
RESEARCH ARTICLE

Are binary synapses superior to graded weight representations
in stochastic attractor networks?

Jason Satel Æ Thomas Trappenberg Æ
Alan Fine

Received: 27 October 2008 / Revised: 8 April 2009 /Accepted: 8 April 2009 / Published online: 8 May 2009
! Springer Science+Business Media B.V. 2009

Abstract Synaptic plasticity is an underlying mechanism
of learning and memory in neural systems, but it is con-

troversial whether synaptic efficacy is modulated in a

graded or binary manner. It has been argued that binary
synaptic weights would be less susceptible to noise than

graded weights, which has impelled some theoretical

neuroscientists to shift from the use of graded to binary
weights in their models. We compare retrieval performance

of models using both binary and graded weight represen-

tations through numerical simulations of stochastic attrac-
tor networks. We also investigate stochastic attractor

models using multiple discrete levels of weight states, and

then investigate the optimal threshold for dilution of binary
weight representations. Our results show that a binary

weight representation is not less susceptible to noise than a

graded weight representation in stochastic attractor models,
and we find that the load capacities with an increasing

number of weight states rapidly reach the load capacity

with graded weights. The optimal threshold for dilution of
binary weight representations under stochastic conditions

occurs when approximately 50% of the smallest weights
are set to zero.

Keywords Synaptic plasticity ! Binary versus graded !
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Introduction

Synaptic plasticity is widely believed to be the basis of

learning and memory in neural systems (Martin et al. 2000).
However, the exact nature of synaptic weight representation

is still unresolved (Dobrunz 1998; Chklovskii et al. 2004;

Peterson et al. 1998; O’Connor et al. 2005a, b; Liao et al.
1995; Isaac et al. 1995; Brunel et al. 2004; Poirazi and Mel

2001). While some early modeling work considered binary

weight representations (Willshaw et al. 1969), more
emphasis has been given to models with continuous-valued

weights to represent synaptic efficacies (Amari 1972;

Grossberg 1969). This approach has been called into
question by neurophysiological studies that have been

unable to show graded learning in vitro (Peterson et al.

1998; O’Connor et al. 2005a, b). These experiments with
rat hippocampal slices indicated that synapses that have

already been potentiated are unable to exhibit further

potentiation. The authors of these studies have supported
the case for binary synapses with theoretical arguments,

proposing that binary synapses would be advantageous for
biological systems in that they would be less susceptible to

noise than graded synapses. Driven in part by these results,

many modelers have begun to switch from graded to binary
weight representations in their models of learning and

memory (Amit and Mongillo 2003; Brody et al. 2003;

Koulakov et al. 2002; Abarbanel et al. 2005; Braunstein
and Zecchina 2006; Vladimirski et al. 2006; Senn and Fusi

2004; Giudice et al. 2003; Baldassi et al. 2007; Graupner

and Brunel 2007; Fusi and Abbott 2007).
The aim of our study was to investigate this issue to see

whether or not graded weights are more susceptible to

noise than binary weights when using the weights as the
basis of an associative memory system, specifically in the

form of attractor networks. It is known that attractor
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networks with clipped Hebbian (Sompolinsky 1987; Gut-
freund and Stein 1990) and binary (Krauth and Mezard

1989) weights have a lower storage capacity than models

with graded weights. Although many of the classical papers
(Amit et al. 1985, 1987; Sompolinsky 1987, 1986) include

some discussion of noise in the systems, comparison of the

models with graded and binary weights in the above papers
has only been made explicit in the case of deterministic

updates. Sompolinsky also analyzed the effect of noise and

non-linearities in the learning process on the storage
capacity of attractor networks in a separate paper (Som-

polinsky 1986) and found that static noise and models with
nonlinearities are related, and both reduce the storage

capacity of such attractor networks. However, a direct

comparison of models with graded and binary weights
under increasing levels of noise has, to our knowledge,

never been done explicitly. If binary weights are less sus-

ceptible to noise, then there would be a point at which the
load capacity of a model with binary weights would sur-

pass that of a graded weight model as noise in the networks

is increased (see Fig. 1a). Otherwise, the load capacity of a
binary weight model would never surpass that of a graded

weight model (Fig. 1b). The results reported in this paper

support the scenario of Fig. 1b. Binary weights are not less
susceptible to noise than graded weights in stochastic

attractor network models in terms of storage capacity of

these networks. The results show that the theoretical
argument by Peterson et al. (1998), which is widely

accepted in the neuroscience community, does not hold for

associative attractor memory networks.

