. B.1.
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