
Selective attention improves self-organization of cortical maps with
multiple inputs

Thomas Trappenberg, Aya Saito, and Pitoyo Hartono

Abstract— Models of self-organizing cortical maps have fo-
cused on demonstrations with single objects in the environment.
Recently, the validity of a traditional biological model has been
questioned for the case of multiple simultaneous input sources.
Here we show that the standard model is able to self-organize
with multiple inputs. However, we also show that the ability
to self-organization can be enhanced considerably by including
top-down attention as well as some noise. The model is also
used to simulate the development of tuning curves.

I. INTRODUCTION

Experience–dependent formations and functional reorga-
nizations of topographic maps have long been an impor-
tant demonstration of system-level brain plasticity. A better
understanding of the underlying mechanisms is relevant
for developing advanced learning techniques and rehabil-
itation strategies. Topographic maps have been found in
many sensory areas such as orientation maps in the visual
cortex [1], tonotopic maps in the primary auditory cortex
[2], and somatosensory maps in the somatosensory cortex
[3], and sensory-driven changes in such maps have long
been studied[4]. The early development of cortical map
organization is often attributed to a critical period [5], but
recent findings have shown that reorganizations are possible
in mature brains [6]. Some of the first models that capture
such plasticity-dependent organization of cortical maps have
been proposed by Willshaw and von der Malsburg [7], [8],
and Amari and Takeuchi [9], [10]. All of these models rely
on a competitive dynamics in the map layer realized through
lateral interactions. The lateral weights have been fixed in
the early studies while modifying the afferent connections
to the cortical maps, and the self-organization was primarily
studied through the visualization of the organization of the
centers of the resulting tuning curves. Such models have also
been applied to higher dimensional feature maps and to map
high dimensional feature spaces into lower dimensional maps
[11], [12], we discuss here the case where the dimensionality
of the feature space is the same as the dimensionality of the
feature map.

The above models have been enhanced by Sirosh and
Miikkulainen [13], [14] in several ways (see also [15]). In
particular, these authors considered learning of the lateral
weights, and they included some other details such as weight
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normalization which seem to make the simulations more
robust. While these models are formulated with large gener-
ality, previous studies have not focused on the development
of the form of the tuning curves from these first principles
other than noting that the self-organization ability is strongly
influenced by the size of initial anatomical mini-patches [14].
In this paper we study specifically the development of tuning
curves but keep the lateral weights fixed as in the original
models.

A further important model of self-organizing maps
(SOM1) was proposed by Kohonen [16]. Kohonen’s model
contains important abstractions and simplifications of the
previous models, which makes his model applicable to large
scale simulations and to many technical applications [17],
[18]. While the Kohonen SOM has rightly dominated tech-
nical applications of self-organizing maps, certain aspects
of biological systems can only be studied in more detailed
models. For example, in the biological interpretation of Ko-
honen maps, tuning curves are assumed to be fixed (usually
Gaussian). Although the basic Kohonen model has been
enhanced by considering different kernel functions [19], [20],
[21], we consider here the development of tuning curves here
from the first principles based on the physiological models
of self-organizing maps.

In contrast to the original models of self-organizing maps,
Kohonen’s model is applicable only in situations where one
stimulus is dominating the input to a cortical map. In order to
validate the self-organizing principles in biological systems,
natural scenes that consist of multiple objects should be con-
sidered. Recently, Kohonen [22] argued that the physiological
SOM model [8], [10] does not work with multiple inputs,
and he proposed a modified model which he showed can
organize with multiple inputs. Here we show that the basic
physiological SOM model can self-organize with multiple
inputs, but that self-organization is considerably enhanced by
taking top-down mechanisms, such as attention, into account.
Furthermore, we show that such top-down mechanisms are
essential when supervising the learning of specific actions
based on self-organized representation in the cortex.

II. THE MODEL AND EXPERIMENTAL SETUP

We consider a dynamical neural field (DNF) model of a
cortical sheet [9], where the activation r(x, t) of a localized
neural assembly is determined by an internal state variable
u(x, t), which is governed by a leaky integrator dynamics

1While the acronym SOM was coined by Kohonen, we will refer to any
model of a self-organizing map as SOM.



with external input Iext(x, t)

τ
∂u(x, t)

∂t
= −u(x, t) +

∫

y
w(x,y)r(y, t)dy + Iext(x, t)(1)

r(x, t) =
1

1 + exp(−βu(x, t))
(2)

Iext(x, t) =
∫

y
wext(x,y)rext(y, t)dy. (3)

The weights w describe the connection strength between
cortical assemblies within the cortical sheet. In this paper
we use a shifted Gaussian

w(|x− y|) = Aw

(
e−(x−y)2/4σ2

− C
)

, (4)

where Aw, σ, and C are constants, and x and y are the
locations of the interacting neural populations. To minimize
boundary effects, we implement the model on a torus with
extension 2π. In this case, the distances |x − y| should be
replaced by MIN |x− y|, 2π|x− y| in the above formulas.
The precise form of the weight kernel is not important for
the following arguments as long as it describes short distance
excitation and long distance inhibition. The above weight
kernel can be learned through Hebbian learning [13], [14],
[23], but most studies of self-organizing maps consider this
interaction kernel as fixed when learning the afferent (input)
weights, wext, to this neural sheet (see [24] for a general
introduction to DNF models). Amari [9] has shown that
neural field models have solutions with localized activity
packets, and such networks can hence function as a form
of winner-takes-all (WTA) network. The winner is thereby
determined not only by the node with highest activation, but
depends also on the support is gets from neighboring nodes.
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Fig. 1. Architecture of the model investigated in this paper.