Model and assumptions

A standard attractor network (Amit et al. 1985, 1987) was

used in order to compare the noise susceptibility of binary
versus graded weight representations. A network of

N = 1000 nodes was used where each node i is connected
to all other nodes j via a connection wij without self-cou-
plings, so wii = 0. The simulations were split into a

training and a testing phase.

During the training phase, the strengths of the connec-
tions are learned according to a Hebbian covariance

learning rule (Sompolinsky 1987):

wGRD
ij ¼ 1=

ffiffiffi
q

p Xq

l¼1

nli n
l
j þ dij; ð1Þ

where l numbers all q patterns that are to be stored in the
network, and n ¼ &1 represents the state of each element

in the random, uncorrelated patterns that are trained. The

scaling term in this learning algorithm, 1=
ffiffiffi
q

p
, is necessary

to compare performance between models with different

weight representation by ensuring that the spread of the

weight values remain of order unity with q patterns
(Sompolinsky 1987). Without this normalization proce-

dure, different weight models being compared would

essentially be comparing different levels of noise, since a
rescaling of the weights can be absorbed by a rescaling of

the noise scale such as the temperature in the dynamic

equations below. The term dij is a random variable to
include static noise in the weight matrix.

The function, sign(), is then used to obtain a binary

weight representation where all positive weights are con-
verted to ?1, negative weights to -1:

wBIN
ij ¼ signðwGRD

ij Þ: ð2Þ

In addition, we study a model with varying numbers of

discrete weight states:

wk
ij ¼ FðwGRD

ij Þ; ð3Þ

where an approximately equal number of weights are

assigned to each of the k discrete states using the function
F(). This function sorts the graded weights, finds the

appropriate values to obtain as close to an equal division of

weights as possible, assigns each of the graded weights to
one of the discrete states, and then normalizes the discrete

weight values to ensure the weights are of order unity so

that we can compare performance of the different models
with binary and graded weight representations. Different

choices of the function F() can be considered, as discussed

below, but no significant difference has been found in the
results we report.

Once the networks have been trained, all patterns that

have been stored are tested by presenting each of them to
the network, one at a time, and updating the states of all

nodes, si, in the network. The state of a node at any

timestep is a function of the sum of the activities of all
other connected nodes, sj, multiplied by the weight of the

connection between them, wij. The local fields:
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Fig. 1 Load capacities in attractor networks with graded and binary
weights. a Scenario in which the binary weights are less susceptible to
noise. b Scenario in which the effect of noise is similar for models
with binary and graded weights

244 Cogn Neurodyn (2009) 3:243–250

123



hi ¼
ffiffiffi
q

p

N

XN

j¼1

wijsj; ð4Þ

represent the sum of the activity of all other connected
nodes in the network multiplied by the synaptic weight that

connects them to node i. The scaling term
ffiffiffi
q

p
=N is

introduced in order to maintain the standard formulation of
attractor networks by ensuring that the local fields are of

order unity (Sompolinsky 1987). For deterministic

networks (no noise), the node activities are then updated
according to the sign activation function:

si ¼ signðhiÞ: ð5Þ

For finite temperature models, which include varying

degrees of stochasticity, the activation function used is a

logistic function, so that nodes are updated according to:

Probðsi ¼ þ1Þ ¼ ð1þ e'bhiÞ'1; ð6Þ

where the parameter b ¼ 1
T reflects the amount of noise in

the update. The limit of b ? ? corresponds to the deter-

ministic attractor model using the sign() activation

function.
The general model as introduced so far has two different

sources of noise, one from the probabilistic update and one

from the noise in the weight matrix. The method of
introducing noise into the system through stochastic

updating without noise in the weight matrix (dij = 0) is the

method most often used in attractor models (Amit et al.
1985, 1987). The noise in this model can be interpreted in

various ways. While a common interpretation is that of

probabilistic synapses, the statistical mechanics formula-
tion of the system compares a signal in form of hi to a noise
term following a Boltzmann distribution with parameter b.
Thus, this formulation can also be interpreted as fluctuating
weight values with a deterministic update rule.

An alternative method of modeling noise is to introduce

static synaptic noise directly into the weights by adding a
random variable, dij, to the weights (Sompolinsky 1987).

This noise term is taken to be Gaussian distributed and is

uncorrelated with the patterns. Although this model of
stochasticity is not exactly equivalent to the former, it has

been shown analytically that they result in similar network

behavior (Amit et al. 1985, 1987; Sompolinsky 1987).
Simulations were performed using both models of adding

noise to the networks, with results showing similar

behaviour, as described below.
In the simulations below, each node is updated based on

the states of all other nodes at the previous timestep, for ten

timesteps. Once the systems have been updated for ten
timesteps, the final state of the network is compared to the

original trained pattern to obtain a measure of retrieval

error. Since a binary representation of patterns is used with

quiescent elements represented by -1 and active elements

represented by ?1, an appropriate measure of similarity is
to take the average number of node states that differ

between the original and retrieved patterns:

erravg ¼ hh1=N
XN

i¼1

jðnli ' sfinali Þ=2jilitrial: ð7Þ

For any given load, this procedure is performed for every

trained pattern and the average percentage of incorrectly
retrieved node states over all patterns is used as the measure

of error for that model. When multiple trials are performed,

these average error rates are then averaged over the trials.
Using random patterns with binary, equally distributed

and uncorrelated components is a convenient choice com-

monly made in studies of attractor memory that allows for
comparison with detailed analytic results (Amit et al. 1985,

1987; Hopfield 1982, 1984; Sompolinsky 1987; Morgen-

stern 1986). In contrast, patterns in the brain are likely
more correlated, yet sparse. Correlations between patterns

influence the storage capacity of the networks, although

sparse representations, typically associated with hippo-
campal processing, can reduce correlations. Experimental

results in the temporal cortex of monkeys have shown that

less than 10% of nodes in a given pattern are active (Rolls
and Tovee 1995), although recent imaging studies indicate

that around 25% of CA1 neurons are active after fear

conditioning (Matsuo et al. 2008). The standard formula-
tion is satisfactory for the arguments derived in this study

since we are investigating the influence of noise with dif-

ferent weight representations in attractor networks and are
less concerned with absolute values for storage capacities.

Finally, discretizing the weights after correlation learn-
ing is not a truly binary learning rule, as the graded weights

must be still be computed before converting them to a

simpler, binary representation. Post-hoc discretization is an
artificial and unrealistic necessity imposed by current

uncertainty about precisely which (if any) discretization

mechanisms are used by the synapse, and this method has
been the basis for many discussions in the literature

(Morgenstern 1986; Sompolinsky 1987). Even the learning

algorithm of Baldassi et al. (2007) for perceptrons with
binary weights uses a hidden graded representation of the

pattern history. Also, it is well known that online learning

rules result in different storage capacities (Fusi and Abbott
2007), and that resulting weight distributions depend on the

details of the learning rule, such as the nature of boundary

conditions (Gutig et al. 2003; Kepecs et al. 2002) and the
number of states. Again, however, we are mainly con-

cerned with investigating the influence of noise with dif-

ferent representations of final weight distributions in
attractor networks rather than absolute storage capacities or

equilibrium properties of different learning rules.
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Results

Binary versus continuous weight representations

The following simulations investigate differences in the
retrieval performance of stochastic attractor networks when

using models of binary and graded weight representation.