The model architecture investigated in this paper is illus-
trated in Figure 1. It consist of a layer of input nodes, a
SOM layer, and a perceptron layer. Input nodes represent
the feature decomposition of an input stimulus. We use

a one dimensional feature space in this paper to simplify
the illustration, but a generalization to higher dimensions is
straight forward. A feature value, x0, of an input stimulus is
represented by a Gaussian activity packet with mean x0 in
the input layer. Representations in the SOM layer are self-
organized by organizing the connections from input to SOM
layer with the formalism explained above. The connections
between the SOM layer and output layer are learned with
supervised learning (delta rule). This supervised learning is
intended to simplify a more general reinforcement learning
scheme. The signal used for supervision is also a Gaussian
activity pattern. Finally, for some of the experiments dis-
cussed in this paper, we included some top-down attentional
mechanisms. These attentional effects are modeled here
by multiplying the input signals with a Gaussian function
centered around a chosen signal component that corresponds
to the focus of attention in each trial.

III. RESULTS

We first examine the abilities of the SOM to self-organize
when presented with multiple inputs. The network was ini-
tialized with uniformly distributed random weights between
the input layer and the cortical SOM layer. We presented
input patterns consisting of the superposition of ten Gaus-
sians at random locations. An example input is shown on
the left in Figure 2A, while the weight matrix after learning
on 1000 pattern is shown on the right. The weights show
systematically organized receptive fields, demonstrating that
the SOM was able to self-organize. While the quality of
the organization is less than organizations reported later, we
verified that the quality is sufficient to roughly maintain an
activity package in the network around the location where it
was initialized. Learning with multiple inputs work because
the SOM functions as a WTA network and picks one large
peak that corresponds to two objects with a similar feature.
That is, saliency will focus the attention of the network to
one dominating feature, and learning will concentrate on this
feature for this particular trial since the postsynaptic activity
is suppressed for dissimilar features.

While the network can somewhat organize with multiple
inputs, the Hebbian learning of the multiple inputs does
introduce considerable noise. It is therefore possible that
additional mechanisms are used in natural systems. In partic-
ular, there is some evidence that top-down mechanisms are
important, including attention [25] and goal directed behavior
[6]. To simulate an attentional bias in our model, we chose
one of the peaks and modulated the input around this feature
with a Gaussian attentional window. The results, shown in
Figure 2B, confirm this assertion. In addition, noise in the
data can further improve the results as shown in Figure 2C.

While the SOM is able to organize without top-down
attentional filtering of multiple inputs, attention is essential
for supervised learning based on the SOM representation.
To demonstrate this, we included a perceptron on top of the
SOM and trained it on inputs with 10 Gaussians at random
locations (feature values) after training the SOM. However,
only one of these Gaussians was used as supervisor signal.



A. Ten Gaussian

B. Ten Gaussian with attention

C. Ten Gaussian with attention and noise
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Fig. 2. Demonstration of self-organization with ten randomly placed
Gaussian inputs (upper row). The resulting SOM weights are shown in the
lower row. Note that the example in the middle self-organized in a rotated
direction from the other two examples.

The perceptron could not learn under these conditions. The
reason for this is that the SOM WTA network would pick one
of the Gaussians randomly. However, with some attentional
bias, the SOM WTA networks easily pick the right feature
to be learned in the perceptron (Figure 3).

Recent experimental findings by Zhou and Merzenich [6]
have shown that the auditory cortex can develop tonotopic
maps in adulthood even when the cortex did not orga-
nize properly during a critical period in infancy. Crucial
for this late learning seems some goal-directed training,
which indicates the importance of top-down aspects in self-
organizing maps. We have previously modeled the ability to
self-organize in adulthood with top-down control with Ko-
honen’s model [26]. However, a crucial finding of Zhou and
Merzenich [6] was that it was even difficult to find preferred
stimuli in the experimental conditions that prevented self-
organization of the auditory map.

The development of tuning curves in the basic physiolog-
ical model is shown in Figure 4. Before learning, neurons
respond randomly to input features (Figure 4A). After some
learning, nodes respond to a cluster of features in some
interval, but their responses are still unevenly distributed
(Figure 4B). After some further training, smooth tuning
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Fig. 3. Demonstration of perceptron learning with and without attention.

curves develop (Figure 4C). The development of the tuning
curves is quite robust, so that the lack of clear tuning curves
during development is a clear indication of a failed self-
organization.

IV. CONCLUSION AND OUTLOOK

We have demonstrated that the basic physiological SOM
model can self-organize with multiple inputs, but we also
demonstrated that attentional biases can considerable im-
prove the organization. This is similar to the benefits of
anatomical mini-patches in [14]. Furthermore, attention, such
as signal filtering resulting from learning goal-directed be-
havior is essential to use SOM representations in supervised
mapping networks. This is consistent with the findings of
Zhou and Merzenich [6]. We also demonstrated the devel-
opment of tuning curves in such models which was missing
from our previous study [26].

There are several additions that we are currently inves-
tigating. While the attentional effect was simply simulated
by direct input modulation, topographic connections through
the system should be used for a more realistic investiga-
tion. Furthermore, the learning system on top of the SOM
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Fig. 4. Development of tuning curves in the basic physiological SOM
model.

was a simple perceptron. This should be replaced with a
reinforcement learning system to simulate more closely the
experimental conditions. Our goal for the development of
these more biological models is the investigation of different
rehabilitation strategies after lesioning parts of the network.
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