Two different noise models were investigated, with noise
added either to the weights themselves during training in

Eq. 1, or incorporated into updates using probabilistic

updating in Eq. 6. For a given noise level, each model was
trained on the same patterns using Eqs. 1 and 2. Network

performance was tested by applying each original stored

pattern to the networks and allowing the models to update
themselves according to Eqs. 5 or 6 for ten timesteps,

finally comparing the retrieved patterns to the original

stored patterns using Eq. 7. This procedure was repeated for
20 trials and the average retrieval error over all trials was

recorded for each load and each noise level. Figure 2a–d

illustrate how the retrieval error increases with increasing
load for both the graded and binary weight representations

as the level of noise is increased. As more patterns are

loaded into the models, the retrieval error continues to
increase. The figures show that retrieval error increases

more quickly with a binary weight representation in both

noise models, especially under higher levels of noise.

Load capacity

Analytic calculations have shown that there is a critical

load, beyond which attractor networks will no longer

function as memory systems (Amit et al. 1985, 1987). That

is, as more and more patterns are loaded into a network,
eventually the system fails to retrieve the original patterns

with any degree of accuracy. This critical load, ac, corre-
sponds to the point at which a first-order phase transition
occurs.

The phase transition in attractor networks has been

shown to occur when an error threshold of approximately
0.0165 is reached in the deterministic case (no noise at all),

in the limit of an infinite number of nodes, with continu-
ous-valued weights (Amit et al. 1985, 1987; Sompolinsky

1987). That is, when the load capacity is reached, the

network is retrieving patterns with an average error of
1.65%. As stochasticity is increased, this critical error

threshold increases, as shown in Table 1 (Amit et al. 1985,

1987) and Table 2 (Sompolinsky 1987), which list the error
thresholds for varying amounts of noise in each noise

model. This shows that the amount of retrieval error that is

present when the networks reach load capacity will
increase with the amount of noise in the systems. These

analytically determined thresholds correspond to models

using continuous weight values, in the limit of an infinite
number of nodes, and so may not be exact when applied to

a finite number of nodes or when using binary weights, as

in these numerical simulations. To address these issues,
analogous results were computed using ±10% of the ana-

lytic error threshold results, as denoted by the error bars in

the phase diagrams of Fig. 3 which graphically illustrate
the numerically determined load capacities of both models

under varying noise levels as well as the original analytic

results for graded weights.
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Fig. 2 Retrieval error increases
with increasing load more
rapidly for binary than graded
synaptic weights. Load refers to
the number of patterns stored in
the network, relative to the
number of nodes in the system.
Each inset shows the retrieval
error versus load for a set
amount of noise in the system
using probabilistic updating.
The top curves in each graph
were produced by a model using
binary weights, while the
bottom curves were produced by
a model using graded weights
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In these simulations, the load capacity is defined as the

load just before the retrieval error surpasses the error
thresholds specified for the given level of stochasticity. The

figures illustrate that a binary weight representation is not

less susceptible to degradation than a graded weight
representation.

Multiple discrete weight states

Simulations were also performed with differing numbers of
discrete weight states to investigate how performance

changes when adding additional possible weight states.

Discretization of the graded weights was performed after
training according to Eq. 3.

One issue with the weight discretization process is

whether to use an even or odd number of states, since this
attractor network model uses both positive and negative

weight values. The question here is whether or not a weight

value of 0 should be considered as a separate state. After a
number of simulations, it was determined that performance

is enhanced by using an odd number of states, which results

in diluted models (i.e., models with more zero-valued
weights). Figure 4a and b illustrate the differences in

retrieval performance of models which do and do not have

a diluted representation, under both deterministic and sto-
chastic conditions. Models that include zeros as a state, and

therefore have an odd number of discrete states, have

sometimes been referred to as ternary models (Sompolin-
sky 1987; Morgenstern 1986); we refer to them as diluted

models in this work. Although the zero state is considered

as a separate state here, there is no active synaptic con-
nection when the weights are set to zero.

Each of the different weight representation models was

trained on the exact same patterns, increasing the number
of patterns loaded into the systems one by one. For each of

these loads and each noise level, the models were tested on

all the trained patterns, for 20 trials. The error was recorded
for each load and noise level, averaged over all trained

patterns and all trials. As before, the load capacities of the

different models were determined by finding the load at
which the error crosses a particular threshold, as described

in Sect. 2 and seen in Tables 1 and 2.

Figure 4c illustrates the increase in load capacity under
different levels of stochasticity as more and more possible

discrete weight states are used. When the number of

weights states is increased from two, as in the binary
weight model, to an infinite number of possible states, as in

the graded weight model, the load capacity continues to

increase, regardless of the noise level. Interestingly, the
increase in load capacity is relatively slight once the

number of weight states has been increased beyond a small

number.

Diluted weight representations

In the previous section, diluted binary networks were cre-

ated by placing an approximately equal number of weights

into each of the high, low, and zero states. Alternatively,
we explored the use of a threshold, |z|, where all weights

from the graded weight model in between -z and ? z are
changed to zero, while the rest of the weights are set to a
high or low value based on their sign:

wdiluted
ij ¼

'1 if wij\' z
þ1 if wij [ þ z
0 otherwise

8
<

:

The original, undiluted, binary networks are thus equivalent
to diluted binary networks with a threshold of z = 0. Sim-

ulations were run as before, except that performance was

also measured for different values of |z| between 0 and 1.2.
Figure 4d illustrates the retrieval error at load capacity

for different values of |z| in networks with varying levels of

stochasticity. Performance is maximal, and relatively sta-
ble, when using threshold values between z = |0.4| and

z = |0.8|. This reflects the number of zero valued weights

in the model. Since the update equation reflects an average
of all connected node activities multiplied by their weight

values, it is only the largest weights that really count. In

Table 1 Table of error thresholds used to define the point at which network load reaches load capacity, ac, for different levels of stochasticity
using a probabilistic updating model for noise

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

errc 0.0165 0.0175 0.0220 0.0295 0.0440 0.0645 0.0965 0.1405 0.2025 0.3000

The critical error thresholds, errc, are calculated through a simple scaling procedure from the overlap values, mc, that are taken from analytic
work (Amit et al. 1985, 1987)

Table 2 Table of error thresholds used to define the point at which
network load reaches load capacity, ac, for different levels of sto-
chasticity using a noise model with static noise added directly to the
weights

D 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

errc 0.0165 0.0170 0.0225 0.0355 0.0555 0.0865 0.1380 0.2395

The critical error thresholds, errc, are calculated through a simple
scaling procedure from the overlap values, mc, that are taken from
analytic work (Sompolinsky 1987)
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fact, the increased performance of diluted binary networks
over binary networks illustrates the fact that many small

weights can actually have a negative effect on performance

when they are discretized to values much larger than they
originally were. Previous work has shown that determin-

istic attractor networks will continue to function as mem-

ory systems with a dilution as high as 90%, although with
somewhat reduced performance (Morgenstern 1986). The

optimal level of dilution found here corresponds to

approximately 50% of the smallest weights being set to
zero. It has been calculated analytically that the optimal

value for the diluted binary threshold is z = |0.62| in a
deterministic model, resulting in a load capacity of

ac = 0.12 (Sompolinsky 1987). Simulations validated this

result by finding an optimal value of z = |0.6| at all levels
of stochasticity.

Discussion

The results presented here indicate that the primary theo-

retical argument for the existence of binary synapses does
not hold in a traditional attractor network regime: it appears

that graded weight representations are, if anything, less, not

more, susceptible to noise than binary representations.
Binary weight representations may have practical

advantages in coding engineering applications of attractor-

type memory systems, due to the relatively slight increase
in load capacity obtained by including more weight states

and the extra information required to store the additional

states. These advantages have yet to be realized, however,
inasmuch as true binary learning algorithms have not yet

been developed since traditional Hebbian-type learning

requires continuous valued weights before discretization.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Model with probabilistic update Model with static noise in weights

(a) (b)

Noise (relative strength)

Lo
ad

Graded model
Binary model
Analytic calculations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Noise (relative strength)

Lo
ad

Graded model
Binary model
Graded model (analytic)

Fig. 3 Phase diagrams in the
model with probabilistic
updates (a) and static noise in
the weight matrix (b) for graded
and binary weight models
illustrating load capacities. The
vertical axis represents load and
the horizontal axis represents
degree of stochastisity in the
systems. Error bars represent
load capacities when using
±10% variations in the values
of the critical overlap used to
determine the transition points

# of discrete weights states

Lo
ad

 c
ap

ac
ity

# of discrete weights states

Lo
ad

 c
ap

ac
ity

2 4 6 8 12 16 20 Infinite

0.06

0.08

0. 1

0.12

0.14

# of discrete weight states

Lo
ad

Noise:0
Noise: 0.2 
Noise: 0.4 

Threshold

R
et

rie
va

l e
rr

or

0 0.2 0.4 0.6 0.8 1 1.2
0

0.02

0.04

0.06

0.08 Noise: 0

Noise: 0.2

Noise: 0.4

c
: .124

c
: .103

c
: .061

0 2 4 6 8 10 12 14
0.1

0.11

0.12

0.13

0.14

0.15
Noise T=0

Scaling with number of states Optimal Dilution Thresholds

Noise T=0.2
(a) (b)

(c) (d)

0 2 4 6 8 10 12 14
0.08

0.1

0.12

0.14

Diluted model Diluted model

Fig. 4 a, b Diluted versus non-
diluted models of binary weight
representation. c Load capacity
as a function of the number of
discrete weight states for
different levels of stochasticity.
d Optimal dilution thresholds at
load capacity for varying
degrees of stochasticity. The
load capacities, ac, when using
the specified thresholds are
shown

248 Cogn Neurodyn (2009) 3:243–250

123



Our analysis is strictly based on standard attractor net-

works, on which some of the arguments have been based.
Our results do not preclude advantages of binary weights in

different network architectures, such as feedforward map-

ping networks, for different reasons. Indeed, interesting
arguments have been made for such networks with binary

weights, which include an efficient learning algorithm

(Braunstein and Zecchina 2006; Baldassi et al. 2007).
Also, our results are derived for the classical, fully con-

nected network, and variations in the network structure
could change these conclusions. However, as argued in this

paper, the difference between binary and graded synapses

seems to be moderated by the large number of inputs which
drive the attractor dynamics. Thus, we expect similar

results as long as the networks dynamics are determined by

a large number of inputs.
Some engineering advantages may, in any event, be

irrelevant to biological brains. The appropriate biological

equivalent of nodes in attractor network models is con-
troversial. Our recent experimental evidence that individ-

ual synapses can display multiple stable transmitter release

probabilities in association with multiple inductions of long
term potentiation and depression (Enoki et al. 2009) indi-

cates that real brains do not use binary weight representa-

tions. Furthermore, one possible interpretation of nodes in
neural network models is that each node represents a

population of neurons with similar response properties

(Wilson and Cowan 1973; Gerstner 2000). In this formu-
lation, the weights of neural network models represent the

average connectivity strength between populations of

neurons. In this case, even if the individual synaptic effi-
cacies were binary, the representation in a neural network

model would be graded since it represents an average over

many binary weights.
Increasing the number of possible discrete weight states

increases the load capacity of attractor networks. This

increase, in our models, begins to plateau beyond a rela-
tively small number of states, on the order of a dozen. Our

recent experimental work (Enoki et al. 2009) provides

evidence of at least five weight states at a single synapse,
but the maximum number of states is not yet known. Thus,

it appears appropriate to use graded weight representations

in formulating neural network models.
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